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Abstract

The dynamics of detonation evolution in a condensed-phase explosive, initiated by the shock-induced
collapse of an embedded, ellipsoidal, gas-filled cavity, is examined computationally. Attention is focused
on the details of the evolutionary process following the collapse. The reaction rate is assumed to be
pressure-dependent, switching on when the pressure exceeds an ignition threshold. The strength of the
incident shock is taken to be such that the reaction would not be initiated without the interaction of the
shock with the cavity. The system is modeled as a multi-material mixture, and a high-resolution, Godunov
type capturing scheme is employed to solve the governing equations numerically. The computations
are carried out in parallel, and adaptive mesh refinement is used to obtain accurate and well-resolved
solutions. It is found that collapse of the cavity produces a detonation provided the cavity is large
enough, or the rate of reaction strong enough; otherwise reaction initiated by the collapse fizzles out.
Details of how the detonation is is established are found to depend strongly upon the shape of the cavity.

1 Introduction

It is well known that the stimulus required to initiate a detonation in a heterogeneous, condensed-phase
explosive is weaker than that needed to produce a similar event in a homogeneous explosive. When the
initiating agent is a shock, the interaction of the shock with the microstructure of the medium leads to the
generation of a nonuniform post-shock field that includes hot spots where local pressures and temperatures
are higher than those that the incident shock would produce in a homogeneous environment. Chemical
reaction originates preferentially at these sites before spreading to the bulk. Heterogeneities occur naturally
in a granular explosive where the grains of the reactant are held together by a plastic binder. Additional
contributors to heterogeneity include impurities, voids, inclusions and gas-filled cavities. Often cavities in
the form of glass micro-balloons are introduced into liquid explosives by design to increase their sensitivity.
A variety of mechanisms acting at the scale of the heterogeneities have been proposed for the creation of
hot spots, including friction, cracking, dislocation pileup, local plastic deformation, and adiabatic heating
of trapped gases. However, it is the collapse of gas-filled cavities and the high pressures and temperatures
resulting therefrom that is recognized to be a dominant mechanism.

The degree to which the presence of cavities renders the explosive more susceptible to detonation is
determined collectively by their number, size, shape and distribution. In this study we focus on a single cavity
embedded in an otherwise homogeneous explosive, and explore the extent to which its collapse enhances the
proclivity of the explosive towards detonation. It is assumed that the incident shock is planar, that the
reaction rate is pressure-dependent, and that the reaction is switched on when pressure in the explosive
medium rises above an ignition threshold. The strength of the incident shock is taken to be such that
the post-shock pressure, without the aid of cavity collapse, is below the ignition threshold. We consider
a spherical cavity and examine the post-collapse behavior as a function of the cavity size, to determine
how large the cavity needs to be to ensure an established detonation as the outcome. The role played
by the shape of the cavity is also assessed by repeating the computations for cavities shaped as prolate
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and oblate spheroids. The post-collapse evolution is mapped out in detail, with emphasis on the fields of
pressure and reaction progress. Attention is focused on identifying regions of the flow in which shock-cavity
interaction results in pressures that are high enough to initiate reaction. The intent is to determine how
the reaction intensifies and couples with the collapse-induced high pressure in the solid explosive to create
a detonation, or fails to do so, and how this process depends upon the shape and size of the cavity and the
strength of the reaction rate. This work is a natural extension of our earlier investigation [1] of single cavity
collapse in an inert medium. The aim of that work was to obtain an accurate numerical description of the
deforming interface and the ensuing flow structures, and to gain an understanding of the underlying physical
mechanisms.

Cavity collapse and energy localization in the context of explosive ignition has been the subject of many
previous investigations, both experimental and theoretical. (Existing literature on cavity collapse in areas of
engineering application other than explosive ignition was described in detail in [1] and will not be repeated
here.) The experimental work is well-summarized in the review by Bourne [2]. Also noteworthy are the
experiments on cavity collapse in porous explosives by Bourne and Field [3]. These experiments are two-
dimensional, with the cavity being a circular disk punched in a planar sheet of gelatinous material or in a
sheet of emulsion explosive, and subject to a planar shock. Multiple cavities arranged in an array are also
considered. The primary conclusion is that the incident shock induces convergent flow at the back of the
cavity wall and forms a high-speed jet. The site of maximum temperature is behind the point of impact of
the jet with the cavity wall. The authors note that other locations of elevated temperature may also arise
as a result of complex hydrodynamic interactions generated by the incident shock, and that the size of the
cavity plays an important role in determining the location of the ignition sites. In recent work, Swantek and
Austin [4] have studied the collapse of a single void, as well as that of inline and offset arrays of multiple
voids, under a stress-wave loading, again in a gelatinous medium and in a two-dimensional setting. It is
found that the diffraction of the incident stress wave around the lead void, and the generation of a pulse
of high pressure due to the collapse of the lead void, may cause the lead void to act either as a collapse
inhibitor or a collapse trigger for the voids downstream, depending upon the array configuration and the
void spacing.

Computational studies of cavity collapse motivated by hot-spot formation include the work of Milne and
Bourne [5] aimed at simulating the experiments of Bourne and Field [3] noted above. Figures demonstrating
the final stages of the collapse of the cavity are presented and show the formation of lobes subsequent
to the jet impact. It is mentioned that temperatures attained during collapse are a strong function of the
assumptions about the equations of state. Tran and Udaykumar [6, 7] have examined the collapse of a void in
both an inert medium and a reactive medium, demonstrating the different ways in which energy localization
can occur, ranging from plastic deformation to hydrodynamic collapse. This work is extended for the inert
case to an array of voids by Kapahi and Udaykumar [8]. They also find that void-void interaction can either
enhance or diminish the maximum post-shock pressure depending upon the location of the downstream voids.
Lauer et al. [9] have examined the collapse of a cavity array, with particular emphasis on the maximum
pressure attained. They observe that a smaller void-to-void distance generally, but not necessarily, results in
large collapse pressure, and stress that exceptions from the general trend are due to complex hydrodynamic
interactions. Michael and Nikiforakis [10] simulate the collapse of a single cavity in liquid nitromethane
and in a two-dimensional configuration, and find that temperature maxima subsequent to collapse occur at
locations directly in front of and behind the collapsed cavity.

What distinguishes this study from previous investigations is its focus on the full details of the hydrody-
namic evolution that begins with the initiation of cavity collapse and culminates in either the establishment
of a fully-developed detonation wave or in reaction extinction following partial reactant consumption. The
way in which the evolutionary details depend upon the size and shape of the cavity and the reaction rate
are also emphasized.

The situation under study in this work is an example of a multi-material system in which the principal
constituents, the solid outside the cavity and the gas within, remain immiscible and the sharp interface
between them retains its identity. The challenges encountered in the numerical treatment of such systems,
especially in an accurate and robust capture of the interface when the impedance jump across it is large, were
summarized in [1]. There we laid out a mixture-theory model in which the interface is regarded as an entity
of finite but narrow width, extending to a few computational cells. Even though it is only within this thin
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zone that the solid and the gas coexist, with one or the other of the constituents being absent everywhere else,
the model extends the notion of the mixture to the entire computational domain. This allows the same set
of governing equations to prevail everywhere. Closure conditions required by the mixture-theory treatment
are chosen by considerations of numerical robustness rather than a faithful adherence to some preconceived
physics of the interface. It is assumed, in particular, that certain constitutive parameters advect with the
mixture, following similar formulations proposed by others; see Abgrall [11] and Saurel and Abgrall [12], for
example.

The above model is extended in this study to accommodate the reactive solid, which itself is now treated
as a homogeneous mixture of two distinct constituents, the unreacted explosive and the product of reaction.
To each constituent is assigned an equation of state, and a single reaction-rate law (mentioned above) is
postulated for the conversion of the reactant to product. It is assumed that the two constituents are in
pressure equilibrium, that they travel with the same velocity, and that the conversion takes place without
change in density. The internal energy of the solid mixture is the sum of the internal energies of the individual
constituents, weighted by the reaction progress variable.

We note that while the formulation of advected parameters follows a similar approach used by others, our
numerical treatment of the governing equations is different. The numerical approach used here follows that
discussed in [13] for compressible two-phase flow and adjusted to multi-material flow in [1], and it is extended
to accommodate the reactive solid. This extension uses a Strang-type fractional step scheme in which the
nonlinear convective terms in the governing equations are advanced in one step (with the reaction-rate term
set to zero), while the reaction term is integrated in the other step (with convection turned off). The overall
approach is stable and second-order accurate (for regions of smooth flow), and is similar to that used by us
for other reactive-flow problems, see [14, 15, 16, 17] for example. The numerical method uses adaptive mesh
refinement (AMR) and is implemented in parallel, and it is available as part of the Overture framework of
codes [18].

The paper is organized as follows. Section 2 introduces the configuration under study and the governing
equations. The numerical approach is outlined in Section 3. Section 4 contains a detailed description of
the various cases of cavity collapse and the subsequent evolution of reaction, culminating either in the
development of a detonation or in a failure to detonate. Computational results are presented for incident
shock of a given Mach number, for three different cavity shapes, and for four different choices of a parameter
that can be viewed as measuring either the strength of the reaction rate or the size of the cavity. Concluding
remarks are made in Section 5.

2 Model

The physical setup, shown in Figure 1, consists of an axisymmetric cavity filled with an inert gas and
situated within a reactive solid in three-dimensional space. The initial state corresponds to a planar shock
propagating in the unreacted solid from left to right and approaching the cavity. The jump in pressure across
the shock is assumed to be large, allowing the shocked solid to be modeled as a compressible fluid, but not
so large as to initiate reaction in the solid prior to the shock colliding with the cavity. (We shall retain the
term ‘solid’ even though the material is modeled as a compressible fluid.)

2.1 Governing equations

The gas and the solid are separated by a sharp interface to begin with, and would remain so in the exact
solution of the flow at later times. However, in our numerical approximation of the flow the interface is
smeared initially over two or three grid cells, and the width of this smear can increase as the solution evolves
according to our shock-capturing scheme. Within the smeared interface there exists a mixture of the gas
and the solid, and the latter itself may be composed of the reactant and the product. Thus we are led to a
mixture formulation of the governing equations, which is described below and is well suited for our numerical
scheme (see Section 3). For the computational results described later, the diffuse-interface regions are thin
and purely numerical, and we assign no particular physical significance to the behavior of the flow variables
in such regions.
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Figure 1: Initial configuration for shock-induced cavity collapse. Regions Ωg , Ω
(u)
s and Ω̃

(u)
s denote the

gas in the cavity, the unreacted solid ahead of the shock and the solid behind the shock, respectively. The
Mach number of the incident planar shock is given by Ms , and Γ denotes the boundary of the cavity.

Surface tension forces, being small relative to the gasdynamic forces at the interface, are neglected.
Viscosity and heat conduction are assumed to be negligible as well in both the solid and the gas so that the
flow is governed by the Euler equations. In the axisymmetric geometry these equations are

∂

∂t
u +

∂

∂x
f +

∂

∂y
g = h , (1)

where

u =


ρ

ρu

ρv

ρE

 , f =


ρu

ρu2 + p

ρuv

u(ρE + p)

 , g =


ρv

ρuv

ρv2 + p

v(ρE + p)

 , h = −v
y


ρ

ρu

ρv

ρE + p

 .

Here, ρ , (u, v) , p , and E denote the density, velocity, pressure and total energy of the mixture, respectively,
at a position (x, y) and time t, with x being the axial coordinate and y the radial coordinate. The total
energy is defined as

E = e+
1

2

(
u2 + v2

)
,

where the internal energy e is prescribed by a stiffened-gas equation of state for the mixture of the form

e =
p+ γπ

(γ − 1)ρ
− λq , (2)

where γ is the polytropic exponent, π the stiffening pressure, λ the progress of reaction, and q the heat
release.

The conservation equations in (1) are augmented by a set of advection equations for the constitutive
properties of the components comprising the mixture. This approach, introduced by Abgrall [11] and later
extended by Saurel and Abgrall [12] and by us [1], provides a robust means of capturing interfaces without
the appearance of spurious oscillations, and was successfully employed in our earlier study of inert cavity
collapse where advection was applied to γ and π. Here this procedure is extended further by designating
additional quantities for advection in recognition of the fact that the solid, upon reaction, will itself consist
of two distinct components, the unreacted material and the reaction product. Thus the new advection
equations are

∂

∂t
z + u

∂

∂x
z + v

∂

∂y
z = k , (3)
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where

z =


λ

w(u)

w(r)

q

 , k =


R
0

0

0

 .

Here R is the reaction rate, w(u) and w(r) to be defined below are vectors carrying the constitutive
properties of the components of the mixture, and q is assigned to be the heat released by the reaction. The
reaction rate assumes first-order, pressure-dependent kinetics, given by

R =

{
σ(1− λ)(p− pign) if p > pign ,

0 otherwise ,
(4)

where σ is the reaction prefactor and pign is the ignition-pressure threshold. The vector w(i) , i = u or
r , is defined as

w(i) =


1

γ(i) − 1

γ(i)π(i)

γ(i) − 1

 .

The components of w(i) take the values corresponding to the unreacted solid (for i = u ) or the reaction
product (for i = r ) on the solid side of the interface, and those corresponding to the gas on the gas side of
the interface, with a smooth variation within the interface. The variable q takes the nonzero value of the
heat release in the solid and is zero in the gas, with a smooth variation through the interface. Upon using
the advected quantities given in (3), the equation of state for the mixture in (2) becomes

e =
w1p+ w2

ρ
− λq , (5)

where now, w is simply the λ-weighted sum of the corresponding vectors for the constituents,

w =

 w1

w2

 = (1− λ)w(u) + λw(r) .

Equations (1) and (3), along with the rate equation (4) and the mixture equation of state (5), constitute the
full set of governing equations.

We remark that the reaction progress λ , heat release variable q and constitutive variables w(u) and
w(r) are defined throughout the problem domain, including the region occupied by the inert gas. This is
done for numerical convenience. For the gas, we set q = 0 and w(u) = w(r) , and the value of λ has no
significance since there is no heat to be released by reaction.

Returning to Figure 1, the incident shock travels to the right, with Mach number Ms , into the undis-

turbed solid at rest in the region Ω
(u)
s . The density and pressure of the solid in this region are given by ρs

and ps respectively. The state of the unreacted solid in the region Ω̃
(u)
s behind the shock is determined by

the normal shock conditions, i.e.,

ρ̃s
ρs

=
(γ

(u)
s + 1)M2

s

(γ
(u)
s − 1)M2

s + 2
,

ũs
cs

=
2(M2

s − 1)

(γ
(u)
s + 1)Ms

,
p̃s − ps
ps + π

(u)
s

=
2γ

(u)
s (M2

s − 1)

γ
(u)
s + 1

, (6)

where cs is the sound speed in the undisturbed solid. As indicated earlier, the post-shock pressure p̃s does
not exceed pign so that the solid remains unreacted, and hence the values of γs and πs appearing in the
above expressions carry the superscript u . The initial state of the gas in region Ωg inside the cavity is
taken to be at rest, with density and pressure given by ρg and pg , respectively. The polytropic exponent
and the stiffening pressure for the gas are γg and πg , with the latter quantity taken to be zero. Finally,
it is assumed that the gas inside the cavity and the solid surrounding it are in mechanical and thermal
equilibrium across the interface Γ , a contact discontinuity, that forms the boundary of the cavity at t = 0 .
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2.2 EOS parameters, ambient state, and nondimensionalization

The ambient state in the gas within the cavity and the surrounding solid is taken to be

ρg = 1.161 kg/m3, pg = 105 Pa,

ρs = 1905. kg/m3, ps = 105 Pa.

These values are consistent with an air-filled cavity and a typical HMX-type explosive solid at standard
atmospheric pressure and temperature. The parameters for the equation of state of the gas are prescribed
by

γg = 1.4, πg = 0, qg = 0,

while the parameters for the unreacted and reacted solid are prescribed by

γ(u)s = 5.0, π(u)
s = 6.858× 108 Pa, q(u)s = 5.5× 106 J/kg,

and
γ(r)s = 2.0, π(r)

s = 0, q(r)s = 5.5× 106 J/kg,

respectively. The sound speeds of the gas and solid in the undisturbed regions are

cg =
√
γgpg/ρg = 347.2 m/s, cs =

√
γ
(u)
s (ps + π

(u)
s )/ρs = 1342. m/s,

respectively. The initial state of the flow behind the shock is determined by the shock Mach number and
the jump conditions in (6). For the calculations in this paper, we consider Ms = 2.0 . The corresponding
speed of the shock in the solid is

Ds = csMs = 2684. m/s,

while the state behind the shock is given by

ρ̃s = 2540. kg/m3, ũs = 670.9 m/s, p̃s = 3.430× 109 Pa. (7)

The governing equations are made dimensionless by choosing suitable reference scales for the problem.
The reference scale for velocity is taken to be the acoustic speed in the undisturbed gas, and that for pressure
the standard atmospheric pressure. Thus we have

uref = cg = 347.2 m/s, pref = pg = 105 Pa,

and from these we compute the reference density,

ρref = pref/u
2
ref = 0.8295 kg/m3.

The time scale is given by
tref = xref/uref ,

where xref is a reference length scale that we keep arbitrary for now. We define the dimensionless quan-
tities x′ = x/xref , y′ = y/xref , t′ = t/tref , ρ′ = ρ/ρref , etc., to convert the governing equations into a
dimensionless form. There now appears the nondimensional group

σ′ =
σ pref xref
uref

as the premultiplier in the dimensionless version of the rate equation (4). Otherwise the resulting equations
have the same form as the original set, and thus the equations in (1), (3), (4) and (5) may be viewed as
dimensionless (with the primes on all variables dropped for notational convenience). The dimensionless
quantities in the three regions of the initial configuration in Figure 1 are collected in Table 1. In the
expression for the reaction rate, pign is taken to have the dimensionless value 105, and σ is assumed to lie
in the range [0.001 , 0.01].
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Region Ωg Ω
(u)
s Ω̃

(u)
s

density, ρ 1.4 2296. 3062.

velocity, (u, v) (0, 0) (0, 0) (1.932, 0)

pressure, p 1.0 1.0 34296.

EOS, (w1, w2) (2.5, 0) (0.25, 8572.) (0.25, 8572.)

heat release, q 0 45.63 45.63

Table 1: Dimensionless initial states in the undisturbed gas (region Ωg ) and solid (region Ω
(u)
s ), and in the

post-shock solid for Ms = 2.0 (region Ω̃
(u)
s ).

We now turn to the selection of the reference length. Consider a Chapman-Jouguet (CJ) detonation for
which the upstream state is the post-shock state behind the Mach 2.0 incident shock, defined in (7). The
thickness xrz of the reaction zone in this CJ detonation is an intrinsic length in the problem. Equation
(27) in the Appendix shows that the reaction-zone thickness, the reference length and the dimensionless
reaction-rate prefactor σ are related by

xref
xrz

= 5000σ. (8)

If xrz is considered as a given quantity for a particular explosive, then the choice of σ defines the reference
length xref , and hence the size of the cavity being considered. (As we shall see in the section 4, each cavity
shape that was investigated has a volume equivalent to that of a sphere of diameter 0.4 dimensionless units.)
Our choice of allowing σ to be in the range [0.001 , 0.01] corresponds to cavity diameter varying from twice
to twenty times the reaction-zone thickness. Alternatively, if xref is prescribed to be a characteristic cavity
size, then the choice of σ corresponds to the selection of a reaction rate (and hence the selection of the
explosive), and the above equation then defines the corresponding reaction-zone thickness.

3 Numerical method

In this section, we describe the numerical method employed to obtain well-resolved solutions of the governing
equations for different cavity configurations and for different values of the reaction pre-factor σ which, as
discussed in the previous section, provides a measure of the size of the cavity. A Strang-type fractional-
step scheme is used to advance the equations in time. One step handles the nonlinear convection portion
of the equations with the reaction rate set to zero (but with the geometric source term retained), while
the other step considers the reaction rate alone. A high-resolution Godunov method is employed for the
nonlinear-convection step so that shocks and contact discontinuities (including the interface between the
gas and solid) are captured in the numerical solution, while the reaction zone behind the leading shock of
a detonation is resolved on the grid. An exact Riemann solver is used to compute the (conservative) flux
functions in the Godunov method and to advance the constitutive variables in (3) following the approach
described in [1], which extends the work in [13, 19]. We have found that more accurate results for the cavity
problems considered here are obtained using an exact Riemann solver in comparison to results obtained
using an approximate Riemann solver, such as an HLLC solver [20], which requires less computational cost
per time step. The choice of the constitutive variables in (3) and the discretization of these advection
equations is often guided by the property that uniform pressure-velocity (UPV) flow is maintained, and this
is done so that oscillations in the pressure near the interface are suppressed (see [12], for example). The
numerical approach used here is not guided directly by this property, but rather UPV flow is maintained
as a consequence of the numerical approximation as was discussed in [1]. Finally, the numerical method
discussed in this section is part of the Overture set of codes (see Acknowledgements), and is implemented in
parallel using adaptive mesh refinement (AMR) following the work in [14] and [21].
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3.1 Fractional step scheme

The numerical solution of the cavity problem shown in Figure 1 is computed on a uniform grid with spacings
∆x and ∆y in the x and y directions, respectively. Let Un

i,j and Zn
i,j denote approximations of u(x, y, t)

and z(x, y, t) at a grid cell (xi, yj) and a time tn . These grid functions are advanced in time using the
fractional-step scheme

Qn+1
i,j = Sk(∆t/2)Sh(∆t)Sk(∆t/2)Qn

i,j ,

where Qn
i,j = (Un

i,j , Z
n
i,j) and ∆t is the time step from tn to tn+1 (chosen to satisfy a CFL stability

condition). The operators Sh(τ) and Sk(τ) represent numerical integrations of the equations

∂

∂t
u +

∂

∂x
f +

∂

∂y
g = h

∂

∂t
z + u

∂

∂x
z + v

∂

∂y
z = 0

 , (9)

and
∂

∂t
u = 0

∂

∂t
z = k

 , (10)

respectively, over a time interval τ . The numerical integration of the hyperbolic system in (9) follows
directly from the approach for the equations governing the behavior of the inert cavity discussed in [1], and
we will not repeat the description here. The equations in (10) reduce to the ODE

∂λ

∂t
= R, (11)

with ρ , (u, v) , E , w(i) , and q held fixed. The mixture pressure p in R may then be obtained in terms
of λ and the aforementioned fixed quantities from the mixture equation of state in (5). The numerical
integration of (11) uses a second-order Runge-Kutta (RK) error-control scheme following the approach
discussed in [14] and [16], for example.

The numerical approach for multi-material reactive flow as described above is performed in parallel using
AMR. A uniform grid at the base level covers the domain of interest, and block-structured refinement grids
are built on top of this uniform grid according to an error estimator so that sharp features of the flow,
such as shocks and contact discontinuities (including the interface), are computed on the finest grid level.
In regions of the flow where reaction is significant, such as the reaction zone of a detonation, the grid is
refined according to the error estimate used in the RK error-control scheme (see [14] for further details).
The grid cells are refined by a factor of nr = 4 in each coordinate direction and n` refinement grid levels
are allowed in the AMR hierarchy. Typically, we use n` = 1 or 2. All grids, including the base-level grid
and its refinement grids, may be partitioned and assigned to a set of processors, so that the calculations are
done in parallel. The assignment is made according to a load-balancing algorithm as described in [21]. We
generally use 32 processors for the numerical calculations presented later in this paper.

3.2 Grid convergence

Several tests were discussed in [1] to verify the accuracy of the numerical method in the context of inert
multi-material flow. In particular, second-order accuracy of the numerical method for smooth flow was
established using the method of analytical solutions, and self-convergence studies were performed for flows
involving the interaction of a shock and a gas-solid interface. For the latter case, it was shown that the
position of the interface was obtained accurately without numerical oscillations in the state variables on
either side of it. Analogous tests involving the present model of reactive multi-material flow give similar
results, and thus they are not described here. Instead, we focus attention on a particular test involving a
representative flow in which there is significant reaction in the solid.

The initial conditions for the one-dimensional test flow at t = 0 involve an unreacted solid at rest for
x > 0.5 and an unreacted solid for x < 0.5 moving to the right with speed V0 . The one-dimensional flow is
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Figure 2: Reactive solid-solid collision: Velocity (left), pressure (middle) and reaction progress (right) for
times t = 0 : 0.002 : 0.014 .

a model for the collapse of a gas cavity at the moment the jetting face of one side of the cavity collides with
the stationary face of the cavity on the other side. Such a solid-solid collision gives rise to high pressures
and can lead to significant reaction in the reactive solid. Using the dimensionless parameters discussed in
Section 2.2 and listed in Table 1, we set

ρ = 2296., p = 1.0, λ = 0, w1 = 0.25, w2 = 8572., q = 45.63,

for the solid occupying all x at t = 0, and set

u =

 10 if x < 0.5,

0 if x > 0.5.

The choice V0 = 10 is suggested by the typical (dimensionless) velocity observed at the moment of first
collapse of the spherical cavity considered in detail in the next section. The reaction prefactor σ in (4)
is taken to be 0.005 , corresponding to the base value among the choices discussed later, and the ignition-
pressure threshold is set to be pign = 105 .

Figure 2 shows the behavior of the velocity, pressure and the reaction progress for t = 0 : 0.002 : 0.014 .
The collision of the solid on the left with the solid at rest on the right produces a blast region in which
the pressure exceeds pign, thereby initiating the reaction. Two shocks are generated by the initial impact,
one traveling to the right into the solid at rest and the other traveling to the left into the right-moving
solid. These shocks bound the blast region, are strengthened by the reaction behind them, and ultimately
transition into detonations.

0.76 0.77 0.78 0.79 0.8 0.81 0.82

0

1

2

3

4

5

6

7

v
el
o
ci
ty

x

0.76 0.77 0.78 0.79 0.8 0.81 0.82

0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

p
re
ss
u
re

x

0.76 0.77 0.78 0.79 0.8 0.81 0.82

0

0.2

0.4

0.6

0.8

1

re
ac

ti
o

n
 p

ro
g

re
ss

x

Figure 3: Reactive solid-solid collision: Enlarged views of velocity (left), pressure (middle) and reaction
progress (right) near the right-traveling detonation at t = 0.014 computed using grids with ∆x = 1/2000
(green), 1/4000 (red) and 1/8000 (blue).

For this flow, we consider solutions computed on grids with three different values of the grid spacing
∆x to illustrate the accuracy of the numerical method. Figure 3 shows enlarged views of the solution at
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t = 0.014 near the right-traveling detonation for grids with ∆x = 1/2000 (green), 1/4000 (red) and 1/8000
(blue). The solution curves lie very close to one another for each grid, with the only noticable difference
occuring near the shock indicating excellent accuracy of the computed solutions. All of the main results of
the paper, discussed in the next section, use grids with ∆x = 1/4000 .

4 Numerical Results

We now describe in detail the principal features of the flow resulting from the collision between the incident
shock originating in the solid and the gas-filled cavity embedded in the solid. The geometry of the config-
uration is displayed in Figure 4, which shows one-half of a symmetric cross-sectional view. The ellipsoidal
cavity has semi-axes a and b initially and is centered at the origin of the coordinate system. The shock in
the solid is located at x = −s at t = 0 , and moves to the right with a velocity determined by the shock
Mach number Ms = 2 . The base grid covers the numerical domain −L ≤ x ≤ L and 0 ≤ y ≤ H with
axis of symmetry y = 0 . Three different cavity shapes are considered: sphere, prolate spheroid and oblate
spheroid. The spherical cavity has dimensions b = a = 0.2 . The spheroids are assigned the same volume as
the sphere, but for each the major axis is twice as long as the minor axis.

Ωg

~

Ms

Ωs Ωs

x

a−a

b

−s L−L

H

(u)(u)

Figure 4: Domain for shock-induced collapse of an ellipsoidal cavity. The ellipsoidal cavity is centered at the
origin and has semi-axes a and b . The shock is located in the unreacted solid at x = −s initially. The
base grid covers the domain −L ≤ x ≤ L and 0 ≤ y ≤ H with axis of symmetry y = 0 .

The computational results, presented below, are grouped by cavity shape. For the spherical cavity, four
different choices of the reaction-rate prefactor are considered, namely, σ = 0.001 , 0.0025, 0.005 and 0.01.
For the prolate and oblate spheroids, results are presented for σ = 0.001 , 0.005 and 0.01 only. The fourth
value σ = 0.0025 was also examined for these latter two cavity shapes but the results were found to be
close to those of the σ = 0.005 case and therefore omitted. As already mentioned, increasing σ may be
considered as increasing the size of the cavity or strengthening the rate of reaction. The choice σ = 0.005
is viewed as the base case, for which fine details of the process of evolution are described. The descriptions
are briefer for the other choices of σ. Shaded contour plots and on-axis profiles of pressure p and extent
of reaction λ at various times are employed as descriptors of events. Due to axisymmetry of the cavity
shape only the upper half of the cavity is displayed in each case. The terms ‘horizontal’ and ‘vertical’ are
used to refer, respectively, to directions along, and normal to, the axis of symmetry, while ‘up’ and ‘down’
refer, respectively, to directions radially outwards or inwards. At time t = 0 the Mach 2.0 planar shock is
incident at the front face of the cavity along the axis of symmetry. For the inert case, a full discussion of
the events following the impact for each cavity shape appears in our earlier study [1]. Here, we show only
a few plots of the events leading up to the instant when the impact of the front face of the cavity with the
rear face has either just occurred or is imminent. For ease of interpretation and to focus attention on the
solid, the cavity region is masked out in the contour plots. We recall from Table 1 that the dimensionless
post-shock pressure is 3.43× 104 units while the pressure threshold for ignition is 105 units.
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Figure 5: Spherical cavity: shaded contours of pressure p at times t = 0.028, 0.048 and 0.068 (left to right).
Reaction has not yet begun, and collision between the solid jet and rear faces of the cavity is imminent at
t = 0.068 .

4.1 The spherical cavity

We begin with a discussion of the case of a spherical cavity. Figure 5 shows the interaction of the planar
shock with the cavity at three early times, t = 0.028, 0.048 and 0.068, before any reaction occurs. The
impact of the shock with the leading face of the cavity generates a reflected wave in the form of a rarefaction
back into the solid and a transmitted shock in the gas. The latter wave is not shown in the blanked out
region of the gas inside the cavity, but is well described in [1]. The oblique pressure gradient set up within
the rarefaction causes the parallel flow entering the rarefaction front to converge towards the axis, thereby
forming a high-speed jet traveling from left to right. The jet pushes on the front surface of the cavity, causing
it to flatten ( t = 0.028 ) and then to fold inwards ( t = 0.048 ). At t = 0.068 the front face of the cavity
is on the verge of colliding with the rear face. The cavity has thus been distorted into an approximately
hemispherical bowl whose thickness diminishes from rim to base. The maximum pressure, located on the
axis upstream of the front face of the cavity, is below the ignition threshold pign, confirming that reaction
has not yet begun.

4.1.1 Spherical cavity, σ = 0.005

We consider the sequence of events for the base case in three distinct stages.

Stage I. Figure 6 displays the contour plots and on-axis profiles of pressure and reaction progress at three
selected times at this early stage. At t = 0.072 the front face has already slammed into the rear face, thereby
punching an axial bore through the cavity and collapsing the cavity into a toroid whose cross section is in
the shape of a teardrop. The impact has also generated a pair of oppositely traveling shock waves which
enclose an expanding disk of high pressure (heretofore dubbed as the blast region) with a wedge-shaped
semi-cross section. Of the two shocks bounding the blast, the one proceeding rightwards (the R-shock) is
the weaker; it advances downstream into the stationary solid and retains the convex shape it possessed at
the beginning of the impact. The leftward-bound shock (L-shock) advances upstream against the oncoming
jet of solid reactant; its original concave profile has flattened out and even acquired a slightly convex bulge
near the axis. In the entire blast domain the pressure is highest on the axis with the peak occurring at the
L-shock, as is evident in the on-axis pressure plot in Figure 6. At 1.6e5 dimensionless units this pressure
exceeds the ignition threshold, and in fact, p > pign on the axis nearly everywhere in the blast region where
the reaction is thereby switched on; the exception being a narrow layer just behind the R-shock. The extent
of reaction λ appears in the on-axis plot as a pulse with a peak of 0.23.

At t = 0.076 the blast region continues to expand, the L-shock now has a fully convex profile, the
R-shock has begun to climb up the rear face of the cavity while the incident shock descends further down
the same face. In the absence of reaction one may expect both the bounding shocks to weaken (as was seen
in [1]) but here, both have gained strength due to the support provided by the reaction, the L-shock more
so than the R-shock. Due to the higher pressure at the L-shock (2.25e5 units) the reaction zone behind
it is thinner than that behind the R-shock. The on-axis plot of reaction progress now has a taller peak at
λ = 0.66.
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Figure 6: Spherical cavity, σ = 0.005, Stage I. The panels show shaded contours of p (left), λ (middle)
and on-axis profiles (right) at times t = 0.072 , 0.076 and 0.080 (top to bottom). The on-axis plots show
p/4.0e5 in green, λ in blue and pign/4.0e5 in red.

At t = 0.080 the expansion of the blast region, the contraction of the cavity and the strengthening of the
L-shock, all continue. The on-axis pressure behind the L-shock has now risen to 3.4e5 units. The R-shock, on
the other hand, suffers a slight drop in pressure at the axis, having lost the battle due to expansion against
insufficient reactive support. Advancing up from the axis, the pressure at the R-shock remains roughly
constant, declines somewhat near its apex, and rises again where the R-shock has now run into the incident
shock along the rear wall of the cavity. Pressure throughout most of the blast is still above the ignition
threshold, so that reactant consumption continues and on axis, λ has attained a peak value of 0.8. The
reaction zone on the right is now substantially wider than that on the left. Finally, the uneven pressure
along the rear wall of the cavity has caused it to fold back upon itself near the tip of the teardrop.

Stage II. Figure 7 displays the contour plots and the on-axis profiles of pressure and reaction progress
at three selected times in this middle stage. At t = 0.084 the cavity, in cross section, has just collapsed
fully into a thin ribbon with a backward hook at its nose, a location towards which the L-shock and the
R-shock are now converging. Weak pressure disturbances emanating from the cavity, including a relatively
stronger one of spherical shape issuing from the nose of the cavity, are now visible in the plot of the pressure
contours. (More about these disturbances, and about events occurring during the short time span bracketing
the collapse, will follow shortly.) Along almost the entire length of the decaying R-shock the pressure has
fallen below the ignition threshold, thereby extinguishing the reaction behind it. The on-axis plot of λ now
exhibits twin peaks; the one on the left at level 0.88 is produced by the strong reaction behind the L-shock
while the one on the right retains the level of 0.8 seen at the last time level of Stage I discussed above,
confirming the fact that the reaction in this region is extinguished and that the peak has simply convected
to its new location.

At t = 0.088 the L- and R-shocks, and the secondary blast created by the final collapse of the nose
of the cavity, have interacted to generate a complex pattern in which the bulk of the L-shock acts as a
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Figure 7: Spherical cavity, σ = 0.005, Stage II. The panels show shaded contours of p (left), λ (middle)
and on-axis profiles (right) at times t = 0.084 , 0.088 and 0.092 (top to bottom). The on-axis plots show
p/4.0e5 in green, λ in blue and pign/4.0e5 in red.

curved stem to the top of which is attached a claw, consisting of an expanding sequence of concentric shocks
centered at the erstwhile cavity nose. One of the circular disturbances has just reflected off the axis, thereby
generating a spike in the middle of the on-axis pressure plot. Along the axis the R-shock has continued to
weaken, thereby widening the region of extinguished reaction behind it. A bulk of the extinguished region
contains partially reacted solid, but immediately behind the R-shock there is now a layer in which the solid
is completely unreacted. Behind the L-shock on the other hand, the thin reaction zone is followed by a broad
region in which the reaction has nearly reached completion. The zone above the cavity processed by both
the incident shock and the R-shock continues to grow.

At t = 0.092 the claw mentioned above has expanded, its upper arm now becoming an extension of the
L-shock hooking to the right, and its lower arm, significantly weakened, reflecting off the axis. The L-shock
can rightly be said to have transformed itself into a curved detonation with a hook at the top right, which is
advancing into partially reacted material. The behavior at this stage is reminiscent of detonation diffraction
at a 90◦ corner [15, 17, 19, 22]. The formation of a detonation hook that consumed partially reacted material
was a common feature in these studies. For the present study, the reaction is nearly fully completed over
a broad area of the blast region behind the detonation, and even in the portion where reaction was once
initiated but has now been switched off, about 80% of the reaction has been completed.

We now turn to a closer examination of events surrounding the final collapse of the cavity. Figure 8
shows enlarged views of the contours of pressure and reaction progress at times just before ( t = 0.082 and
0.083 ), just at ( t = 0.084 ) and just after ( t = 0.0845 and 0.085 ) the instant of final collapse. In this
figure we have also included gray-scale numerical schlieren images which highlight shocks and contact lines
where changes in density are large. At t = 0.082 we observe a detonation led by the L-shock traveling to
the left and upwards towards the cavity, and the diffracting R-shock traveling to the left around the upper
portion of the cavity. The R-shocks interacts with the rear face of the cavity in much the same way as the
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Figure 8: Spherical cavity, σ = 0.005, Stage II. Enlarged views showing the final collapse of the cavity and
the creation of a secondary blast. The panels show shaded contours of numerical schlieren (left), p (middle)
and λ (right) at times t = 0.082 , 0.083, 0.084, 0.0845 and 0.085 (top to bottom).
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Figure 9: Spherical cavity, σ = 0.005, Stage III. The panels show shaded contours of p (left), λ (middle)
and on-axis profiles (right) at times t = 0.096 , 0.104 and 0.108 (top to bottom). The on-axis plots show
p/4.0e5 in green, λ in blue and pign/4.0e5 in red.

incident shock had done with the front face of the cavity, i.e., compressive waves traveling leftwards are
transmitted into the cavity and a rarefaction traveling rightwards from the rear face of the cavity is reflected
into the region traversed by the R-shock. A high-speed jet, traveling from right to left, propels the rear face
of the cavity leftwards. Also visible in the pressure plot, and more prominently in the schlieren plot, is what
appears to be a weak bow shock surrounding the cavity. This wave is simply the current manifestation of
compressive disturbances generated at earlier times within the cavity and transmitted into the solid outside.
At t = 0.083 the rear face of the cavity has edged closer to the front face and the ‘bow shock’ has moved
away from the nose of the cavity. At t = 0.084 the cavity has fully collapsed, and the high-pressure blast
resulting therefrom can be seen emerging from the nose of the cavity in the pressure and schlieren plots.
We name this blast the secondary blast, to distinguish it from the primary blast seen in Stage I above. The
pressure is particularly high, in fact higher than pign, at the location where the secondary blast impacts the
L-shock, resulting in a new site of chemical activity. A faint signature of the reaction at this site is visible in
the reaction progress plot. At t = 0.0845 the blast continues to expand into the regions processed by the L
and the R-shocks, with concomitant increase in pressure and hence reactant consumption. At t = 0.85 the
blast, which has now developed into a detonation, hooks up and to the right into the previously unreacted
region surrounding the nose of the collapsed cavity. The result is the claw-like structure alluded to above.

Stage III. Figure 9 displays the contour plots and on-axis profiles of pressure and reaction progress at three
selected time levels in this late stage. Although the reflections off the axis have lent considerable noise to
the on-axis pressure plots, the salient features are easily discerned. At t = 0.096 the lower arm of the
aforementioned claw has reflected off the axis, while the detonation associated with the L-shock continues to
advance. We note in particular the advance of the hook towards the R-shock on the right. At t = 0.104 the
hook has overtaken the R-shock and also rammed into the axis, thereby generating two very sharp pressure
peaks in the on-axis plot. We also see that the material within the blast is now fully reacted, save in a thin
reaction zone behind the detonation. The exception are the remnants of the cavity material. At t = 0.108
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the situation is unchanged, except that one of the sharp on-axis pressure peaks alluded to above has overtaken
the R-shock, and the detonation has spread out further. It is clear that the period of significant transient
evolution is over and that the detonation is now fully fledged.
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Figure 10: Spherical cavity, σ = 0.0025. The panels show shaded contours of p (left), λ (middle) and
on-axis profiles (right) at times t = 0.080 , 0.092, 0.104 and 0.110 (top to bottom). The on-axis plots show
p/4.0e5 in green, λ in blue and pign/4.0e5 in red.

4.1.2 Spherical cavity, σ = 0.0025

With σ at half of the value of the base case, computations show that the scenario of detonation initiation
has many basic features similar to that for σ = 0.005. There are some significant differences in the behavior,
however, and these are illustrated in Figure 10 which shows the color contour plots and on-axis profiles at
four selected instants in time.

At t = 0.080 the contour plots for pressure and reaction progress, when compared with those for the base
case at the same time level (see Figure 6), reveal a picture that is qualitatively similar but quantitatively
different. The expanding blast region, the contracting cavity, the strong L-shock and the weaker R-shock
appear as before, but now the overall pressures are lower and the reaction has not progressed quite as far.
The pressure, from the peak value of 1.8e5 units at the L-shock, declines sharply behind it and exceeds
the ignition threshold only in a very narrow zone. Within this reaction zone λ rises rapidly to a peak of
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0.16 and continues to rise gradually even in the region beyond to a second peak of 0.25, before declining
to zero. The presence of partially reacted material outside the region where reaction is currently active is
due to convection from the reaction zones of earlier times. Behind the R-shock there is a gap in which the
material is completely unreacted, in contrast to the base case where the R-shock continues to act as a source
of ignition immediately behind it. This shock has also crossed into the region behind the cavity through
which the incident shock has already passed, thereby resulting in a slight increase in the local pressure but
not enough to provoke a second ignition front.

At t = 0.092 the mutual interaction of the L- and R-shocks and the contributions from the spherical
disturbances emanating from within the cavity, as discussed for the σ = 0.005 case above and shown in
Figure 7, have again created the claw-like structure attached to the L-shock. For σ = 0.0025, the detonation
is initiated from this later interaction, and not directly from the initial blast wave as was observed in the
base case. The lower, curved edge of the claw structure has just undergone a head-on collision with the
axis, thereby generating a new on-axis site of intense pressure, at level 7.6e5, and hence a commensurately
strong reaction as well. As a result, the on-axis profile of λ now has three peaks, with the middle peak
corresponding to the new reaction site. Further comparison with the base case at the same time level confirms
the sustained weakness of the response, as reflected in the lower pressures, slower reaction progress, and the
continuing absence of reaction behind the R-shock.

At t = 0.104 the L-shock has evolved into a nearly spherical detonation whose reach now extends beyond
the apex of the blast region. The upper arm of the claw has evolved into a detonation of its own as well, which
is advancing into the unreacted region downstream. A third shock-reaction complex, on the downstream side
of the curved reflected shock mentioned above, is also gaining strength, and is responsible for the third of the
four peaks in the on-axis λ plot. Even though a narrow zone behind the R-shock is still devoid of reaction,
the reaction zone now does occupy nearly the entire blast domain on axis, and over a broad expanse of this
zone the reaction has reached nearly full completion. A comparison with the corresponding plots for the
base case, shown in Figure 9, finds that while the base case still exhibits a stronger response, the contrast
between the two cases is now less pronounced.

At t = 0.110 the shock-reaction complex mentioned above has finally evolved into a detonation, and has
pushed through the R-shock into the unreacted region beyond. In fact a merging of the various detonation
segments has occurred, resulting in a nearly spherical expanding detonation. Outside the reaction zone the
entire blast region is now nearly-fully occupied by reaction product, with the exception of a small void where
surviving remnants of the inert cavity material exist. A comparison with the t = 0.108 plots for the base
case, shown in Figure 9, indicates that the detonation, although fully developed, still exhibits slightly weaker
pressure peaks at the on-axis detonation waveheads.

4.1.3 Spherical cavity, σ = 0.01

We now consider σ twice the size of that in the base case. Again it suffices to view the events at four
selected times. The corresponding contour plots and on-axis profiles are displayed in Figure 11.

At t = 0.076 the contour plots for pressure and reaction progress, when compared with those for the base
case at the same time level (see Figure 6), show a stronger post-collapse blast and the early establishment of
a coupling between both the L- and R-shocks and the reaction. The reaction zone now covers the entire blast
region and on axis, λ has already reached a peak value of unity. By t = 0.080 both shocks have evolved
into detonations, with the one led by the L-shock being slightly stronger. At t = 0.086 the L- and the
R-shocks have collided and the claw structure seen earlier has formed. The reflection of the lower contour of
the claw with the axis has generated a local pressure peak. As the claw expands, there is little increase in
its strength as it is propagating into regions that are already fully reacted. At t = 0.088 a fully developed
detonation has emerged, and as it propagates, it leaves behind a small pocket of cavity material.

Unlike the smaller values of σ considered above, where the shock-reaction complex resulting from ig-
nition due to the high post-collapse pressure tended to decay, at least behind the R-shock, and awaited
such subsequent gasdynamic events as shock collision and shock reflection for its resuscitation and eventual
transformation into a detonation, the shock-reaction coupling in the present case is immediate and sustained
across the entire boundary of the blast, and a fully-formed detonation emerges rapidly.
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Figure 11: Spherical cavity, σ = 0.01. The panels show shaded contours of p (left), λ (middle) and on-axis
profiles (right) at times t = 0.076 , 0.080, 0.086 and 0.088 (top to bottom). The on-axis plots show p/4.0e5
in green, λ in blue and pign/4.oe5 in red.

4.1.4 Spherical cavity, σ = 0.001

As a last case, we consider a very small value of σ, one-fifth of the base-case value, to explore whether it is
possible for a detonation to form. Four specific times are selected to view the evolutionary dynamics, and
the corresponding contour plots and on-axis profiles are displayed in Figure 12.

At t = 0.072 the collapse generates a blast region as before but now the pressure exceeds the ignition
threshold in an extremely thin zone behind the L-shock, as the on-axis plots clearly show. Correspondingly,
progress of reaction is sluggish and λ is able to achieve a peak of only 0.05. As time progresses the R-shock
wraps around the cavity to interact with the L-shock and a claw pattern forms as before. The plots at time
t = 0.096 show that the lower contour of the claw has just reflected off the axis, thereby generating locally
high pressures, as high as 4.2e5 units behind the L-shock, and lifting λ to a peak of 0.475. However, there
is little evidence of a strong and sustained coupling between reaction and shock. By t = 0.104 the L-shock
has decayed to a peak of 2.05e5 units on axis and the reaction zone behind it, though still in existence,
has broadened. The peak value of λ is unchanged at 0.475 and is now located in a low-pressure region
where reaction is no longer occurring. The plots at t = 0.108 indicate a further weakening of the L-shock
and a corresponding decrease in reaction rate, and it is clear that the reaction is headed towards extinction
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Figure 12: Spherical cavity, σ = 0.001. The panels show shaded contours of p (left), λ (middle) and
on-axis profiles (right) at times t = 0.072 , 0.096, 0.104 and 0.108 (top to bottom). The on-axis plots show
p/4.0e5 in green, λ in blue and pign/4.0e5 in red.

everywhere, leaving behind a parcel of partially reacted material.

4.2 The long ellipsoidal cavity

In this section, we examine the interaction of the incident shock with an ellipsoidal cavity in the shape of
a prolate spheroid. For this case the major axis of the ellipsoid is twice as long as the minor axis, but
the volume is the same as that of the spherical cavity considered in the previous section. The intent is to
determine how the time and mode of evolution to detonation are affected by the shape of the cavity. Figure
13 shows the behavior of the solid pressure at three times after the initial impact of the planar incident
shock, with Mach number Ms = 2.0 as before. At the earliest time shown, t = 0.040, we observe the
diffracted leading shock traveling around the nose of the cavity, the reflected expansion wave ahead of the
cavity, the indentation of the front face of the cavity, and the solid jet. At later times the jet advances
along the axis. Due to the now longer distance between the cavity faces and the acceleration of the jet, the
jet velocity is higher at the instant of collision of the two faces of the cavity as compared to the spherical
case. This results in a somewhat stronger post-collision blast, imminent at t = 0.088, than was the case for
the spherical cavity. However the maximum pressure, located on the axis upstream of the front face of the
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cavity, is still below the ignition threshold pign for all times shown in the figure, so that reaction has not
yet been initiated.
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Figure 13: Long ellipsoidal cavity: shaded contours of pressure p at times t = 0.040, 0.064 and 0.088 (left
to right). Reaction has not yet begun, and collision between the solid jet and rear face of the cavity is
imminent at t = 0.088 .

We consider the subsequent behavior for three values of σ in the subsections below, starting with the
base case σ = 0.005 and then considering the cases σ = 0.01 and σ = 0.001.

4.2.1 Long cavity, σ = 0.005

For the base case, it is again convenient to examine the sequence of events in three distinct stages.

Stage I. Figure 14 displays the contour plots and on-axis profiles of p and λ at four selected times. At
t = 0.092 the collision of the front and rear faces of the cavity has produced the blast region, with an
L-shock that is stronger than the R-shock. Pressure within much of the blast (and on-axis throughout the
blast) exceeds pign and initiates the reaction there. On the axis λ has achieved a peak value of 0.75. At
t = 0.098 the blast has expanded and pressure within it has declined. Interaction of the L- and R-shocks
with the tail of the cavity has generated pressure disturbances which are headed towards the axis. On the
axis λ maintains the peak value of 0.75 and the pressure behind the R-shock has dropped to a value just
below pign . At t = 0.104 the weakening of the blast continues, to the extent that the peak pressure is now
found upstream of the blast. The R-shock has collided with the incident shock, and as the former travels up
the rear face of the cavity it initiates a secondary collapse of the cavity in much the same way as was seen
earlier for the spherical cavity. The aforementioned pressure disturbances have reflected off the axis, giving
rise to a pressure plateau within the blast. Nowhere does the pressure exceed pign, so that the reaction has
extinguished and partially consumed reactant is being convected downstream. At t = 0.108 the L-shock has
weakened to the extent that it is no longer able to advance to the left in the lab frame and is being dragged
downstream by the jetting solid. The pressure in the plateau within the blast now exceeds the pressures
behind both shocks. The R-shock has traveled around the top of the cavity and has reached its nose. The
secondary collapse of the cavity continues as its rear face is propelled towards the front face.

Stage II. Figure 15 displays the contour plots and the on-axis profiles of p and λ at four selected times.
At t = 0.112 the decay of the blast continues unabated. The rear face of the cavity has just slammed into
the front face, thereby generating a secondary blast region within which pressure is high enough to spawn
an ignition kernel similar to that observed earlier for the spherical cavity. This region rapidly grows, both in
size and strength, and at t = 0.114 it has reached and reflected off the axis, generating enormous pressures
locally. In addition to the pressure peak, the on-axis plots now reveal the existence of the new site of reaction
within the blast. At t = 0.116 the peak pressure at the axis has declined but remains significantly above
the ignition threshold, and in fact, the consumption of reactant within the new blast is nearly complete.
At t = 0.118 the new blast region has expanded further and is in the throes of vigorous reaction. At the top
right edge of the blast one sees the by-now familiar hook, which is propagating the reaction-coupled shock,
in effect a detonation, into the previously shocked but yet unreacted regions around the cavity.

Stage III. Contour plots and the on-axis profiles of p and λ at three selected times are shown in Figure 16
for this last stage. At t = 0.122 the hook identified at the end of Stage II continues its advancement, now
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Figure 14: Long ellipsoidal cavity, σ = 0.005, Stage I. The panels show shaded contours of p (left), λ
(middle) and on-axis profiles (right) at times t = 0.092 , 0.098, 0.104 and 0.108. The on-axis plots show
p/2.0e5 in green, λ in blue and pign/2.0e5 in red.

into the partially reacted regions wherein the first blast had initiated a short-lived reaction. At t = 0.128
the downstream edge of the new blast is just behind the R-shock, and at t = 0.130 it has overtaken the
R-shock. An expanding detonation is now fully established, and the reaction within it complete, except
for a small region occupied by the remnants of the cavity. The upstream edge of the detonation is slightly
stronger, as it propagates into previously shocked explosive.

4.2.2 Long cavity, σ = 0.01

For this larger reaction rate the evolution is faster and sufficiently distinct from the base case discussed above
to merit a detailed description of its own, which we choose to present in two distinct stages.

Stage I. The contour plots and the on-axis profiles of p and λ at three selected times are displayed in
Figure 17. At t = 0.092 the blast generated by the impact of the front face of the cavity on the rear face
is strong, in that there is clear evidence, on axis and indeed throughout the blast, of reaction providing
strong support strong to both the L- and the R-shocks. At t = 0.096 the blast has expanded and on axis
both shocks are at near-equal strengths, with a zone of nearly complete reaction between them. If there
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Figure 15: Long ellipsoidal cavity, σ = 0.005, Stage II. The panels show shaded contours of p (left), λ
(middle) and on-axis profiles (right) at times t = 0.112 , 0.114, 0.116 and 0.118. The on-axis plots show
p/5.0e5 in green, λ in blue and pign/5.0e5 in red.

is a weakness in the blast region, it is behind the upper end of the R-shock where it loses strength as it
diffracts around the tail of the cavity, with a commensurately weaker reaction behind it. This state of affairs
continues at t = 0.098, as the blast region expands. The R-shock has now developed a kink at its apex,
separating the strongly reaction-supported segment on the right from the weaker arm on the left. Collision
of the R-shock with the incident shock is imminent.

Stage II. The contour plots and the on-axis profiles of p and λ at three selected times are displayed in
Figure 18. At t = 0.102 the R-shock has collided with the incident shock, thereby gaining strength and
creating a high pressure pocket in which the hitherto weak reaction has intensified. This pocket of intense
reaction grows in size and strengthens the R-shock, as seen in the t = 0.104 plots. The cavity undergoes
a secondary collapse as before and, at t = 0.106, there is clear evidence of a collapse-induced secondary
blast issuing from the nose of the cavity. This blast does not, however, play a major role as a new initiation
site since both the L- and the R-shocks, fully supported by reaction behind them, have already evolved into
detonations that are spreading and just about to fully surround the cavity.
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Figure 16: Long ellipsoidal cavity, σ = 0.005, Stage III. The panels show shaded contours of p (left), λ
(middle) and on-axis profiles (right) at times t = 0.122 , 0.128 and 0.130. The on-axis plots show p/5.0e5
in green, λ in blue and pign/5.0e5 in red.

4.2.3 Long cavity, σ = 0.001

For this very weak reaction rate it is enough to present the results for four salient times, and this is done
in the plots of Figure 19. At t = 0.114 the collapse-generated primary blast engulfs the cavity which has
shrunk considerably in size. This blast is quite weak, and the highest pressure, caused by the secondary
collapse, is found at the nose of the cavity. There are two sites of reaction; a narrow region within the
blast where reaction had been initiated at an earlier time but is now extinct, having left behind a residue
of partially reacted material, and a just-initiated weak reaction in the secondary blast. This latter region
expands, and by t = 0.122 has collided with the axis to generate a pressure peak there and hence a more
vigorous reaction. At t = 0.130 the expansion of the blast has caused the pressure peak to diminish, and
the reaction has lost its vigor. At t = 0.138 the pressure nearly everywhere has fallen below the ignition
threshold and reaction has completely shut down. The exception is a very narrow region on axis near the
left boundary of the blast, where a weak reaction survives but is on its way to extinction.

4.3 The tall ellipsoidal cavity

We now examine shock interaction with an ellipsoidal cavity in the shape of an oblate spheroid. The major
axis, now in the vertical direction, is twice as long as the minor axis, and the volume of the ellipsoid is the
same as that of the spherical cavity. The incident shock retains the Mach number Ms = 2.0. Figure 20
shows the early behavior after the shock has interacted with the cavity, but before reaction begins. At the
earliest time shown, t = 0.028, the incident shock has traveled nearly halfway across the cavity, and we
observe the now familiar reflected expansion wave. The front face of the cavity has flattened as a result of
the interaction, but an on-axis a solid jet has not formed. At later times we note the formation of a jet
off-axis near the apex of the cavity. By the last time shown, t = 0.052, the incident shock is now diffracting
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Figure 17: Long ellipsoidal cavity, σ = 0.01, Stage I. The panels show shaded contours of p (left), λ
(middle) and on-axis profiles (right) at times t = 0.092 , 0.096 and 0.098. The on-axis plots show p/2.0e5
in green, λ in blue and pign/2.0e5 in red.

around the rear face of the cavity, and the off-axis jet has nearly reached the rear face as well. The maximum
pressure is below pign confirming that no reaction has occurred. Noting that the jet meets the rear face of
the cavity off-axis, we have elected not to display the on-axis profiles of pressure and reaction progress as
much of the activity is initiated and undergoes evolution off-axis.

4.3.1 Tall cavity, σ = 0.005

We consider two distinct stages of evolution for the base case.

Stage I. The contours of pressure and reaction progress at three selected times in the early stage are
displayed in Figure 21. At t = 0.058 the front face of the cavity has collided with the rear face off-axis,
thereby initiating the collapse by splitting the cavity into two lobes. The high-pressure blast region, bounded
by the L- and the R-shocks, now appears between the lobes. The R-shock has already collided with the
incident shock. However, nowhere has the pressure yet reached the ignition threshold. At t = 0.060 the
pressure at the lower tip of the blast region has just risen above pign and the first hint of reaction there can
be seen in the λ contour plot. At t = 0.62 the reaction at the bottom of the blast has intensified and the
peak value of λ there has risen to 0.63. Coupling with the reaction has also caused a slight bulging in the
profiles of the L- and R-shocks. The R-shock has progressed along the upper face of the upper lobe of the
cavity, contributing to its shrinkage via a secondary collapse.

Stage II. The contours of pressure and reaction progress at three selected times in the late stage are displayed
in Figure 22. At t = 0.066 the secondary collapse of the upper lobe of the cavity is nearly complete, but
the resulting blast is too weak to be of significance as regards initiation. At the same time the bottom
of the primary blast has collided with the axis, generating reflected shocks and a local pressure at 1.16e6
units, more than ten times the ignition threshold. Intense reaction ensues and couples strongly with both
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Figure 18: Long ellipsoidal cavity, σ = 0.01, Stage II. The panels show shaded contours of p (left), λ
(middle) and on-axis profiles (right) at times t = 0.102 , 0.104 and 0.106. The on-axis plots show p/4.0e5
in green, λ in blue and pign/4.0e5 in red.

the bounding shocks. At t = 0.068 the blast region expands and the maximum pressure is relieved to the
level of 6.0e5 units. The reflected shocks travel upwards, raising the pressure broadly and causing reaction
completion in an expanding domain. At t = 0.072 the nearly full strength detonation has been established.

4.3.2 Tall cavity, σ = 0.01

At this high reaction rate, all the events occurring at the slower rate still persist, but the evolution is faster.
The contours of pressure and reaction progress at four selected times are displayed in Figure 23. At t = 0.062
the collapse has been initiated, the blast region has formed, and the pressure within the blast region has risen
sufficiently to generate significant reaction there. At t = 0.066 the bottom of the blast has collided with
the axis, generating reflected shocks and a high local pressure. The contour plot of λ indicates nearly full
reactant consumption throughout the blast and the formation of a detonation. At t = 0.068 the reflected
shocks are moving away from the axis into the fully reacted region, and the detonation is expanding. At
t = 0.072 the fully-established detonation continues to propagate outwards.

4.3.3 Tall cavity, σ = 0.001

We now consider a very weak reaction rate to explore whether it is possible for a detonation to form. The
relevant contour plots of p and λ are displayed in Figure 24 at four selected times. At t = 0.060 the
collapse has been initiated, the blast region has formed, and a mere hint of reaction can be found at the
bottom of the blast. At t = 0.066 the blast has impacted the axis, and although a high pressure has
developed behind the reflected shock, the resulting reaction is still weak. At t = 0.072 the L-shock has been
strengthened due to support by the reaction, but the coupling continues to remain weak. At t = 0.076 the
blast has expanded with little additional strengthening of the L-shock. Nowhere has the reaction reached
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Figure 19: Long ellipsoidal cavity, σ = 0.001. The panels show shaded contours of p (left), λ (middle)
and on-axis profiles (right) at times t = 0.114 , 0.122, 0.130 and 0.138. The on-axis plots show p/2.0e5 in
green, λ in blue and pign/2.0e5 in red.

completion. The extent of shock-reaction coupling is expected to continue to diminish with time.

5 Conclusions

In this paper we have examined, computationally, the collapse of a gas-filled cavity brought about by its
interaction with a planar shock propagating through the solid explosive in which the cavity is embedded.
The aim has been to explore the role of cavity collapse as a means of reaction initiation. Results have been
obtained for an incident shock of a given strength. Three different cavity shapes have been investigated:
sphere, prolate spheroid (long) and oblate spheroid (tall). Each shape has been studied for a range of
values of the prefactor σ in the pressure-dependent reaction rate, which upon our choice of scaling can
be interpreted as a measure of either the size of the cavity for a given reaction rate or the strength of the
reaction rate for a given cavity size.

For the spherical cavity and at the base value of σ = 0.005, it has been found that the impact of the
shock causes the front face of the cavity to fold inwards and collide with the rear face, thereby initiating the
collapse of the cavity and producing an expanding region of high pressure (the blast region) enclosed within
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Figure 20: Tall ellipsoidal cavity: shaded contours of pressure p at times t = 0.028, 0.040 and 0.052 (left
to right). Reaction has not yet begun, and collision between the off-axis solid jet and rear face of the cavity
is imminent at t = 0.052 .
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Figure 21: Tall ellipsoidal cavity, σ = 0.005, Stage I. The panels show shaded contours of p (top) and λ
(bottom) at times t = 0.058 , 0.060 and 0.062 (left to right).

two shocks, one propagating upstream (L-shock) into the solid already compressed by the incident shock and
the other advancing downstream (R-shock) into the yet unprocessed solid. Within this region the pressure
rises to a level high enough to initiate reaction, which couples preferentially with the L-shock, strengthens
it, and leads to the formation of a curved detonation. The R-shock, weakened due to insufficient support
from reaction, propagates around the top face of the by-now shrunk cavity, thereby collapsing it further and
leading to a secondary blast region near the nose of the cavity. High pressure in this blast region leads to
significant reaction there, which couples to the curved detonation already formed behind the L-shock and
ultimately results in a nearly spherical detonation propagating outwards.

Halving the value of σ for the spherical cavity produces a similar outcome eventually, but the evolutionary
details are somewhat different. The blast region enclosed by the L- and R-shocks is weaker, as is the coupling
of the reaction with the L-shock. Unlike the base case, a detonation no longer forms behind the L-shock.
Nevertheless, the propagation of the L- and R-shocks around the shrunk cavity still causes it to collapse
further, leading to a secondary blast region off-axis as in the base case. The resulting reaction within this
secondary blast region is found to be sufficient to generate a detonation spreading outwards. Reflection
at the axis of symmetry strengthens the detonation, and in due course, a nearly spherical detonation is
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Figure 22: Tall ellipsoidal cavity, σ = 0.005, Stage II. The panels show shaded contours of p (top) and λ
(bottom) at times t = 0.066 , 0.068 and 0.072 (left to right).

produced as before. Reducing σ by a factor of 10 from the base value causes only a temporary and weak
coupling of reaction with pressure, and after a partial consumption of reactant the reaction extinguishes
everywhere. Increasing the value of σ to twice the base value produces a very strong post-collapse blast, in
which reaction couples with both the L- and the R-shocks, and a spherical detonation is swiftly generated.

For the long cavity and at the base value of σ = 0.005, the post-collapse shocks are strong enough
to initiate reaction nearly everywhere within the blast region. Although a significant amount of reactant
consumption occurs there, the reaction is unable to couple robustly with the shocks which, as a result, weaken
swiftly, thereby extinguishing the reaction. As in the base case of the spherical cavity, the propagation of
the L- and R-shocks around the remnants of the long cavity causes a secondary collapse. High pressure
within the resulting blast spawns a new ignition kernel off-axis. Reflection of the expanding blast from the
axis of symmetry raises the pressure further still, creating an expanding region of high pressure at the axis,
at the upstream boundary of which a detonation is formed. As this detonation curves and hooks around,
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Figure 23: Tall ellipsoidal cavity, σ = 0.01. The panels show shaded contours of p (top) and λ (bottom)
at times t = 0.062 , 0.066, 0.068 and 0.072 (left to right).
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Figure 24: Tall ellipsoidal cavity, σ = 0.001. The panels show shaded contours of p (top) and λ (bottom)
at times t = 0.060 , 0.066, 0.072 and 0.076 (left to right).

a second detonation branch forms at the right extremity of the high-pressure region. The two branches
eventually merge into a spherical detonation. Reducing σ by a factor of 10 from the base value results in
only a partial reactant consumption followed by reaction extinction. Increasing the value of σ to twice the
base value produces, not unexpectedly, a strong post-collapse blast with attendant reaction coupling and
detonation formation. Unlike the spherical geometry, it is the detonation associated with the R-shock that
hooks around the collapsed cavity to merge with the detonation traveling upstream to form the spherical
detonation.

For the tall cavity and at the base value of σ = 0.005, the situation is different in that the collision
between the front and rear faces of the cavity occurs off-axis. The resulting blast travels radially towards
the axis where its reflection generates intense pressures, higher than those seen for either of the other shapes
discussed above. A fully matured detonation is established rapidly. Doubling σ accelerates the processes
observed for the base case, while reducing σ by a factor of 10 causes the weak initial reaction to fizzle out.

It is useful to recall the relationship between σ and the cavity size. The characteristic dimension of each
cavity, the diameter of a sphere of the same volume as the cavity, has been chosen to be d = 0.4 × xref.
The relation (8) between the reference length xref and the CJ reaction-zone length xrz then leads to the
relation d = 2000 × σ. Thus the four values σ = 0.001, 0.0025, 0.005 and 0.01 employed in this study
correspond, respectively to d being twice, five times, ten times, and twenty times the reaction-zone thickness,
respectively.

We draw several conclusions from the results. First, a cavity that is only twice the size of the reaction-
zone thickness is unable to amplify the post-incident-shock pressure to a level high enough to produce
sustained reaction, independent of its shape. Second, a cavity of size five times the reaction-zone thickness
or larger provides ample pressure amplification to lead to a detonation, again independent of shape. Third,
for a given volume, the tall cavity is the most efficient in the generation of high-pressure hot spots and the
subsequent evolution to detonation. Finally, the sites of ignition and the path to detonation are not only
shape-dependent, but can also vary with cavity size even for the same shape. Earlier studies had suggested
that the primary blast at the rear of the cavity is the site of ignition. Our results have shown that such is
not always the case, and that off-axis ignition sites have important roles to play, even for a spherical cavity.

Some limitations of this study must be pointed out. First, the results have been confined to a single cavity.
The more practical situation of a group of cavities placed sufficiently close to one another is liable to behave
synergistically, in that the pressure field generated by the lead cavity could well present a stronger incident
disturbance to neighboring cavities than that experienced by the lead cavity. A weaker stimulus may therefore
provoke a detonation in this case. Second, the quantitative conclusions drawn from our results depend
strongly on the equations of state chosen and the reaction rate adopted. Third, the pressure-dependent
reaction rate and the absence of diffusion restricts the competing mechanisms responsible for initiation
strictly to gasdynamic phenomena. Thus, regions of high pressure are created via shock focusing, shock
reflection, and shock-shock interaction, while loss of pressure takes place via diffraction and expansion. A
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temperature-dependent reaction rate would require reinstatement of diffusion as a significant loss mechanism.
Despite these limitations, however, the present study has revealed new ignition processes in heterogeneous
explosives that should inform subsequent studies.

6 Appendix

We consider the structure of a planar, Chapman-Jouguet detonation in the solid. Assuming that the deto-
nation is propagating at speed D into a stationary state characterized by the suffix 1, conservation of mass,
momentum and energy provide the conditions

ρ(D − u) = ρ1D, (12)

p+ ρ(D − u)2 = p1 + ρ1D
2, (13)

h+
1

2
(D − u)2 = h1 +

1

2
D2. (14)

Here, h is the enthalpy given by

h = e+
p

ρ
=

(1 + w1)p+ w2

ρ
− λqs, (15)

for the equation of state in (5) with q = qs for the solid. We note that

h1 =

(
1 + w

(u)
1

)
p1 + w

(u)
2

ρ1
, (16)

since λ = 0 and w = w(u) at state 1. Now, (15) and (16) yield

h− h1 =
(1 + w1)p+ w2

ρ
−
(
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1

)
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(u)
2

ρ1
− λqs. (17)

Elimination of u from (12) and (13) provides the Rayleigh line

p− p1 = J2

(
1

ρ1
− 1

ρ

)
, (18)

where J = ρ1D is the mass flux through the steady detonation wave. Elimination of u between (12) and
(14) leads to

h− h1 =
1

2
J2

(
1

ρ21
− 1

ρ2

)
,

and then, the use of (18) to eliminate J yields

h− h1 =
1

2
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+

1

ρ

)
. (19)

By virtue of (17), equation (19) transforms into

1
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which specifies a family of Hugoniot curves, parameterized by λ . To find the intersection of the Rayleigh
line and a Hugoniot curve for any choice of λ , we eliminate ρ between (18) and (20) to get

1

2
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2
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On setting P = p− p1 , (21) can be rearranged into the quadratic

P 2 − 2ρ1w1

2w1 + 1

[
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ρ1w1

]
P +

2D2ρ21
2w1 + 1

[
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1

)
p1 +

(
w2 − w(u)

2

)
ρ1

]
= 0. (22)

Here we have replaced J in favor of D = J/ρ1. For a specified D the appropriate solution of this quadratic
yields the pressure increment P = p − p1 as a function of λ. With P known, the original conservation
conditions determine the other state variables, ρ and u.

6.1 The CJ state

At the CJ point the two roots of the quadratic in (22) are equal when λ is set to 1. We note that w = w(r)

at λ = 1. Therefore equation (22) reduces to
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The equal-roots condition[
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determines the CJ speed DCJ. We define
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so that (24) condenses into
(D2 − α)2 = 2βD2,

and yields the root DCJ as
D2

CJ = (α+ β) +
√

(α+ β)2 − α2. (25)

Once DCJ is known, (23) determines PCJ to be
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Then,
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, uCJ = DCJ

(
1− ρ1

ρCJ

)
,

and the CJ state is completely determined.

We are interested, in particular, at the CJ detonation propagating in the region Ω̃s behind the incident
shock; see Figure 1. The density and pressure in that region are given in Table 1. The von-Neumann and
CJ states associated with the detonation are listed in Table 2.

6.2 Reaction-wave structure

The structure of the reaction zone for wave speed DCJ is determined by the traveling-wave version of the
rate law,

(DCJ − u)λx = −R, (26)
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States von-Neumann CJ

D 22.67

p 4.9025e5 4.5941e5

ρ 4.3110e3 4.1952e3

Table 2: Steady detonation states.
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Figure 25: Reaction-zone structure, as determined by the profile of λ against σx .

where R is the pressure-dependent reaction rate defined in (4). We shall assume that the pressure at the
end of the reaction zone exceeds the pressure threshold pign so that the reaction is not extinguished prior
to complete consumption of the reactant. Integration of (26) requires p and u to be known functions of λ.
The expression for p(λ) comes from solving the quadratic (22) with D = DCJ , which can be expressed
concisely as

P 2 − 2bP + c = 0,

where

b(λ) =
ρ1w1

2w1 + 1
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CJ −
(1 + w1)p1 + w2

ρ1w1

]
,

c(λ) =
2ρ21(DCJ)2

2w1 + 1

[
λqs −

(
w1 − w(u)

1

)
p1 +

(
w2 − w(u)

2
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In these equations, w = (1− λ)w(u) + λw(r). Based on the results for an ideal gas, one expects b(λ) to be
positive and c(λ) to be monotonically increasing from zero as λ increases through the reaction zone from
zero to unity. The quadratic for P has the roots

P = b(λ)±
√
b2(λ)− c(λ).

We choose the plus sign, which corresponds to a shock at the head of the reaction zone and a decreasing
pressure through the reaction zone. With P known, p = p1 +P yields the pressure p and then, u is given
by

u =
P

ρ1DCJ
.

One is now in a position to integrate (26) for λ(x). The resulting structure appears in Figure 25, as the
graph of λ against the scaled spatial coordinate σx . We note, from the figure, that the dimensionless
reaction-zone length xrz is given by

σxrz = 2× 10−4, (27)

where we have assigned the end of the reaction zone to correspond to λ = 0.99 .
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