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Abstract

We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids.
This approach to conjugate-heat-transfer can be used to compute transient and steady-state solutions to a wide range
of fluid-solid systems in complex two- and three-dimensional geometry. Fluids are modeled with the temperature
dependent incompressible Navier-Stokes equations using the Boussinesq approximation. Solids with heat transfer are
modeled with the heat equation. Appropriate interface equations are applied to couple the solutions across different
domains. The computational region is divided into a number of sub-domains corresponding to fluid domains and
solid domains. There may be multiple fluid domains and multiple solid domains. Each fluid or solid sub-domain is
discretized with an overlapping grid. The entire region is associated with a composite grid which is the union of the
overlapping grids for the sub-domains. A different physics solver (fluid solver or solid solver) is associated with each
sub-domain. A higher-level multi-domain solver manages the entire solution process.

We propose and analyze some centered discrete approximations to the interface equations that have some desirable
stability properties. The coupled interface equations may be solved directly when using explicit time-stepping meth-
ods in the sub-domains, resulting in a strongly coupled approach. The stability of the interface treatment in this case
is independent of the relative sizes of the material properties in the two domains with the time-step only depending
on the usual von Neumann conditions for each sub-domain. For implicit time-stepping methods we solve the interface
equations in a weakly-coupled fashion to avoid forming a coupled implicit system across all sub-domains. The con-
vergence of this approach does depend on the relative sizes of the thermal conductivities and diffusivities. We analyze
different iteration strategies for solving these implicit equations including the use of mixed (Robin) approximations
at the interface.

Numerical results are presented to illustrate the method. The accuracy of the technique is verified using the method
of analytic solutions and by computing the solution to some heat exchanger problems where the exact solution is
known. The technique is also applied to the modeling of an inertial-confinement-fusion hohlraum target and the
flow of coolant past an hexagonal array of heated fuel rods. The multi-domain solver runs in parallel on distributed
memory computers and some parallel results are provided.
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1. Introduction

There are many interesting scientific and engineering problems that involve the coupling of fluid flow to
heat transfer in solids. These include modeling of heat exchangers, cooling of turbine blades in jet engines,
nuclear reactors, and cooling of computer components to name a few. This manuscript outlines a first step
towards the development of a framework and numerical approximations for simulation of some of these
important applications. We describe a flexible approach for modeling heat transfer in fluid-solid systems
based on the use of composite overlapping grids. The approach uses different physics solvers in the differ-
ent fluid and solid domains. The solutions are coupled at the fluid-solid interfaces using the continuity of
temperature and heat-flux. There can be any number of different fluid or solid domains and any number
of different physics solvers. The fluids are modeled using the incompressible Navier-Stokes equations with
the Boussinesq approximation. The solids are modeled with the heat equation. Each fluid or solid domain is
discretized with an overlapping grid. Curvilinear boundary fitted grids are used at boundaries and interfaces.
The entire domain is represented with a composite grid that holds the union of the sub-domain overlapping
grids. The primary goals of the work presented here are to develop the multi-domain numerical method
and computational framework, to use mathematical and numerical analysis to understand properties of the
coupled approach, and to verify the accuracy of the technique. Simulation of many relatistic problems will
require extensions of the present work, such as the addition of appropriate turbulence models, but this is
left to future work.

The multi-domain solution of all fluid and solid domains is advanced in time in a domain-split, weakly-
coupled, manner. During each composite time-step, the solution in each sub-domain is advanced with an
explicit or implicit predictor-corrector time-stepping algorithm using the physics solver for that domain. The
interface equations are updated after the predictor and corrector steps. When explicit time-stepping is used,
the interface equations are solved as a separate set of coupled equations, resulting in an effectively strongly-
coupled algorithm. We propose a non-standard centered interface approximation. An analysis shows that
with the centered interface approximation, the stability of the scheme is independent of the relative sizes
of thermal conductivities and thermal diffusivities in the adjacent domains. The time-step for the overall
scheme is no worse than the time step determined for the individual sub-domains. This is in contrast to the
more commonly used approach [1]. When implicit time-stepping algorithms are used in the sub-domains, the
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interface equations are solved in a segregated fashion using a Dirichlet condition on one side and a Neumann
condition on the opposite side of the interface. In this case it may be necessary to iterate and use additional
corrector steps in order to satisfy the coupled interface conditions to the desired tolerance. We describe
and analyze an iteration strategy for solving these coupled implicit systems. The iteration converges rapidly
when a certain ratio involving the thermal conductivities and diffusivities of adjacent domains is small (or
large). The convergence of the iteration can be accelerated using a relaxation parameter. We also analyze
the use of a mixed (Robin) interface condition instead of the standard Dirichlet-Neumann approach and
show that it has attractive convergence properties especially for the situation when the Dirichlet-Neumann
approach has difficulties.

Our multi-domain approach is based on the use of overlapping grids. This method, as discussed in Chesshire
and Henshaw [2], allows complex domains to be represented with smooth structured grids that can be aligned
with the boundaries. Compared to a multi-block grid, it is easier to construct an overlapping grid for a
complex domain since the component grids are not constrained to match exactly. The use of smooth grids
is important for obtaining accurate answers especially when using high-order accurate methods. Boundary
fitted grids are important for accurate implementation of boundary conditions and for representing boundary
layer phenomena. The use of structured grids is important for performance and low memory use. Moreover,
since the majority of an overlapping grid often consists of Cartesian grid cells, the speed and low memory
requirements inherent with Cartesian grids can be substantially retained. The overlapping grid technique
is especially attractive for handling problems with moving or deforming boundaries since the grids remain
smooth and can be rapidly generated. Although the usual interpolation used at overlapping grid interfaces
is not conservative, conservative interpolation for overlapping grids can be constructed [3]. However, in our
experience and in the work of many others, the simpler non-conservative interpolation has worked well, even
for very difficult problems involving strong shocks and detonations [4,5].

Overlapping grids have been used to solve a wide class of problems efficiently and accurately. The first
use of overlapping grids (called composite grids at the time) appeared in papers by Volkov [6,7], who consid-
ered approximations to Poisson’s equation in regions with corners. Other pioneering work includes that of
Starius [8–10], Kreiss [11], and Steger et al. [12] who referred to the approach as Chimera grids. Since this
early work, the overlapping grid technique has been used successfully to solve a wide variety of problems in
high-speed reactive flow [4,5,13,14], reactive and non-reactive multi-material flow [15,16], combustion [17],
aerodynamics [18–24], blood flow [25], electromagnetics [26], flows around ships [27], visco-elastic flows [28],
and flows with deforming boundaries [29–31], among others. We also note that a hybrid scheme using over-
lapping grids in fluid regions and unstructured grids in solid regions has been applied to some conjugate-heat
transfer problems [32]. To our knowledge this is the first application of composite grids to conjugate heat
transfer problems where both fluids and solids are solved using overlapping grids.

There are a variety of strategies that have been used to solve conjugate heat transfer problems. Finite-
difference, finite-volume, finite-element, boundary-element, and spectral-element approximations have all
been applied [33–39]. The different multi-domain strategies are distinguished by the degree to which domains
are coupled. In the strongly-coupled approach, a single large monolithic system is defined for the entire
composite domain. This approach is often the most robust. A common technique for conjugate heat transfer
problems is to solve the fluid equations for the velocities and temperature in the entire domain, but force the
velocities to be zero or small in the solid regions [33,34]. In the weakly-coupled approach, separate solution
algorithms are used in different domains with solutions coupled at the interface [40]. This approach has
some practical advantages in terms of re-use of existing physics codes without the need to develop a new
monolithic approximation. There are yet other approaches that lie somewhere between the strongly-coupled
and weakly coupled. Some practitioners, for example, solve for a single temperature equation across all
domains while having separate fluid solvers in different domains [35,36].

The stability of the segregated interface approach for coupled heat equations has been studied by Giles [1].
He analyzed a particular discretization and showed that for stability reasons the fluid domain should generally
be given the Dirichlet condition for continuity of the temperature and the solid domain the Neumann
condition for continuity of the heat flux. Giles also showed that the time-step restriction of the coupled
problem was sometimes smaller than those from the sub-domains and depended on the relative sizes of
the heat capacities and grid spacings in the sub-domains. Roe et.al. [40] considered a different discrete
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approximation to the interface equations that improved the stability characteristics. There has also been
much work on solution strategies for domain-decomposition problems and many of these ideas are applicable
to conjugate heat transfer problems, see for example [41–43].

An outline of the paper now follows. In Section 2 we define the problem to be solved in terms of the partial
differential equations (PDEs), boundary conditions and interface conditions. In Section 3 we give a brief
description of our discretization approach and describe the coupled-interface (CI) and segregated-interface
(SI) approaches. Our approach for multi-domain time-stepping is presented in Section 4. Section 5 provides
a stability analysis of the coupled interface approximation for a model problem. In Section 6 we analyze
the SI technique using Dirichlet-Neumann interface conditions and derive the convergence characteristics
of the iteration. We also analyze a mixed interface approximation and present computed convergence rates
for various cases. In Section 7 we present numerical results that show the accuracy of the method and its
use applied to some interesting applications. Some parallel scaling results are also provided. Conclusions are
given in the final section.

The computations in this paper were performed with the composite-grid multi-physics solver cgmp to-
gether with the incompressible Navier-Stokes solver cgins and the advection-diffusion (and heat equation)
solver cgad. These programs are part of the CG suite of PDE solvers and are built upon the Overture
framework. These programs are all freely available at http://www.llnl.gov/casc/Overture.

2. Problem specification and model equations

We are interested in solving a conjugate heat transfer problem in a domain Ω which consists of a set of
Nd sub-domains that represent fluid and solid regions (see Fig. 1),

Ω = ∪Nd

d=1Ωd . (1)

The sub-domains are assumed to be non-overlapping. A single sub-domain, however, may be multiply con-
nected. A collection of non-overlapping regions may be represented, for example, with a single sub-domain
(as Ω3 in Fig. 1). We define the sub-domains in this way since we associate a separate physics solver with
each sub-domain. A single heat-equation solver, for example, could be used on a multiply connected domain.
This is described further in Section 3

The solution in a fluid domain, Ωf , with boundary ∂Ωf , is governed by the incompressible Navier-Stokes
(INS) equations. The effects of temperature and buoyancy are modeled with the Boussinesq approximation.
The equations are given by





ut + (u · ∇)u + ∇p − ν∆u + αg(T − Tref) − f = 0, t > 0, x ∈ Ωf ,

∆p + ∇u : ∇u + α(g · ∇)T −∇ · f = 0, t > 0, x ∈ Ωf ,

Tt + (u · ∇)T − 1

ρC
∇ · (K∇T ) − fT = 0, t > 0, x ∈ Ωf ,

(2)

with initial conditions and boundary conditions,




(
u(x, 0), T (x, 0)

)
=

(
uI(x), TI(x)

)
, t = 0, x ∈ Ωf ,

BF (u, T ) = 0, t > 0, x ∈ ∂Ωf .
(3)

Here u = u(x, t) is the velocity, p the kinematic pressure, T the temperature, ν = µ/ρ is the kinematic
viscosity, K the thermal conductivity, ρ the density, C the specific heat, α the coefficient of thermal expansion
and Tref the reference temperature for which there are no buoyancy forces. f and fT are forcing functions.
We use a pressure-velocity formulation for these equations, solved with a split-step method. A second-order
accurate and fourth-order accurate scheme are available, see [44–46] for more details. Boundary conditions
for these equations are discussed in Section 3.1. We have also developed efficient multigrid algorithms for
overlapping grids [47] that can be used with the incompressible flow solver, although the multigrid solver is
not used in the present work.
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Ω1
fluid

Ω3
solid
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solid
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fluid
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Fig. 1. Top left : a domain Ω with two fluid sub-domains Ω1, Ω2 and three solid sub-domains Ω3, Ω4 and Ω5. Top right: the
composite G consists of five overlapping grids, one for each domain. Bottom left: a computed conjugate heat transfer solution
showing the temperature. Bottom right: the streamlines in the fluid domains and the temperature in the solid domains.

Heat conduction in a solid domain Ωs is modeled by the heat equation,





Tt −
1

ρC
∇ · (K∇T ) − f = 0, t > 0, x ∈ Ωs,

T (x, 0) = TI(x), t = 0, x ∈ Ωs,

BS(T ) = 0 t > 0, x ∈ ∂Ωs .

(4)

At the interface I = ∂Ωf ∩ ∂Ωs between a fluid region and a solid region the matching conditions are the
continuity of the temperature and the continuity of the normal component of the heat flux

[T ]I = 0, (5)

[Kn · ∇T ]I = 0. (6)

Here n is the normal to the interface I and [·]I denotes the jump across the interface. The interface condi-
tions (5)-(6) also apply at the interface between two fluid regions or between two solid regions. Higher-order
accurate methods may require higher-order matching conditions. These are derived by taking time deriva-
tives of basic jump conditions (5) and (6) and using the governing equation to replace time derivatives with
space derivatives. Assuming for simplicity that the coefficients K, ρ and C are constant within a sub-domain,
the high-order jump conditions are
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[
(D∆)qT +

q−1∑

j=0

(D∆)q−1−j∂j
t f

]

I
= 0, q = 0, 1, 2, . . . , (7)

[
K(D∆)qn · ∇T + K

q−1−k∑

j=0

(D∆)q−1∂j
t n · ∇f

]

I
= 0, q = 0, 1, 2, . . . , (8)

where the thermal diffusivity D is defined as

D = K/(ρC). (9)

In this paper we only present results for second-order accurate approximations although we will use condi-
tion (7) with q = 1 for the coupled interface approach described in Section 3.2.

3. Solution approach and discretization

We solve the multi-domain problem using a weakly-coupled approach (although when explicit time-
stepping is used the approach is effectively strongly-coupled). We associate a separate physics solver with each
fluid or solid sub-domain of the multi-domain problem. We use the composite-grid incompressible Navier-
Stokes code cgins in a fluid domain and the advection-diffusion code cgad in a solid domain. There may be
multiple instances of cgins and cgad. The composite-grid multi-physics solver cgmp manages the multi-
domain solution process and coordinates the transfer of information at the interfaces. The multi-domain
time-stepping algorithm is discussed in more detail in Section 4.

The entire domain of interest, Ω, is discretized using a composite overlapping grid, G. Each fluid or
solid sub-domain will itself be discretized with an overlapping grid, Gd, with the global overlapping grid G
containing all the sub-overlapping grids,

G = ∪Nd

d=1Gd . (10)

The overlapping grid G consists of a set of Ngrid component grids Gg, i.e.,

G = {Gg}, g = 1, 2, . . . ,Ngrid .

The component grids cover Ω. Similarly, the overlapping grid, Gd, for a sub-domain, will consist of a set
of overlapping component grids which are a sub-set of the grids in G. Each component grid is a logically
rectangular, curvilinear grid defined by a smooth mapping Cg from parameter space r (e.g. the unit-cube
in three dimensions) to physical space x:

x = Cg(r), r ∈ [0, 1]3, x ∈ R
3 .

The mapping is used to define the metric derivatives ∂x/∂r and the grid points at any desired resolution.
Variables defined on a component grid, such as the coordinates of the grid points, are stored in rectangular
arrays. For example, grid vertices are represented as the array

xg
i : grid vertices, i = (i1, i2, i3), ik = 0, . . . , Nk, k = 1, 2, 3 ,

where Nk is the number of grid cells in k-coordinate direction. We note that grid vertex information and
other mapping information are not stored for Cartesian grids. This usually results in a considerable savings
in memory use since most of the grid points belong to Cartesian grids for a typical overlapping grid.

Figure 2 shows a simple overlapping grid consisting of two component grids, an annular boundary-fitted
grid and a background Cartesian grid. The top view shows the overlapping grid while the bottom view shows
each grid in parameter space. In this example the annular grid cuts a hole in the Cartesian grid so that
the latter grid has a number of unused points which are marked as open circles. The other points on the
component grids are classified as either discretization points (where the PDE or boundary conditions are
discretized) or interpolation points. This information is supplied by the overlapping grid generator Ogen [48]
and is held in an integer mask array. In addition, each boundary face of each component grid is classified as
either a physical boundary (where boundary conditions are to be implemented), a periodic boundary or an
interpolation boundary. Typically, one or more layers of ghost points are created for each component grid
to aid in the application of boundary conditions.
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Fig. 2. The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom views
show the component grids in the unit square parameter space. Grid points are classified as discretization points, interpolation

points or unused points. Ghost points are used to apply boundary conditions.

The PDE’s that define the evolution of the fluid and solid are discretized with a finite difference or finite
volume approximation with all variables defined at the nodes. For example, consider approximating the
generalized Laplace operator, L defined by

Lw = ∇ · (a∇w) , (11)

where a = a(x) is a real valued coefficient. A straight-forward approach to discretize L on a curvilinear grid
is to use the mapping method, as follows. Using the chain rule, the operator L can be written in general
curvilinear coordinates in nd space-dimensions as

Lw =

nd∑

i=1

nd∑

j=1

nd∑

k=1

a
∂rk

∂xi

∂rj

∂xi

∂2w

∂rj∂rk
+

∂rk

∂xi

{
a

∂

∂rk

(∂rj

∂xi

)
+

∂a

∂rk

∂rj

∂xi

} ∂w

∂rj
. (12)

The metric terms ∂rj/∂xk are computed from the mapping that defines the grid and are thus assumed to
be known. The derivatives with respect to the parameter space coordinates rj can be approximated with
central difference approximations. The operator L can also be written in conservation form, or self-adjoint
form, in general curvilinear coordinates as

Lw =
1

J

nd∑

j=1

nd∑

k=1

∂

∂rj

(
Ajk ∂w

∂rk

)
, Ajk = aJ

nd∑

µ=1

nd∑

ν=1

∂rj

∂xµ

∂rk

∂xν
, (13)

where J denotes the determinant of the Jacobian matrix [∂xj/∂rk]. A careful discretization of this last form
of the operator leads to symmetric and compact discrete approximations of any order of accuracy [26]. These
approximations are generalized finite-volume approximations. See [44] for more details on discretizing the
incompressible Navier-Stokes equations on curvilinear grids.
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3.1. Boundary conditions

The boundary conditions we use for the incompressible Navier-Stokes equations and the heat equation are
given in Fig. 3 and Fig. 4, respectively. We consider inflow boundaries, outflow boundaries, no-slip walls and
slip-walls. The conditions imposed on each boundary are divided into those labeled physical which come from
the analytic definition of a well-posed initial-boundary-value problem and those labeled numerical which are
extra conditions needed for the discretized problem in order to define an accurate and stable approximation.
Numerical boundary conditions typically determine ghost point values of the discrete solution. Note that
there is no explicit physical boundary condition for the pressure at walls or inflow. The boundary condition
∇ · u = 0, which takes the place of an explicit condition on the pressure, ensures that the solution to the
INS equations (2)-(3) satisfies ∇ · u = 0 everywhere. The numerical boundary condition for the pressure at
walls or inflow is

pn = Pb(u, T ) ≡ −n · (ν∇×∇× u + ∂tu + (u · ∇)u + αgT ), (14)

and is derived from the normal component of the momentum equations. This numerical boundary condition
is used when solving the Poisson equation for the pressure. See [49,46] for a discussion of this boundary
condition. The boundary condition on the temperature can be Dirichlet, T = gT , Neumann, Tn = gT , or a
mixed condition aTn + b T = gT . For further details on the discretization of the boundary conditions, the
reader is referred to [44,46,45].

INS no-slip wall or inflow

physical u = gu

∇ · u = 0

aT + b Tn = gT

numerical pn = Pb(u, T )

extrapolate τµ · u
extrapolate T if b = 0

INS slip wall

physical n · u = gn

∇ · u = 0

aT + b Tn = gT

numerical pn = Pb(u, T )

extrapolate τµ · u
extrapolate T if b = 0

INS outflow

physical c pn + d p = gp

numerical extrapolate u

extrapolate T

Fig. 3. Boundary conditions for the incompressible Navier-Stokes equations. The outward normal at the boundary is denoted
by n, tangent vectors at the boundary are τ µ, µ = 1, 2 and Pb is defined by equation (14). The functions gu(x, t), gn(x, t),
gT (x, t) and gp(x, t) are given forcing functions while a,b, c and d are non-negative constants with a + b > 0 and c + d > 0.

Heat Equation wall

physical aT + b Tn = gT

numerical extrapolate T if b = 0

Fig. 4. Boundary conditions for the heat equation, where gT (x, t) is a given forcing function and a and b are non-negative

constants with a + b > 0.

3.2. Explicit time-stepping and coupled interface equations (CI)

We consider two approaches for solving the interface equations. In the first approach the interface equations
are solved as a coupled system of equations using a centered approximation. This approach is generally used
when the interior equations are advanced with explicit time stepping and requires no iteration on the interface
values. The CI approach could be used directly with implicit time-stepping but would require the formation
of a coupled implicit system of equations for the temperature across all domains. For a second-order accurate
approximation we use the two interface equations (6), and (7) with q = 1,
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[Kn · ∇T ]I = 0,

[D∆T + f ]I = 0. (15)

These two conditions will determine the discrete solution values on the first ghost line of the two domains,
one ghost line for each domain. Here we have assumed that u = 0 on the interface and that the coefficients
K, ρ, and C are constant within each sub-domain. This approximation differs from those usually found in
the literature through the use of equation (15). For the case of an interface between two solid regions, for
example, the time-continuous space-discrete approximation is given by

∂tTm,i = Dm∆hTm,i + fm(xm,i, t), for i ∈ Gd
m, and sub-domains m = 1, 2, (16)

K1n1,i · ∇hT1,i = K2(−n2,j) · ∇hT2,j, for i ∈ I1,2
h , j ∈ I2,1

h , (17)

D1∆hT1,i + f1(xi, t) = D2∆hT2,j + f2(x2,jv, t), for i ∈ I1,2
h , j ∈ I2,1

h . (18)

Here Tm,i ≈ T (xm,i, t) denotes the discrete approximation to the temperature on a grid Gm of sub-domain
Ωm with grid points xm,i and interface normals nm,i. ∆h and ∇h denote discrete approximations to ∆ and
∇ respectively. These operators depend on the grid Gd

m they are discretized on, but this should be clear
from context. Note that we use −n2,j since the discrete normals are defined as outward normals. Equations
are also needed at physical boundaries, interpolation points and periodic boundaries but these are left out
in order to focus on the interface treatment. The interior equations (16) are applied at interior discretization
points, boundary points and interface points, the set of these grid-points being denoted by Gd

m. The set of
points on component grid Gp that lie on the interface with grid Gq are denoted by Ip,q

h . We have assumed
that the grid points align on the interface so that the sets Ip,q

h and Iq,p
h define the same set of physical

points. This assumption is used throughout this paper. The more general case of non-matching grid points
on the interface is left to future work. The interface equations (17) and (18) are discrete approximations
that are centered on the interface and will be used to determine the values on the ghost points that are
adjacent to the interface points. Use of centered schemes for boundaries generally results in more accurate
and more stable approximations compared to using one-sided approximations based on extrapolation.

We now illustrate how the discrete solution is advanced in time using the forward-Euler method. The
discrete solution, T n

m,i ≈ T (xm,i, t
n), with tn = n∆t, is first advanced at all interior and interface points

using equation (16),

Tn+1
m,i = Tn

m,i + ∆t
(
Dm∆hTn

m,i + fm(xm,i, t
n)

)
, for i ∈ Gd

m, m = 1, 2. (19)

Equations (17) and (18) are then used to determine the ghost point values adjacent to the interface at the
new time level,

K1n1,i · ∇hTn+1
1,i = K2(−n2,j) · ∇hTn+1

2,j , for i ∈ I1,2
h , j ∈ I2,1

h , (20)

D1∆hTn+1
1,i + f1(xi, t

n+1) = D2∆hTn+1
2,j + f2(x2,jv, tn+1), for i ∈ I1,2

h , j ∈ I2,1
h . (21)

In practice we often use a predictor-corrector time stepping method in which case the interface equations
are applied after the predictor and corrector steps. Application of the equations (19)-(21) should ensure that
Tn+1

1,i = Tn+1
2,j (to round-off error) for points on the interface. On non-orthogonal grids, condition (21) will

couple the solutions on the ghost points due to cross-derivative terms in the approximation to ∆h. To avoid
solving a coupled system of equations along the interface we use the current best guess values for ghost
points values when they are needed by the cross-derivatives (using extrapolation in space for the predictor
step). We then enforce the continuity of temperature directly after each time step using a weighted average
of the computed interface values, following the approximation developed by Patankar[33],

Tn+1
1,i = Tn+1

2,j =
K1T̃

n+1
1,i + K2T̃

n+1
2,j

K1 + K2
, for i ∈ I1,2

h , j ∈ I2,1
h , (22)

where T̃n+1
1,i and T̃n+1

2,j are the values determined from equations (19)-(21). The stability and accuracy of
the approximations (16)-(18) are studied in Section 5. Unlike the segregated approach, discussed in the next
section, the stability of the coupled approach does not depend on the relative sizes of K and D in the two
domains.
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3.3. Implicit time-stepping and segregated interface equations (SI)

The second approach used to solve the interface equations is based on segregating the interface equations
and applying one of the interface equations as a boundary condition for one domain and the other as the
boundary condition for the second domain. We generally use this approach when one or both of the domains
uses implicit time-stepping. A segregated approach is commonly used in the literature with both explicit
and implicit time stepping. Some care is required in applying the segregated method since the stability of
the method depends on which interface equation is associated with which domain and on the relative sizes
of K and D in the two domains as discussed in Section 6.

In the segregated approach the solution on each sub-domain is advanced using one of the interface condi-
tions as a boundary condition. For example, the solution on one domain may be advanced for one time-step
using an implicit method with a Dirichlet condition that sets the temperature on the interface

Tn+1
1,i = L1(Tn+1

1,i , Tn
1,i, ...), for i ∈ Gd

1 (23)

Tn+1
1,i = T ∗

2,j, for i ∈ I1,2
h , j ∈ I2,1

h . (24)

Here T ∗
2,j is some guess at the temperature on the interface and L1 denotes an implicit time stepping operator.

Note that we apply the interior equation on the interface in addition to the Dirichlet condition and this
extra equation determines the solution on the ghost points:

L1(Tn+1
1,i , Tn

1,i, ...) = T ∗
2,j, for i ∈ I1,2

h , j ∈ I2,1
h . (25)

The solution on the adjacent domain is advanced using a Neumann boundary condition based on the
continuity of heat flux as an interface condition

Tn+1
2,i = L2(Tn+1

2,i , Tn
2,i, ...), for i ∈ Gd

2 (26)

K2(−n2,j) · ∇hTn+1
2,j = K1n1,i · ∇hT ∗

1,i, for i ∈ I1,2
h , j ∈ I2,1

h , (27)

where some guess for the heat flux from domain one is used. In general we will iterate these equations some
number of times using successively better values for n1,i · ∇hT ∗

1,i and T ∗
2,j. If we iterate to convergence, the

results will satisfy the same centered interface conditions (20)-(21) that are satisfied in the coupled approach.
In Section 6 we analyze this Dirichlet-Neumann segregated approach and discuss iteration strategies. We

also consider a generalization that uses a mixed (Robin) approximation on both sides of the interface.

4. The multi-domain time-stepping algorithm

In this section we describe our approach for time-stepping a multi-domain problem. We assume that we
have a separate physics solver for each domain. For the purposes of this paper the domain solver will either
solve the INS equations or the heat equation. There may be multiple INS solvers and multiple heat equation
solvers. The different domain solvers are coupled through the interface conditions (5),(6). These interface
equations are solved with a coupled (CI) or segregated (SI) approach as described in Sections 3.2 and 3.3,
respectively. Each domain solver is assumed to time-step its equations with an explicit or implicit time-
stepping technique such as forward-Euler, backward-Euler, or an (implicit/explicit) predictor-corrector. To
be more concrete we suppose that each domain solver uses a time-stepping approach that is of the form of
the following generic implicit predictor-corrector algorithm given by

Lpv
(0) = fp(u

n,un−1, ...), (predictor)

Lcv
(k) = fc(v

(k−1),un, ...), (corrector, k = 1, 2, . . . , nc)

un+1 = v(nc) .

Here un is the solution at time tn, v(k) are intermediate solution values, and Lp and Lc denote possibly
implicit operators that are solved at the predictor and corrector steps, respectively. When we solve the
interface equations by iteration, we may need to take ni additional corrector steps over and above the
number, nc, used by default in the above scheme.
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MultiDomainPDEsolve(G, tfinal)
{

t := 0; applyInitialCondition(G);
while t < tfinal

∆t := computeTimeStep(G);
for d = 0, 1, . . . ,Nd − 1 (loop over domains)

domainSolver[d]→startTimeStep(t,∆t);
for k = 0, 1, . . . , nc + ni − 1 (predict: k = 0, and correct: k > 0)

for d = 0, 1, . . . ,Nd − 1
if we iterate to solve the interface equations

assignInterfaceRightHandSide(d, t + ∆t,∆t, k);
domainSolver[d]→takeTimeStep(t,∆t, k);

if we solve the coupled interface equations directly
assignInterface(∆t);

else if k ≥ nc and the interface equations have converged
break; (no more corrections are required)

for d = 0, 1, . . . ,Nd − 1
domainSolver[d]→endTimeStep(t,∆t);

t := t + ∆t;
}

Fig. 5. The multi-domain predictor-corrector time-stepping algorithm for the solution of an initial-boundary-value problem on
a composite grid G consisting of Nd domains.

The multi-domain time-stepping algorithm is a predictor-corrector algorithm as outlined in the pseudo-
code of Fig. 5. Let the domain solver in sub-domain d be denoted by domainSolver[d]. After assigning
the initial conditions, the multi-domain time-stepper then advances the solution. Before each step a new
time-step ∆t may be optionally computed. Here we assume that a single time-step is being used by all
domain solvers. This is not a restriction since individual domain solvers may sub-cycle using a smaller ∆t if
so desired. The multi-domain time-stepper communicates with the domain solvers through a set of functions
including startTimeStep, takeTimeStep and endTimeStep. The startTimeStep is used to initialize
a time step. The takeTimeStep function is called one or more times to perform the predictor step (k = 0)
followed by corrector steps (k > 0). The endTimeStep function is used to finish the time step.

The multi-domain time-stepper also communicates with the domain solvers through the assignInterface
and assignInterfaceRightHandSide functions. The time-stepping algorithm considers two approaches
for solving the interface equations. In the CI approach, the interface equations are solved as a coupled
system of equations (this approach is usually used with explicit time-stepping). In this case the function
assignInterface is called to solve the interface equations after all domains have been advanced in time.
This function will acquire the solutions near the interface from the appropriate domains, solve the interface
equations (20)-(21) and then assign the solutions back to the appropriate domains. With the CI approach,
the number of corrections, nc, is chosen to be as large as the maximum number required by the individual
domain solvers. No additional corrections are needed to solve the interface equations in this case and ni = 0
in the algorithm of Fig. 5.

In the SI approach, the interface equations are solved in a segregated fashion by iteration. In this case
the right-hand-side to the interface conditions for the domain solvers are filled in by the assignInterfac-
eRightHandSide function. This function will call the appropriate domain solvers to determine the current
values of the temperature and its normal derivative on the interface and will then provide the right-hand-
sides to the interface equations (24),(27) of the current domain being solved for. These right-hand-sides will
be adjusted appropriately if the interface equations are solved with an relaxation parameter as discussed in
Section 6. In the SI approach we choose the number of additional corrections ni to be large enough to ensure
that the interface equations will converge to the requested tolerance. We can stop correcting the solution
once the interface equations have converged to the requested tolerance and we have corrected at least nc

times.
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5. Analysis of the discrete coupled interface (CI) problem

D1, K1, h1 D2, K2, h2
0 x

· · · U1,−2 U1,−1 U1,0 U1,1

U2,−1 U2,0 U2,1 U2,2 · · ·

Fig. 6. The overlapping grids for a one-dimensional material interface located at x = 0. The ghost points U2,−1 and U1,1

are introduced on the two grids at the interface.

In this section we perform a model problem analysis for the coupled interface (CI) approach introduced
in Section 3.2 that uses the centered approximation to the interface equations. For the model problem
discretized in space but kept continuous in time, we show that the discrete equations are second-order
accurate and stable. We then consider the fully discrete case using forward-Euler time-stepping and show
that the equations are stable provided the usual von Neumann restriction on the time step is satisfied. This
result shows that the stability of the CI approach does not depend on the relative sizes of the material
properties. This should be contrasted with the results of Giles [1] who showed that the stability of the more
commonly used Dirichlet-Neumann interface approximation does depend on a certain ratio involving the
heat capacities and grid spacings; with the result being that a smaller time step is sometimes required.

A one-dimensional model problem on the interval (−∞,∞) with material interface at x = 0 is

∂tu1 = D1∂
2
xu1, for x < 0, (28)

∂tu2 = D2∂
2
xu2, for x > 0, (29)

u1 − u2 = 0, at x = 0, (30)

K1∂xu1 −K2∂xu2 = 0, at x = 0, (31)

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x), at t = 0, (32)

‖u1‖ < ∞, ‖u2‖ < ∞, (33)

where u1 = u1(x, t) is defined on the left semi-infinite interval (∞, 0] and u2 = u2(x, t) on the right semi-
infinite interval [0,∞). The initial conditions are assumed to have compact support and ‖um‖, m = 1, 2,
denotes the L2 norm of um over the appropriate interval. As discussed previously, by taking the time
derivative of the jump condition (30) and using the interior equation it follows that

D1∂
2
xu1 −D2∂

2
xu2 = 0, at x = 0. (34)

We assume that the initial conditions satisfy consistency conditions such as u0
1(0) = u0

2(0) and D1∂
2
xu0

1(0) =
D2∂

2
xu0

2(0). Introduce a one-dimensional overlapping grid as shown in Fig. 6. The domain is discretized with a
grid with spacing h1 for x < 0 and a grid with spacing h2 for x > 0. Let x1,j = jh1 and x2,j = jh2 denote the
grid points on either side of the interface. A (formally) second-order accurate semi-discrete approximation
is

∂tU1,j = D1D+D−U1,j , for j = 0,−1,−2 . . . (35)

∂tU2,j = D2D+D−U2,j , for j = 0, 1, 2, . . . (36)

K1D0U1,0 = K2D0U2,0, (37)

D1D+D−U1,0 = D2D+D−U2,0. (38)

U1,j(0) = u0
1(x1,j), for j = 1, 0,−1,−2 . . . (39)

U2,j(0) = u0
2(x2,j), for j = −1, 0, 1, 2, . . . (40)

‖U1‖h < ∞, ‖U2‖h < ∞. (41)

Here U1,j(t) and U2,j(t) denote the approximations to u1 and u2 on the grids while D+Um,j = (Um,j+1 −
Um,j)/hm, D−Um,j = (Um,j −Um,j−1)/hm, and D0Um,j = (Um,j+1 −Um,j−1)/(2hm) denote the usual finite
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difference operators [50]. The discrete norms of the grid functions are defined from ‖U1‖2
h =

∑0
j=−∞ |U1,j |2 h1

and ‖U2‖2
h =

∑∞

j=0 |U2,j |2 h2. Approximations to the jump conditions (31) and (34) have been imposed.
The basic jump condition U1,0(t) = U2,0(t) will also hold in the discrete case since ∂tU1,0 = ∂tU2,0 for all
time by (35) and (38), and since we assume the initial conditions satisfy (38) and U1,0(0) = U2,0(0).

Theorem 1 The solution to the one-dimensional interface problem (35-41) is stable and second order ac-
curate.
Proof. See Appendix A.

Note: The interface equations (37) and (38) can be solved for the values at the ghost points, U1,+1, U2,−1

in terms of interior values,

U1,+1 =
[
2(D̃1 − D̃2)K̃2U2,0 + 2D̃2K̃2U2,1 + (D̃2K̃1 −D1K̃2)U1,−1

]
/
[
D̃1K̃2 + D̃2K̃1

]
(42)

U2,−1 =
[
2(D̃2 − D̃1)K̃1U1,0 + 2D̃1K̃1U1,−1 + (D̃1K̃2 −D2K̃1)U2,1

]
/
[
D̃1K̃2 + D̃2K̃1

]
(43)

where D̃m = Dm/h2
m and K̃m = Km/hm. The interface boundary conditions thus have the useful property

that when K1 = K2, D1 = D2, and h1 = h2 the discrete solution is the same as if there were no interface at
all: U1,1 = U2,1 and U2,−1 = U1,−1.

We have shown that the time-continuous and space-discrete problem is stable with the centered interface
conditions. We now discretize in time with forward-Euler and show that for the fully discrete case the scheme
is stable provided the time-step ∆t is chosen to satisfy the usual von Neumann stability conditions for each
side of the interface. Discretizing the equations (35)-(41) using forward-Euler in time gives the approximation

(Un+1
1,j − Un

1,j)/∆t = D1D+D−Un
1,j , for j = 0,−1,−2 . . . (44)

(Un+1
2,j − Un

2,j)/∆t = D2D+D−Un
2,j , for j = 0, 1, 2, . . . (45)

K1D0U
n+1
1,0 = K2D0U

n+1
2,0 , (46)

D1D+D−Un+1
1,0 = D2D+D−Un+1

2,0 . (47)

U0
1,j = u0

1(x1,j), for j = 1, 0,−1,−2 . . . (48)

U0
2,j = u0

2(x2,j), for j = −1, 0, 1, 2, . . . (49)

‖Un+1
1 ‖h < ∞, ‖Un+1

2 ‖h < ∞, (50)

where Un
m,j ≈ um(xm,j , t

n). These equations will be stable in the sense of Godunov-Ryabenkii [50] provided

there are no solutions to the homogeneous equations (i.e. with u0
1(x1,j) = 0 and u0

2(x2,j) = 0) of the form

Un
1,j = AznÛ1,j , (51)

Un
2,j = BznÛ2,j , (52)

with |z| > 1.

Theorem 2 Solutions to the equations (44)-(50) are stable in the sense of Godunov-Ryabenkii provided the
time step ∆t satisfies the von Neumann stability conditions

dm ≡ Dm∆t

h2
m

< 1
2 , m = 1, 2. (53)

Proof. See Appendix A.
The results of Theorems 1 and 2 are shown to apply to more complex two- and three-dimensional conjugate

heat transfer problems in Section 7. These results show that the coupled interface approach with second-
order explicit time-stepping is second-order accurate in space and time. Furthermore, we note that in all
the cases considered, the coupled method is stable provided the time-step is chosen as the minimum of the
time-steps required to make the sub-domain solvers stable. Thus there is no need to reduce the time-step
due to any effects of the interface approximation.
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6. Domain implicit time-stepping and the solution of the interface equations by iteration

In this section we analyze the segregated interface method, as described in Section 3.3, for solving the
interface equations when the sub-domains are advanced in a weakly coupled fashion with implicit time-
stepping. We suppose that we can advance each sub-domain problem separately (with some appropriate
conditions at the interface) but we do not want to solve the full coupled implicit problem. Implicit methods
require interface values at the new time level and some approximate values must be provided. We define
an iteration, as part of a predictor-corrector scheme, to solve the coupled problem. In Section 6.1 we study
the commonly used Dirichlet-Neumann (DN) approach that uses a Dirichlet condition at the interface of
one domain and a Neumann condition at the interface of the second domain. The convergence properties of
this iteration are analyzed. In Section 6.2 we analyze the case when a a mixed condition is applied at both
interfaces and show that this approach has some advantages over the DN approach.

6.1. Analysis of the segregated interface (SI) method

We consider the model problem of solving the heat equation in two domains separated by an interface using
an implicit time stepping-method. The heat-conduction model-problem is defined on the region Ω consisting
of two adjacent squares, Ω = (−a, b) × (0, 2π) = Ω1

⋃
Ω2 where the left domain is Ω1 = (−a, 0) × (0, 2π),

the right domain is Ω2 = (0, b) × (0, 2π) and the interface is ΩI = 0 × (0, 2π). The initial boundary value
problem (IBVP) we wish to solve is

∂tum = Dm∆um + f, for x ∈ Ωm, m = 1, 2, (54)

[um(0, y)]I = 0, for x ∈ ΩI , m = 1, 2, (55)

[Km∂xum(0, y)]I = 0, for x ∈ ΩI , m = 1, 2, (56)

um(x, 0) = u0
m(x), for x ∈ Ωm, m = 1, 2, (57)

u1(−a, y) = g(−a, y), u2(b, y) = g(b, y), for x ∈ ΩI , (58)

where um = um(x, t) and we look for solutions that are 2π-periodic in the y-direction. We discretize this
problem in time but for clarity keep space continuous. We use the implicit θ-scheme given by

Un+1
m (x) − Un

m(x)

∆t
= θ Dm∆Un+1

m (x) + (1 − θ) Dm∆Un
m(x) + f(x, tn), for x ∈ Ωm, m = 1, 2, (59)

[Un+1
m (0, y)]I = 0, for x ∈ ΩI , m = 1, 2, (60)

[Km∂xUn+1
m (0, y)]I = 0, for x ∈ ΩI , m = 1, 2, (61)

U0
m(x, 0) = u0

m(x), for x ∈ Ωm, m = 1, 2, (62)

Un+1
1 (−a, y) = g(−a, y), Un+1

2 (b, y) = g(b, y), for x ∈ ΩI . (63)

Here ∆t > 0 is the time step, Un
m(x) ≈ um(x, tn), tn = n∆t, and 0 < θ ≤ 1. We want to solve the implicit

equations (59)-(63) for the solution Un+1
m at the new time level. The interface equations (60)-(61) couple

the solutions on the two domains. We can solve these equations by an iteration. We wish to understand the
convergence characteristics of this iteration. We first rewrite equations (59)-(63) as an equation for U n+1

m ,

∆Un+1
m − 1

θDm∆t
Un+1

m = Fm, for x ∈ Ωm, m = 1, 2, (64)

[Un+1
m (0, y)]I = 0, for x ∈ ΩI , m = 1, 2, (65)

[Km∂xUn+1
m (0, y)]I = 0, for x ∈ ΩI , m = 1, 2, (66)

Un+1
1 (−a, y) = g(−a, y), Un+1

2 (b, y) = g(b, y), for x ∈ ΩI . (67)

Here Fm = −[Un
m/∆t + (1 − θ) Dm∆Un

m(x) + f(x, tn)]/(θDm) is known. Let U
(j)
m ≈ Un+1

m , j = 0, 1, 2, . . .
denote a sequence of iterates and define the following iteration for j > 0,
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∆U (j)
m − 1

θDm∆t
U (j)

m = Fm, for x ∈ Ωm, m = 1, 2, (68)

K1∂xU
(j)
1 (0, y) = K2∂xU

(j−1)
2 (0, y), for x ∈ ΩI , (69)

U
(j)
2 (0, y) = U

(j)
1 (0, y), for x ∈ ΩI , (70)

U
(j)
1 (−a, y) = g(−a, y), U

(j)
2 (b, y) = g(b, y), for x ∈ ΩI . (71)

We first solve for U
(j)
1 using (68) and the Neumann interface condition (69) and then solve for U

(j)
2 using (68)

and the Dirichlet interface condition (70). To analyze this iteration we proceed in the usual way and first
subtract out a particular solution to equations (64) and (63) that satisfies homogeneous Dirichlet conditions
at the interface. We also Fourier transform in y (with dual variable k). This results in the following iteration

for the functions W
(j)
m (x, k), j = 1, 2, 3, . . .,

∂2
xW

(j)
1 = β2

1W
(j)
1 , ∂2

xW
(j)
2 = β2

2W
(j)
2 , (72)

K1∂xW
(j)
1 (0, k) = K2∂xW

(j−1)
2 (0, k) + fI(k), W

(j)
2 (0, k) = W

(j)
1 (0, k), (73)

W
(j)
1 (−a, k) = 0, W

(j)
2 (b, k) = 0 , (74)

where

β2
m = k2 +

1

θDm∆t
.

The solution to these equations satisfying the boundary conditions (74) is of the form (note that βm > 0)

W
(j)
1 = Aj sinh(β1(x + a)), (75)

W
(j)
2 = Bj sinh(β2(x − b)). (76)

Substitution of equations (75)-(76) into the interface conditions (73) gives

Aj K1β1 cosh(β1a) = Bj−1 K2β2 cosh(β2b) + fI ,

Bj sinh(−β2b) = Aj sinh(β1a).

Whence

Aj = −K2

K1

β2

β1

tanh(β1a)

tanh(β2b)
Aj−1 +

1

β1 K1 cosh(β1a)
fI

This iteration will converge provided the amplification factor, A, defined by

A ≡− K2

K1

β2

β1

tanh(β1a)

tanh(β2b)
, (77)

= − K2

K1

√
1/(θD2∆t) + k2

1/(θD1∆t) + k2

tanh(β1a)

tanh(β2b)
, (78)

satisfies |A| < 1. For 1/(θDm∆t) � k2 or 1/(θDm∆t) � k2 we find that

A ≈





−K2

K1

√
D1

D2

tanh(β1a)

tanh(β2b)
, for 1/(θDm∆t) � k2,

−K2

K1

tanh(β1a)

tanh(β2b)
, for 1/(θDm∆t) � k2.

(79)

Note that in many cases β1a � 1 and β2b � 1 in which case tanh(β1a) ≈ 1 and tanh(β2b) ≈ 1 in the above
formulae. Then for small wave-numbers (smooth components of the solution), the convergence rate of the
interface iteration will be approximated by

|A| ≈ K2

K1

√
D1

D2
. (80)

We see that the convergence rate depends both on the ratio of the thermal conductivities and the square
root of the ratio of the thermal diffusivities.
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If |A| > 1 then there is no convergence. In this case, however, we can redefine the basic iteration (68)-(71)

so that the Neumann interface condition is imposed on U
(j)
2 and the Dirichlet on U

(j)
1 and then the new

amplification factor is the inverse of A. Thus if A � 1 (or A � 1) then the basic iteration (or the basic
iteration with interface conditions switched) will work well. The difficult case is when A ≈ 1 for then the
iteration will converge slowly. For this difficult case we can consider acceleration procedures to improve the
convergence rate of the iteration. One of the simplest acceleration procedures uses a relaxation parameter.
Define a relaxed iteration with relaxation parameter ω by

Aj = (1 − ω)Aj−1 + ω
(
AAj−1 +

1

β1 K1 cosh(β1a)
fI

)
,

in which case

Aj =
[
1 − ω

(
1 + |A|

)]
Aj−1 − ω

1

β1 K1 cosh(β1a)
fI .

This iteration will converge provided 0 < ω < 2ωopt where the optimal value for ω is

ωopt =
1

1 + |A| . (81)

Note 1: The under-relaxed iteration can be implemented in practice by adjusting the Neumann interface
condition (69), using instead,

K1∂xU
(j)
1 (0, y) = (1 − ω) K1∂xU

(j−1)
1 (0, y) + ω

(
K2∂xU

(j−1)
2 (0, y)

)
. (82)

Note 2: A simple strategy for choosing a value for ω for general interfaces is as follows. Solve the problem
with ω = 1 and measure the convergence rate of the residuals in the interface equations. Choose ω from
equation (81) using this convergence rate in place of |A|.

6.2. The segregated interface (SI) method with mixed interface conditions.

We now consider more general segregated interface conditions where instead of applying a Dirichlet inter-
face condition on one domain and a Neumann interface condition on the other, we apply a mixed condition
on both sides. Following the development in the previous section, we replace equations (68)-(71) with

∆U (j)
m − 1

θDm∆t
U (j)

m = Fm, m = 1, 2, (83)

(a1nK1∂x + a10)U
(j)
1 (0, y) = (a1nK2∂x + a10)U

(j−1)
2 (0, y), (84)

(−a2nK2∂x + a20)U
(j)
2 (0, y) = (−a2nK1∂x + a20)U

(j)
1 (0, y), (85)

U
(j)
1 (−a, y) = g(−a, y), U

(j)
2 (b, y) = g(b, y). (86)

Note that the Dirichlet-Neumann approach of the previous section corresponds to the choice a1n = 1, a20 = 1
and a10 = a2n = 0. If the iteration (83)-(86) converges to some values U ∗

m, then

 a1n a10

−a2n a20





K1∂xU∗

1 −K2∂xU∗
2

U∗
1 − U∗

2


 = 0. (87)

Thus, provided the determinant of the coefficient matrix is non-zero, a1na20 + a10a2n 6= 0, it follows that if
the iteration converges then both interface conditions will be satisfied. Proceeding as before, we are led to
analyze the following iteration

∂2
xW

(j)
1 = β2

1W
(j)
1 , ∂2

xW
(j)
2 = β2

2W
(j)
2 , (88)

W
(j)
1 (−a) = 0, W

(j)
2 = 0, (89)

(a1nK1∂x + a10)W
(j)
1 (0, y) = (a1nK2∂x + a10)W

(j−1)
2 (0, y) + a1nf̂I(k), (90)

(−a2nK2∂x + a20)W
(j)
2 (0, y) = (−a2nK1∂x + a20)W

(j)
1 (0, y) − a2nf̂I(k). (91)
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The solution to these equations is also of the form (75)-(76) and the amplification factor for the mixed
interface conditions is

A =
a1nK2β2 − a10 tanh(β2b)

a1nK1β1 + a10 tanh(β1a)

a2nK1β1 − a20 tanh(β1a)

a2nK2β2 + a20 tanh(β2b)
. (92)

We note then that if a1n = a2n = a10 = a2n = 1
2 then

A =
K1β1 − tanh(β1a)

K1β1 + tanh(β1a)

K2β2 − tanh(β2b)

K2β2 + tanh(β2b)
(93)

so that |A| < 1 and the iteration will always converge (although the convergence rate may not be very good).
Although the choice a10 = a1nK2β2/ tanh(β2b) and a20 = a2nK1β1/ tanh(β1a) would make A = 0, this is
not practical since βm = βm(k) depends on wave-number k. After some numerical experimentation we have
arrived at the following choice for the coefficients of the mixed conditions that seems to give reasonable
results,

a1n = 1, a2n = 1,

{
a10 = γ2

2/γ1, a20 = γ2
1 , if γ1 ≥ γ2,

a10 = γ2
2 , a20 = γ2

1/γ2, if γ1 < γ2,
(94)

where

γm = Kmβm(k∗
m) = Km

√
1

θDm∆t
+ (k∗

m)2, (95)

and (k∗
m)2 = 0.1/(Dm∆t), m = 1, 2, is a rough guess of a wave-number where the errors are significant .

This form is motivated by the fact that when γ1 � γ2 or γ2 � γ1 the mixed condition will be close to the
Dirichlet-Neumann condition and should converge rapidly. When γ1 ≈ γ2 and γ1 ≥ γ2 the iteration should
also converge rapidly since

A ≈ −K2β2(k) −K2β2(k
∗
2) tanh(β2b)

K1β1(k) + K2β2(k∗
2) tanh(β1a)

tanh(β1a)

tanh(β2b)
. (96)

A similar result holds when γ1 ≈ γ2 and γ1 < γ2. In Section 6.3 we present some numerical results using the
mixed interface condition with parameters chosen following (94).

6.3. Results for implicit time-stepping and interfaces

In this section we present computational results that provide confirmation of the analyzes of the previous
sections. We solve some conjugate heat transfer problems using the segregated interface method and measure
the convergence rates of the iterations. These convergence rates are compared to the theoretical values. We
consider using the Dirichlet-Neumann interface condition (DN) discussed in Section (6.1), as well as using
a mixed interface condition (M) described in Section (6.2). From equation (80) we define an estimated
convergence rate of the DN approach,

σest =
K2

K1

√
D1

D2
.

This is the convergence rate that might be expected when a Neumann condition is applied at the interface to
sub-domain Ω1, with parameters K1, D1, and a Dirichlet condition is applied at the interface to sub-domain
Ω2, with parameters K2, D2.

We begin by considering a domain consisting of two adjacent squares, Ωs = Ω1 ∪Ω2 where Ω1 = (−1, 0)×
(0, 1) and Ω2 = (0, 1) × (0, 1). We define a grid Gs for Ωs using Cartesian grids on each domain with grid
spacing equal to ∆x = 1/320. We solve the heat equation in each sub-domain with a second-order accurate
implicit predictor-corrector method where the corrector step is given by the implicit θ-scheme (59) with
θ = 1

2 and ∆t = .01. The boundary conditions on non-interface boundaries are taken as Dirichlet (similar
results are obtained when Neumann boundary conditions are used). The exact solution, determined with
the method of analytic solutions (section 7.1) is a fourth-degree polynomial. At each time step we solve
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the interface equations by the iteration (68)-(71). An initial guess for the right-hand-side to the interface
equations is determined by extrapolation in time from previous values. We estimate the average convergence
rate, σcomp, from the reduction in the residual in the interface equations over a total of N iterations,

σcomp =

(
R(N)

R(1)

)1/N

,

R(j) ≡ max
i,j

{∣∣U (j)
1,i − U

(j)
2,j

∣∣,
∣∣K1DnU

(j)
1,i −K2DnU

(j)
2,j

∣∣
}

,

where the maximum is taken over all grid values on the interface and Dn is the discrete approximation to
the normal derivative. We solve the interface equations until R(N) < ε where ε = 10−10 for the computations
given in this section. The values of σcomp are then averaged over a few time steps to give the tabulated
result. Fig. (7) shows some results for different values of (Km,Dm). The estimated convergence rate σest

is generally a good approximation to the computed value σcomp for cases that use the DN conditions. For
example, in case “1” the estimated converge rate is σest = .45 and the computed is σcomp = .44. We also
show the convergence rate when a relaxation parameter, ω ≈ 1/(1 + σcomp), is used (82). In some of these
cases, the convergence rate at each iteration, R(j+1)/R(j), can be quite variable with the initial iterations
tending to converge much faster than later iterations. This can be attributed to the smooth components
of the error converging rapidly on the first few iterations, while high-frequency modes of the error become
more important for later iterations. Fig. (7) also shows results for the disk-in-a-square grid, G (8), defined

case grid IC (D1,K1) (D2, K2) σest σcomp ω σcomp(ω)

0 two-squares DN (1.0, 1.0) (0.1, 0.1) .32 .31 .76 .08

1 DN (0.5, 1.0) (0.1, 0.2) .45 .44 .69 .12

2 DN (1.0, 1.0) (1.0, 1.0) 1.0 1.0 .5 .19

3 M (1.0, 1.0) (1.0, 1.0) 1.0 .45 .69 .65

4 M (1.0, 1.0) (0.1, 0.1) .32 .17 .85 .13

5 disk-in-a DN (1.0, 1.0) (1.0, 1.0) 1.0 1.2 .5 .11

6 square DN (0.5, 1.0) (0.1, 0.2) .45 .48 .69 .04

7 DN (1.0, 1.0) (1.0, .02) .02 .024 .98 .0013

8 M (1.0, 1.0) (1.0, 1.0) 1.0 .04 .96 .015

9 M (0.5, 1.0) (0.1, 0.2) .45 .21 .83 .0013

10 M (1.0, 1.0) (1.0, .02) .02 .022 .98 .00056

Fig. 7. Convergence rates for solving the interface equations by iteration with the segregated interface approach and
weakly-coupled implicit time-stepping. The interface condition (IC) is either Dirichlet-Neumann (DN) or mixed (M). σest

is the estimated convergence rate for the DN condition. σcomp is the computed convergence rate. ω is the relaxation parameter

computed from σcomp using equation (81). σcomp(ω) is the convergence rate of the relaxed iteration using this value of ω.

in section (7.2). The estimated and computed convergence rates for the DN interface condition agree well
in this case as well. The mixed interface condition converges very rapidly for case “8”, D1 = 1, K1 = 1,
D2 = 1 and K2 = 1 which is the difficult case for the DN approach. The mixed condition generally gives
good results. Case “3” for the mixed condition on the two-squares problem does not converge as well as case
“8” for the disk-in-a-square problem. The convergence rates for case “3” start out very small but then slow
down due to boundary effects where the interface meets the adjacent top and bottom boundaries. In case
“8” the interface is a periodic circle and thus this effect does not appear. It may be possible to remedy this
problem with an improved approximation for points near where the interface meets another boundary.
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7. Numerical results

In this section we present some computational results. Although we are primarily concerned with demon-
strating the accuracy of the multi-domain algorithms, we will also show results of applying the approach to
a few interesting conjugate heat transfer problems. In all cases we solve the incompressible Navier-Stokes
equations (2) in the fluid domains and the heat equation (4) in the solid domains. These equation are solved
together with appropriate initial conditions, boundary conditions as defined in Section 3.1, and interface con-
ditions (5)-(6). We will present results using explicit time-stepping and the coupled interface (CI) method
as well as results for implicit time-stepping and the segregated interface (SI) method. For explicit time-
stepping we use a predictor-corrector method that consists of a second-order Adams-Bashforth predictor
step followed by a second-order Adams-Moulton corrector step (trapezoidal rule). For implicit time-stepping
we use a semi-implicit version of the explicit predictor-corrector method. The corrector-step takes the form
of the θ-scheme (59). In the semi-implicit approach we can optionally treat different terms in the equations
in a implicit manner. For the INS equations, for example, we may only treat the viscous terms implicitly or
alternatively treat both viscous and advection terms in an implicit manner.

We now list the different test cases and describe their purpose.
(i) The solid disk in a fluid example of Section 7.2 is a relatively simple two-dimensional fluid-solid problem

that is verified with the method of analytic solutions as defined in Section 7.1. This geometry is also
used in Section 6.3 for verifying convergence rates of the (SI) method.

(ii) The flat plate heat exchanger with buoyancy test case of Section 7.3 defines an exact solution in a
simple geometry and shows that our approximations give the exact answer for solutions that are cubic
polynomials in space, when solved on Cartesian grids.

(iii) The flat plate heat exchanger with the method of analytic solutions example of Section 7.4 is used
to verify that the numerical solution is exact, up to round off errors, when the true solution is a
second-degree polynomial in space and time. This case shows that the explicit (CI) and implicit (SI)
time-stepping algorithms are second-order accurate in time.

(iv) The conjugate heat transfer in cocentric cylinders problem of Section 7.5 defines a three-dimensional
exact solution in a curvilinear geometry and thus tests the implementation for curvilinear three-
dimensional grids.

(v) The fluid in a curved pipe test case of Section 7.6 provides a more general three-dimensional curvilinear
grid example that is verified with the method of analytic solutions. This geometry is also used to
perform the simulations that provide the parallel scaling data of Section 7.7.

(vi) The conjugate heat transfer in an hohlraum problem of Section 7.8 provides a relatively complex and
realistic example involving multiple fluid domains and multiple solid domains. This case demonstrates
that we can solve problems in complex geometries and that we can handle many domains, including
multiple fluid domains.

(vii) The conjugate heat transfer in an hexagonal fuel-assembly example of Section 7.9 shows that we can
solve problems in complex three-dimensional domains and provides further parallel scaling results.

7.1. The method of analytic solutions

The method of analytic solutions is an extremely useful technique for constructing exact solutions to
check the accuracy of a numerical implementation. This method, also sometimes known as the method of
manufactured solutions [51], or twilight-zone forcing [2] adds forcing functions to the governing equations
and boundary conditions. These forcing functions are determined so that some given functions, ū(x, t), will
be the exact solution to the forced equations. With this approach, the error in the discrete solution can be
easily determined. As an example of the technique, consider solving the IBVP for the advection-diffusion
equation,

19



ut + a · ∇u − ν∆u = f, for x ∈ Ω,

u(x, 0) = u0(x), for x ∈ Ω, at t = 0,

u(x, t) = g(x, t), for x ∈ ∂Ω.

Any given smooth function, ū(x, t), will be an exact solution of the IBVP if we set the forcing function,
initial conditions and boundary conditions as

f(x, t) = ūt + a · ∇ū − ν∆ū, u0(x) = ū(x, 0), and g(x, t) = ū(x, t).

In our numerical implementation, we have a number of choices available for ū, including polynomials, trigono-
metric functions, and exponential functions, among others. The exact form of the analytic solution we use
in each case will be given in subsequent sections.

7.2. Solid disk in a fluid

Fig. 8. Left : composite grid G(1) for the two-domain conjugate heat-transfer problem. The heat equation is solved in the inner

disk and the incompressible Navier-Stokes equations are solved in the outer region. Right : the computed temperature for a
problem where the exact solution was constructed using the method of analytic solutions.

We consider a conjugate heat transfer problem for a heated solid disk in a fluid. We solve the problem in
a two-dimensional domain Ω = ΩS ∪ ΩF , where the solid domain ΩS consists of a circular disk of radius
R = .4 and the fluid domain ΩF is a square that surrounds the fluid, ΩF = [−1, 1]2 − ΩS . The grid for an
annular region is defined by

A([ra, rb], N1, N2) =
{(

ri2 cos(θi1), ri2 sin(θi1)
) ∣∣ θi1 = 2πi1/N1, ri2 = ra + (rb − ra)i2/N2,

ik = 0, 1, . . . , Nk, k = 1, 2
}

.

The grid for a rectangle is

R([xa, xb] × [ya, yb], N1, N2) =
{(

xa + (xb − xa)i1/N1, ya + (yb − ya)i2/N2

) ∣∣ ik = 0, 1, . . . , Nk, k = 1, 2
}

.

The number of grid points in each coordinate direction for a grid with resolution factor j is chosen so that
the grid spacing is approximately

∆s(j) =
1

20j
.

The composite grid for the solid domain consists of an inner square grid and an outer annulus,

G(j)
S = R([−Ri − ∆s(j), Ri + ∆s(j)]2, Nx,S , Nx,S) ∪ A([Ri, R], Nθ, Nr),
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where R = .4, Ri = R − .175, Nx,S = b2(Ri + ∆s)/∆s(j) + 1.5c, Nθ = b2πR/∆s(j) + 1.5c and Nr =

b(R−Ri)/∆s(j) + 2.5c. Here bxc denotes the largest integer less than or equal to x. The composite grid for
the fluid domain is composed from a background square and an annular grid,

G(j)
F = R([−1, 1]2, Nx,F , Nx,F ) ∪ A([R,R + .175], Nθ, Nr),

where Nx,F = b2/∆s(j) + 1.5c. The composite grid for the entire multi-domain problem is the union of the
fluid and solid grids,

G(j) = G(j)
F ∪ G(j)

S .

Fig. 8 shows the grid G(1) for this two-domain problem.

Fluid Solid

Grid G(j) ∆s(j) e
(j)
p e

(j)
u e

(j)
v e

(j)
T

∇ · u e
(j)
T

G(1) 1/20 8.0 × 10−3 4.7 × 10−3 8.1 × 10−3 4.6 × 10−3 2.6 × 10−2 4.6 × 10−3

G(2) 1/40 2.2 × 10−3 1.0 × 10−3 1.8 × 10−3 1.4 × 10−3 7.5 × 10−3 1.4 × 10−3

G(4) 1/80 6.0 × 10−4 2.6 × 10−4 3.9 × 10−4 3.8 × 10−4 9.0 × 10−4 3.8 × 10−4

rate, σ 1.87 2.09 2.20 1.80 2.43 1.80

Fig. 9. Maximum errors at t = 1 and estimated convergence rate, σ, when solving the solid disk in a fluid problem using explicit
time-stepping and the coupled interface (CI) approach.

Fluid Solid

Grid G(j) ∆s(j) e
(j)
p e

(j)
u e

(j)
v e

(j)
T

∇ · u e
(j)
T

G(1) 1/20 1.4 × 10−2 9.3 × 10−3 1.2 × 10−2 4.7 × 10−3 1.2 × 10−2 4.7 × 10−3

G(2) 1/40 2.5 × 10−3 1.8 × 10−3 2.8 × 10−3 1.3 × 10−3 2.8 × 10−3 1.3 × 10−3

G(4) 1/80 4.0 × 10−4 3.7 × 10−4 6.1 × 10−4 3.5 × 10−4 6.1 × 10−4 3.5 × 10−4

G(8) 1/160 1.1 × 10−4 8.5 × 10−5 1.3 × 10−4 9.0 × 10−5 1.3 × 10−4 9.0 × 10−5

rate, σ 2.4 2.3 2.2 1.9 2.2 1.9

Fig. 10. Maximum errors at t = 1 and estimated convergence rate, σ, when solving the solid disk in a fluid problem using
implicit time-stepping and the segregated interface (SI) approach.

We solve the incompressible Navier-Stokes (INS) equations in the fluid domain and the heat equation in
the solid domain. We use the method of analytic solutions as described in Section 7.1 with a trigonometric
exact solution. The exact solution for the fluid is

ū = 1
2 cos(fxπx) cos(fyπy) cos(ftπt), (97)

v̄ = 1
2 sin(fxπx) sin(fyπy) cos(ftπt), (98)

p̄ = cos(fxπx) sin(fyπy) cos(ftπt), (99)

T = cos(fxπx) cos(fyπy) cos(ftπt), (100)

which satisfies ∇ · (ū, v̄) = 0 if fx = fy. For the fluid we choose fx = fy = ft = 1. For the solid the exact
solution for T is also given by (100) and we choose fx = fy = ft = 2. Since the exact solutions for T
in the fluid and solid do not match at the interface, the interface jump conditions (5)-(6) are replaced by
[T ]I = [T ]I and [∂nT ]I = [∂nT̄ ]I . We use parameters values ν = .025, Df = .03, and Kf = .04 for the fluid,
and Ds = .04, Ks = .9 for the solid, with the coefficient of thermal expansivity α = .1 and the gravity vector
equal to g = (0,−10). Fig. 8 shows the computed solution for the temperature at time t = 1. We define the
maximum error in a computed solution Un

i on grid G(j) as

e(j)
u = max

i∈G(j)
|Un

i − ū(xi, t
n)|, (101)
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where the maximum is taken over all valid points on the composite grid G(j). The convergence rate σ for a
component u of the solution is estimated by assuming that the maximum norm of the error has the form

e
(j)
u = C(∆s(j))σ and then making a least-squares fit for σ to the equation log(e

(j)
u ) = σ log(∆s(j)) + log(C)

for different values of ∆s(j).
We solve the problem with explicit time-stepping and the coupled interface approach. We also solve with

implicit time-stepping and the segregated interface approach. Fig. 9 and Fig. 10 present the maximum
errors at time t = 1 and the estimated convergence rates when using explicit and implicit time-stepping,
respectively. For the implicit time-stepping case we note that the time-step ∆t was explicitly reduced by a
factor of two as the grids were refined by the same factor so that the time-stepping errors would be reduced
appropriately. For the SI approach, the results when using the Dirichlet-Neumann interface conditions or
the mixed interface conditions are nearly the same. The convergence results provide strong evidence that
the overall scheme is second-order accurate.

7.3. A flat plate heat exchanger with buoyancy

Solid: Ωs

Fluid: Ωf

xa xb

ya

yi

yb

T = Ta

T = Tb

g

Fig. 11. Flat-plate heat exchanger geometry and grids for the two-dimensional and three-dimensional computations. A rectan-

gular fluid domain sits above a rectangular solid domain.

In this example we consider the buoyancy driven flow past a flat plate for which an exact steady state
solution is available. Fig. 11 shows the two-dimensional (2D) and three-dimensional (3D) computational
domains. For the two-dimensional case the fluid occupies the upper rectangle ΩF = [xa, xb][yi, yb] and a
solid occupies the lower rectangle ΩS = [xa, xb][ya, yi]. The boundary conditions and initial conditions are

T (x, ya, t) = Ta, T (x, yb, t) = Tb, for xa ≤ x ≤ xb,

u(x, yi, t) = 0, u(x, yb, t) = 0, for xa ≤ x ≤ xb,

u(x, y, 0) = 0, for x ∈ ΩF , T (x, y, 0) = 1
2 (Ta + Tb), for x ∈ ΩF ∪ ΩS .

Gravity is in the x-direction, g = (gx, 0, 0) and the solution is assumed to be periodic in x. The steady state
solution is

T∞(y) =





Ta +
y − ya

yi − ya
(Ti − Ta), for ya ≤ y ≤ yi,

Ti +
y − yi

yb − yi
(Tb − Ti), for yi ≤ y ≤ yb,

u∞(y) =
αgx

ν

(Ta + Tb

4
(y − yi)(y − yb) +

Tb − Ta

6(yb − yi)
(y − yi)(y − yb)(y − ym)

)
, for yi ≤ y ≤ yb,

where Ti =
KfTb + KsTa

Kf + Ks
, and ym ≡ yi + yb

2
.
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Note that the velocity profile is perturbed from standard plane Poiseuille flow with the maximum in the
velocity shifted towards the hotter wall. We solve the problem with parameters

xa = 0, xb = 1, ya = 0, yi = 1
2 , yb = 1, ν = .05, α = 1, gx = −1,

Ks = 1, Ds = 1, Kf = .2, Df = .2. (102)

The solution is integrated with implicit time-stepping with the segregated interface approach until t = 10
when the steady state has been approximately reached. The numerical solution remains independent of x
to round-off error. The computed solution is compared to the exact solution in Fig. 12 along the line x = 1

2
for a grid with grid-spacing ∆x = ∆y = 1/40. Since the exact solution of the temperature is a linear profile,
and the exact solution to the velocity is a cubic, the computed solution on a Cartesian grid is equal to the
exact solution to within round-off error or the degree to which the solution has converged to a steady state.
Note that the reason the cubic profile can be computed exactly is due to the fact that the leading-order
truncation-error term in approximating uxx with a second-order accurate finite difference approximation on
a Cartesian grid is (∆x2/12)∂4

xu.
Fig. 13 shows the corresponding results for the three-dimensional problem for a grid with grid-spacing

∆x = ∆y = ∆z = 1/20. The numerical solutions again match the exact solution to round-off errors as in
the two-dimensional case.
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Fig. 12. Results for the 2D flat-plate heat exchanger. The temperature is a piecewise linear profile and the fluid velocity is a
cubic polynomial. The numerical solution computed on a Cartesian grid gives the exact solution up to round-off.
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Fig. 13. Results for the 3D flat-plate heat exchanger. The temperature is a piecewise linear profile and the fluid velocity is a
cubic polynomial. The numerical solution computed on a Cartesian grid gives the exact solution up to round-off.
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7.4. A flat plate heat exchanger with the method of analytic solutions

In this section we consider the same flat-plate geometry as in the previous section. We solve the conjugate
heat transfer problem on this domain using the method of analytic solutions. We choose the exact solution
to be a degree two polynomial in space times a degree two polynomial in time. We show that we can compute
the exact solution to this problem using explicit time-stepping and the CI method or using implicit time-
stepping and the SI method. For implicit time-stepping we use the second-order-accurate Crank-Nicolson
(trapezoidal) rule in each domain. This problem is an excellent test of the implementation since it can
identify subtle mistakes that would otherwise be difficult to find. This test also verifies that the time-
stepping algorithms are second-order accurate in time. We remark that the spatial errors in the scheme
usually dominate the overall error. By choosing a problem where the spatial errors are negligible we can
carefully test the time accuracy.

The exact solution for the fluid is given by

ū =
(
x2 + 2xy + y2

)(
1 + t/2 + t/3

)
, (103)

v̄ =
(
x2 − 2xy − y2

)(
1 + t/2 + t/3

)
, (104)

p̄ =
(
x2 + y2 − 1 + xy/2

)(
1 + t/2 + t/3

)
, (105)

T =
(

1
2 + x/2 + y/4 + x2/3 + y2/6

)(
1 + t/2 + t/3

)
, (106)

where ∇ · (ū, v̄) = 0. The exact solution for the solid is

T =
(
2 + x + y/2 + x2/2 + y2/4

)(
1 + t/2 + t/3

)
.

The fluid and solid parameters were chosen as in equation (102). The boundary conditions for the fluid were
chosen as no-slip walls on all boundaries. The boundary conditions for the solid where chosen as Dirichlet. For
the implicit time-stepping case using the CI method the final errors do depend on the tolerance that we set
for solving the interface equations. We used a tolerance of 10−13. In Fig. 14 we indicate the maximum errors
in the solution at time t = 1.0 for explicit and implicit time-stepping. The results show that the solution is
exact up to round off errors. Although not shown, similar results are obtained in three-dimensions with the
solution being exact up to roundoff errors.

Fluid Solid

Time Stepping ep eu ev eT ∇ · u eT

explicit (CI) 8.4 × 10−15 1.8 × 10−15 1.8 × 10−15 1.0 × 10−14 1.8 × 10−14 9.8 × 10−15

implicit (SI) 1.1 × 10−13 2.2 × 10−14 1.1 × 10−14 7.5 × 10−14 2.3 × 10−13 7.6 × 10−14

Fig. 14. Maximum errors at t = 1 for the flat-plate heat exchanger solved using the method of analytic solutions with explicit

and implicit time-stepping. The exact solution is a polynomial of degree 2 in space times a polynomial of degree 2 in time. The
numerical solution is exact up to round off errors.

7.5. Conjugate heat transfer in cocentric cylinders

In this example we consider the buoyancy-driven conjugate heat transfer between two cocentric cylinders
as shown in Fig. 15. A solid occupies the inner hollow cylindrical domain ΩS = { x | r ∈ [ra, ri], y ∈ [ya, yb]}
where r =

√
x2 + z2 and the axial direction is parallel to the y−axis. A fluid occupies the outer hollow

cylindrical domain ΩF = { x | r ∈ [ri, rb], y ∈ [ya, yb]}. The boundary conditions and initial conditions for
the problem under consideration are
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Fig. 15. Cocentric cylinders heat exchanger geometry and grids. The coarse grid G(1) is shown.

T (x, t) = Ta, for r = ra, ya ≤ y ≤ yb,

u(x, t) = 0, for r = ri, ya ≤ y ≤ yb,

T (x, t) = Tb, u(x, t) = 0, for r = rb, ya ≤ y ≤ yb,

u(x, 0) = 0, T (x, 0) = 1
2 (Ta + Tb), for x ∈ ΩF ,

T (x, 0) = 1
2 (Ta + Tb), for x ∈ ΩS .

Gravity is in the y-direction, g = (0, gy, 0) and the solution is assumed to be periodic in the axial direction
y. The steady state solution is a function of r only and is given by

T∞(r) =





Ta +
Ti − Ta

ln(ri/ra)
ln(r/ra), for ra ≤ r ≤ ri,

Ti +
Tb − Ti

ln(rb/ri)
ln(r/ri), for ri ≤ r ≤ rb,

v∞(r) =
αgy

4ν

(
(c1 − c2)r

2 + (c2r
2 + c3) ln(r) + c4

)
, for ri ≤ r ≤ rb,

where

Ti =
Kf ln(ri/ra)Tb + Ks ln(rb/ri)Ta

Kf ln(ri/ra) + Ks ln(rb/ri)
,

c2 =
Tb − Ti

ln(rb/ri)
, c1 = Ti − c2 ln(ri),

c3 =
(c1 − c2)(r

2
i − r2

b ) + c2(r
2
i ln(ri) − r2

b ln(rb))

ln(rb/ri)
,

c4 =
(c1 − c2)(r

2
b ln(ri) − r2

i ln(rb)) + c2 ln(ri) ln(rb)(r
2
b − r2

i )

ln(rb/ri)
.

We solve the problem with parameters

ra = 1
2 , ri = 1, rb = 3

2 , ya = 0, yb = 1, Ta = 5, Tb = 1,

ν = .05, α = 1, gy = −1, Ks = 1, Ds = 1, Kf = .2, Df = .2.

A grid for a cylindrical region with axial direction parallel to the y-axis is defined by

C([ra, rb], [ya, yb], N1, N2, N3) =
{(

ri2 cos(θi1), ya + (yb − ya)i3/N3, ri2 sin(θi1)
) ∣∣ θi1 = 2πi1/N1,

ri2 = ra + (rb − ra)i2/N2, ik = 0, 1, . . . , Nk, k = 1, 3
}

.

The number of grid points is chosen so that the grid spacing is approximately
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∆s(j) =
1

10j
.

The composite grid for two-domain problem consists of two cylindrical grids,

G(j) = C([ra, ri], [ya, yb], Nθ, Nr, Ny) ∪ C([ri, rb], [ya, yb], Nθ, Nr, Ny),

where Nθ = b2πri/∆s(j) + 1.5c, Nr = b(ri − ra)/∆s(j) + 2.5c, Ny = b(yb − ya)/∆s(j) + 1.5c. We solve the
problem on a sequence of grids G(j), j = 1, 2, 4. The solution is integrated with implicit time-stepping with
the segregated interface approach until t = 10 when the steady state has been approximately reached.
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Fig. 16. Results for the cocentric cylinder heat exchanger for grid G(2). Left: the computed solution, exact solution and errors

for the temperature in the solid and fluid domains along a radial line. Right: the computed solution, exact solution and errors

for the velocity component v along a radial line.

The computed solution is compared to the exact solution in Fig. 16 along the radial line y = 1
2 , z = 0, for

the grid G(2). The numerical solution shows excellent agreement with the exact solution. Fig. 17 shows the
maximum errors in T and v and the estimated convergence rate. The results demonstrate that the method
is second-order accurate.

7.6. Fluid in a curved pipe

We consider the solution to a conjugate heat transfer problem in a curved pipe consisting of an inner fluid
region surrounded by a solid pipe as shown in Fig. 18. We solve this problem on a sequence of grids with the
method of analytic solutions and determine the errors and convergence rates when using explicit and implicit
time-stepping. These results show the accuracy of the three-dimensional capabilities of our approach. We
also solve a more realistic conjugate heat transfer problem and present some parallel scaling results.
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Grid G(j) ∆s(j) e
(j)
v e

(j)
T

G(1) 1/10 1.3 × 10−3 6.0 × 10−3

G(2) 1/20 3.9 × 10−4 1.8 × 10−3

G(4) 1/40 9.4 × 10−5 4.5 × 10−4

rate, σ 1.9 1.9 10
−1

10
−4

10
−3

Cocentric Cylinders Heat Exchanger

∆ s

 

 

Slope 2

T error
v error

Fig. 17. Maximum errors and estimated convergence rate for the numerical solution of the steady state cocentric cylinders heat
exchanger.

For completeness, we first define the problem domain and the grids. The fluid domain for the curved pipe
is a 90o sector of a toroid. The solid domain is a toroidal shell that forms the solid pipe. The grid for a sector
of a toroidal shell is defined as a body of revolution of an annulus cross-section and is given by

T (xc,[ra, rb], [φa, φb], R,N1, N2, N3) =
{
xc +

(
(R + ri2 cos(θi1)) cos(φi3), ri2 sin(θi1), (R + ri2 cos(θi1)) sin(φi3)

) ∣∣

θi1 = 2πi1/N1, ri2 = ra + (rb − ra)i2/N2, φi3 = φa + (φb − φa)i3/N3, ik = 0, 1, . . . , Nk, k = 1, 3
}
,

where xc is the center of the toroid, ra and rb are the inner and outer values for the minor radius, R is the
major radius and φa and φb are the bounds on the toroidal angle φ. The grid for the core of the fluid domain
is a body of revolution of a square cross-section and given by

S(xc,[xa, xb] × [ya, yb], [φa, φb], R,N1, N2, N3) =
{
xc +

(
(R + xi1) cos(φi3), ya + (yb − ya)i2/N2, (R + xi1) sin(φi3)

) ∣∣

xi1 = xa + (xb − xa)i1/N1, φi3 = φa + (φb − φa)i3/N3, ik = 0, 1, . . . , Nk, k = 1, 2
}

.

The composite grid for the fluid domain consists of a toroidal shell and inner core,

G(j)
F =T ((R, 0, 0), [.35, .5], [π, π/2], 2.5, N

(j)
θ , N

(j)
fr , N

(j)
φ ) ∪

S((R, 0, 0), [−.35, .35] × [−.35, .35], [π, π/2], 2.5, N (j)
x , N (j)

y , N
(j)
φ ),

while that for the solid domain consists of the outer toroidal shell,

G(j)
S =T ((R, 0, 0), [.5, .7], [π, π/2], 2.5, N

(j)
θ , N (j)

sr , N
(j)
φ ) .

Here j denotes the resolution of the grids. The number of grid points, N
(j)
θ , N

(j)
fr , N

(j)
φ , etc. are chosen so

that the grid spacing is approximately equal to

∆s(j) =
1

20j
.

The composite grid for the entire multi-domain problem is the union of the fluid and solid grids,

G(j) = G(j)
F ∪ G(j)

S .

We solve the incompressible Navier-Stokes equations with Boussinesq approximation in the fluid domain
and the heat equation in the solid domain. We use the method of analytic solutions with a trigonometric
exact solution. The exact solution for the fluid is
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ū = cos(fπx) cos(fπy) cos(fπz) cos(ftπt), (107)

v̄ = 1
2 sin(fπx) sin(fπy) cos(fπz) cos(ftπt), (108)

w̄ = 1
2 sin(fπx) cos(fπy) sin(fπz) cos(ftπt), (109)

p̄ = cos(fπx) cos(fπy) cos(fπz) cos(ftπt), (110)

T = cos(fπx) cos(fπy) cos(fπz) cos(ftπt), (111)

which satisfies ∇ · (ū, v̄, w̄) = 0. For the fluid we choose f = ft = 1.5. For the solid the exact solution for T
is also given by (111) and we choose f = ft = 1. Since the exact solutions for T in the fluid and solid do
not match at the interface, the interface jump conditions become [T ]I = [T ]I and [∂nT ]I = [∂nT ]I . We use
parameters values ν = .0125, Df = ν/.72, and Kf = .1 for the fluid and Ds = .025, Ks = .05 for the solid.

solid domain

fluid domain

x

y

z

Fig. 18. Conjugate heat transfer of a fluid in a curved solid pipe with an exact solution constructed with the method of analytic

solutions. Left : the composite grid G(1) for the two domain problem. The inner fluid region is discretized with the green and
blue grids; the outer solid region with the red grid. Right: the computed solution for the temperature in the fluid and solid

domains. Contours of the solution are plotted on planes that cut through the domain. The fluid and solid domains use different
trigonometric functions as exact solutions.

Fig. 18 shows the computed solution for the temperature at time t = 1. Note that the trigonometric
functions were chosen so that the solution for T in the solid is different from T in the fluid. Fig. 19 and
Fig. 20 present the maximum errors at time t = 1 and the estimated convergence rates when using explicit
and implicit time-stepping. The results indicate that the solution is converging at rates close to second-order
accuracy. The actual errors between the explicit and implicit time-stepping results are similar.

For the implicit time-stepping case, the interface equations were solved to a tolerance of 10−3 in the max-
imum residuals of the interface jump conditions. This tolerance was always achieved within two iterations.
The interface equations will always be solved for at least two iterations with the implicit predictor-corrector
time-stepping method since they are solved after the predictor-step and after the first corrector-step. Thus,
in this example no additional corrector steps were needed to satisfy the interface equations.

Fluid Solid

Grid G(j) ∆s(j) e
(j)
p e

(j)
u e

(j)
v e

(j)
w e

(j)
T

∇ · u e
(j)
T

G(1) 1/20 9.1 × 10−3 3.7 × 10−3 2.4 × 10−3 3.7 × 10−3 4.8 × 10−3 1.1 × 10−1 3.9 × 10−3

G(2) 1/40 2.2 × 10−3 6.5 × 10−4 5.8 × 10−4 7.5 × 10−4 1.1 × 10−3 3.5 × 10−2 9.5 × 10−4

rate, σ 2.06 2.50 2.03 2.30 2.14 1.73 2.05

Fig. 19. Maximum errors at t = 1 and estimated convergence rate, σ, when solving the fluid in a curved pipe problem using

explicit time-stepping and the coupled interface (CI) approach. See also Fig. 21.

To give an idea of what the solution looks like for a more realistic situation we solve a conjugate heat
transfer problem through the curved pipe including the effects of buoyancy. We compare the two cases when
gravity points in the +z and −z directions. For the fluid, an inflow condition of (u, v, w) = (0, 0,−1)P(x)
and T = 0 is specified at the boundary face at z = 0. Here the parabolic inflow function P(x) is given by
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Fluid Solid

Grid G(j) ∆s(j) e
(j)
p e

(j)
u e

(j)
v e

(j)
w e

(j)
T

∇ · u e
(j)
T

G(1) 1/20 1.2 × 10−2 5.6 × 10−3 2.6 × 10−3 4.7 × 10−3 5.9 × 10−3 1.2 × 10−1 4.5 × 10−3

G(2) 1/40 2.9 × 10−3 8.9 × 10−4 6.0 × 10−4 9.2 × 10−4 1.4 × 10−3 3.4 × 10−2 1.0 × 10−3

rate, σ 2.02 2.66 2.08 2.35 2.10 1.81 2.09

Fig. 20. Maximum errors at t = 1 and estimated convergence rate, σ, when solving the fluid in a curved pipe problem using

implicit time-stepping and the segregated interface (SI) approach. See also Fig. 21.
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Fig. 21. Maximum errors at t = 1 when solving the fluid in a curved pipe problem using explicit time-stepping and the coupled
interface (CI) approach (left) and using implicit time-stepping and the segregated interface (SI) approach (right). See also

Figs. 19 and 20.

P(x) =

{
1 for dist(x) > δ,

1 − (dist(x)/δ)2 for dist(x) ≤ δ,

where dist(x) is the distance of a point x on the inflow face to the adjacent solid wall, and δ is chosen to
be .2. An outflow condition is specified at the face at x = 2.5 using pn + p = 0, while no-slip walls are used
on the curved boundaries of the pipes. (Section 3.1 provides more information on the equations used for the
different boundary conditions.) The solid pipe is given a fixed temperature T = 10 on the outer boundary of
the pipe and Neumann conditions on the inflow and outflow faces. Other parameters are taken as ν = .025,
Df = .025/.72, Kf = .1, Ds = .05, Ks = 1. Gravity is chosen as g = (0, 0,±1) for two different cases.
The initial conditions for the fluid were based on the state (u, v, w) = (0, 0,−1) and T = 0. These values
for the velocity were projected and smoothed to provide smooth and approximately divergence free initial
conditions. The initial condition for the solid was taken as T = 10.

Fig. 22 shows the solution at time t = 1 for the two cases of gravity pointing in the +z and −z directions.
These solutions were computed on the grid G(2). The temperature in the fluid and solid are shown along
with the speed of the flow, |u| =

√
u2 + v2 + w2. The fluid is heated as it moves through the pipe. There are

significant differences in the flow between the two cases. In the case when gravity points in the −z direction,
the buoyancy force will be in the +z direction for hot fluid. Near the inflow region this will slow down the
fluid near the walls. When gravity is in the +z direction, the buoyancy force will act in the opposite direction
on hot fluid. In this case the hot fluid near the wall in the inflow section is accelerated.

7.7. Parallel Performance

The multi-domain solver runs in parallel on distributed-memory computers. In this section we provide
some parallel performance numbers when solving the flow in a curved pipe example given in the later part of
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Fig. 22. Flow of a heated incompressible fluid through a curved solid pipe. Left : the temperature in the fluid and solid. Right:
the flow speed (magnitude of the velocity) and the temperature in the solid. Top: gravity is g = (0, 0, +1). Bottom: gravity is
g = (0, 0,−1).

k Nodes processors total (s/step) init (s/step) advance (s/step) Sk Sk/Sk−1

0 1 1 7.2 .50 6.7 1.0 –

1 2 2 4.5 .31 4.2 .80 .80

2 2 4 2.4 .26 2.1 .75 .94

3 2 8 1.3 .12 1.2 .70 .93

4 4 8 1.3 .11 1.2 .70 1.0

5 2 16 .71 .065 .64 .63 .90

6 4 32 .39 .036 .36 .58 .92

7 8 64 .20 .026 .18 .56 .97

Fig. 23. Strong parallel scaling for flow of a fluid in a curved pipe. The solution was solved on grid G(2) with approximately

4.6 × 105 grid points for 513 steps. Sk is the parallel scaling factor. See also Fig. 24.

Section 7.6. Our approach to distributed memory parallelism and load balancing is described in [14]. In brief,
each grid can be independently partitioned across the processors, while a modified bin-packing algorithm is
used for load-balancing. We solve the flow in a curved pipe problem on the composite grid G (2) for which
the total number of grid points was approximately 4.6 × 105. We solve to time t = .4 (513 time steps) with
explicit time-stepping. The pressure equation is solved with a stabilized bi-conjugate gradient algorithm
from PETSc [52] using an ILU (incomplete LU) preconditioner with fill level 1 and a relative tolerance of
10−5. On average, approximately 9 iterations were required per pressure solve. The solution to the pressure
equation was taking over 50% of the total time.

For each run, we integrate the equations from t = 0 to .4 and record the number of time steps taken and
the total CPU time used (wall clock time). From this information we compute Tk, the average CPU time
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Fig. 24. Parallel speedup, Sk, for the curved pipe. See also Fig. 23.

per step for run k. Let N
(k)
proc denote the number of processors used in run k. To measure the parallel scaling

behaviour, we define a parallel scaling factor

Sk =
T0

Tk

N
(0)
proc

N
(k)
proc

,

which compares the CPU times per step between runs 0 and k. The run for k = 0 is taken to be a reference
computation with one processor. Ideally, Sk should equal 1 for perfect scaling. All calculations in this section
were performed on a AMD Opteron Linux cluster with eight 2.4GHz processors per node and 16 gigabytes
of memory per node. Fig. 23 presents the strong parallel scaling results. Shown are the parallel scaling factor
and the time-per-step in CPU seconds for the total computation, the initialization phase of the computation
and the advance stage of the computation. The initialization phase includes the time to setup the pressure
equation and project the initial conditions to be approximately divergence free. The time to solve the coupled
interface equations was small, typically 3 − 5% of the total time. There is a decrease in the parallel scaling
factor of S0 = 1.0 to S1 = .8 in going from 1 to 2 processors but after that the code scales fairly well out
to 64 processors. These results are quite good considering the relatively few number of grids points for this
problem. Fig. 24 provides a graph of Sk versus the number of processors.

7.8. Conjugate heat transfer in an hohlraum

In this section we illustrate the use of our multi-domain simulation capability in solving an interesting
conjugate heat-transfer problem. Inertial confinement fusion (ICF) targets used by the National Ignition
Facility (NIF) contain a spherical shell of Deuterium-Tritium (DT) ice. This shell is enclosed by a capsule,
typically made of a polymer or metal, and suspended within a thin walled gold cylinder known as a hohlraum.
Fig. 25(a) depicts a typical target and hohlraum configuration. Since spherical symmetry of the ice layer
directly affects the performance of the target, the temperature on the ice shell must be kept as uniform
as possible. Decay heat released from the DT vapor and ice leads to gravity driven thermal convection
both in the DT vapor and the transfer gas between the hohlraum and capsule. This convection leads to
asymmetries in the temperature of the ice layer and ultimately to asymmetric sublimation of the ice. One
method for actively controlling the temperature in the target includes adding heating and cooling elements
at the periphery of the hohlraum. This system can be simulated both with and without the thermal control
mechanisms to examine the effectiveness of such approaches.

The five domains used for this problem include three solid domains for the DT ice, capsule and the
hohlraum and two fluid domains for the DT vapor and transfer gas. Following Sanchez and Geidt, the
capsule is assumed to be a polyimide shell with an outer radius of 1mm and a thickness of .16mm; the ice
shell is .08mm thick. The overall length and radius of the hohlraum are 9.5mm and 2.75mm respectively
with a .1mm thick wall [53]. Material properties for each domain are given in Fig. 26 [53–55]. The transfer
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Fig. 25. A typical NIF hohlraum target consists of DT vapor and ice; a polyimide capsule; the heat transfer gas; and the gold

hohlraum. The composite grid consists of two fluid and three solid domains using a total of 20 grids.

gas properties are based on a 50 − 50 mixture of H2 and He at 19.5K. The acceleration due to gravity is a
constant 9.8 × 103mm/s2. Cryogenic cooling regions at either end of the hohlraum are held at a constant
temperature of 19.5K while the ring heaters provide a heat flux of 1.3mW/mm2. Fig. 25(b) illustrates the
grids used to mesh this domain; for the purposes of the figure, a coarsened version of the grid is shown.

ρ C K q µ

units mg

mm3
mJ

mgK
mJ

s mm K
mJ

(s mm3)
mg

mm s

DT vapor 3.0 × 10−4 2.49 8.0 × 10−2 5.0 × 10−5 1.25 × 10−3

DT ice 1 × 10−2 1.0 0.294 4.9 × 10−2 (solid)

Capsule 1.43 1.15 0.15 0.0 (solid)

Transfer gas 1.25 × 10−3 10.5 2.2 × 10−2 0.0 2.7 × 10−3

Hohlraum 19.3 0.13 1 × 103 0.0 (solid)

Fig. 26. Material properties used for the hohlraum convection problem: ρ is the density, C the specific heat K the thermal

conductivity, q decay heat source, and µ the dynamic viscosity.

The results from a sample axisymmetric computation are given in Fig. 27 which shows the temperature
in the different domains as well as the streamlines of the flow in the two gas domains. The large buoyancy
driven recirculation flow in the transfer gas region is clearly evident as well as the asymmetric temperature
distribution. There is also a recirculation flow in the inner DT vapor region although the magnitude of
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.086

0.0

T

Fig. 27. Hohlraum results. Left: the temperature in each of the domains shown on the same scale. Middle: the temperature is

shown with different scales in each domain to better show the variation. For the middle plot the DT vapor has bounds on T of
[.085, .086], the DT ice [.084, .086], the capsule [.081, .086], the transfer gas [0., .083] and hohlraum [0., .005]. Right: the stream

lines in the central DT gas region and transfer gas region. The flow speed in DT vapor has bounds of [0., 1.7× 10−4] while the
bounds in the transfer gas are [0., .81].

the velocity is much smaller in this region. These results are in qualitative agreement with those previ-
ously reported [53]. We leave to future work a more detailed analysis of this problem and comparison to
experiments.

7.9. Conjugate heat transfer in an hexagonal fuel-assembly

As a final example we consider the flow of a fluid coolant past a collection of hot fuel pins arranged
in an hexagonal assembly. Such a geometry is similar to those found in some sodium-cooled fast nuclear
reactors [56]. The computational domains and grids are shown in Fig. 28. There are three different domains.
The seven cylindrical fuel pins define one solid domain. The hexagonal solid duct defines a second solid
domain. The fluid channel occupies the domain between the fuel pins and the outer duct.

The composite grid for this domain was defined in terms of cylindrical grids, Cartesian box grids and
an extruded smooth-polygon grid for the duct. The smooth-polygon is defined in terms of logarithms of
hyperbolic cosine functions [57]. The fuel pins of radius .5 and length 4.0 were separated by a minimum
distance of .3 between each other and the duct. The composite grid for this domain with resolution factor
j, denoted by G(j), was chosen to have a background grid spacing of ∆s(j) = 1/(20j). The cylindrical grids
in the fluid domain were clustered near the walls to better resolve the fluid boundary layer.

A cold fluid of temperature T = 0 enters the domain on the lower inflow boundary at z = 0 and travels
upward. An outflow condition is imposed at the top boundary at z = 4. The boundary condition at the
fluid-solid interface is a no-slip wall. The boundaries of the pins and duct that are not on the interface with
the fluid channel are taken as adiabatic walls (Neumann boundary conditions). The fuel pins are at an initial
temperature of T = 0 and given a constant volume heat source f = 1 in equation (4). The duct is at an
initial temperature of T = 0. The fluid parameters are taken as ν = .025, D = .0694, K = .05, and α = .1
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duct

x

z
y

Fig. 28. The fuel-assembly geometry and composite grid. A coarsened version of the grid is shown. Grids for the fluid domain
are shown in blue, those for the fuel pins in green, while the grid for the duct is shown in red.

The solid fuel pin parameters are D = .1, and K = .5. The solid duct parameters are D = .1, and K = 1.0.
The gravity vector is g = (0, 0,−1).

.95

0.0

T

1.4

0.0

|u|

Fig. 29. Conjugate heat transfer in the fuel assembly. Left: the temperature in the fluid and solid domains plotted on three
planes passing through the domain. Right: the flow speed in the fluid domain.

The solution was advanced in time with implicit time-stepping and the (SI) interface method. A semi-
implicit treatment of the INS equations was used where only the viscous terms were treated implicitly;
this required one scalar implicit system that was used for all components of the velocity and a second
scalar implicit system for the temperature. The implicit systems and the pressure equation were solved
with PETSc [52] using a stabilized bi-conjugate gradient algorithm with an ILU(1) preconditioner [52].
The solution was computed on grid G(2) which had a total of about 13 million grid points. The solution
was computed in parallel using 8 nodes and 64 processors. The CPU time was about 26s/step for 68 steps
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Fig. 30. Conjugate heat transfer in the fuel assembly. The flow speed and temperature are plotted along a line near the outflow
that passes through 3 pins.

requiring a total time of about 30 minutes. The maximum memory required per processor was about 720 Mb.
Running the same problem on 16 nodes and 128 processors took about 18 minutes for a speedup of about
1.7 going from 64 to 128 processors. Fig. 29 shows the computed solution at t = 1.0. Both the temperature
and the flow speed, |u|, are shown. From the figure it can be seen that the fuel pins heat the fluid as it flows
upward past the pins. The fluid moves faster through the larger sub-channels near the duct. Fig. 30 shows a
line plot of the flow speed, |u|, and temperature along the line segment −2.5 ≤ x ≤ .25, y = 0, z = 4., near
the outlet. The temperature is seen to be continuous at the interfaces but as expected the normal derivative
in the temperature jumps at the interfaces.

8. Conclusions

We have described an approach for solving transient and steady-state conjugate-heat transfer problems
in complex geometries using composite overlapping grids. Separate physics solvers for fluid flow and heat
conduction are used in different domains. The solutions are coupled at interfaces by conditions that impose
the continuity of temperature and heat flux. A multi-domain solver coordinates the overall time-stepping
method and the treatment of the interfaces. An analysis of a centered approximation to the interface jump
condition was given and the approximation was shown to be second-order accurate and stable, independent
of the relative sizes of the thermal conductivities and diffusivities. When used with explicit time-stepping,
this results in an efficient, strongly-coupled algorithm (i.e. no iterations between sub-domains are required
to satisfy the interface conditions). We also analyzed iteration strategies for solving the interface conditions
when the sub-domain solutions were advanced in a partitioned fashion with implicit time-stepping. Condi-
tions for the convergence when using the Dirichlet-Neumann interface approach were given. The use of a
mixed (Robin) interface condition was shown to have attractive convergence properties especially for the
case when adjacent materials have similar properties.

The accuracy of the new multi-domain approach was verified on a number of test cases. The method was
shown to give excellent results for a flat-plate heat-exchanger example and a cylindrical heat-exchanger test
case for which the exact solutions could be determined. The method was shown to be second-order accurate
in space and time using the method of analytic solutions when applied to a two-dimensional heated disk in
a square, the flat-plate heat-exchanger, and the three-dimensional flow in a solid curved pipe. The multi-
domain approach was also applied to two interesting applications. The gas flow and heat conduction in an
axisymmetric model of a hohlraum were computed. This problem involved two distinct fluid domains coupled
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to three solid domains. Finally the flow of a coolant fluid in a model of a nuclear reactor fuel-assembly was
computed.

There are a variety of future directions for this work. The interface treatment can be extended to higher-
order accuracy and to the case when the grids on either side of the interface do not match. A straight-
forward extension will enable the solution to conjugate heat-transfer problems involving compressible fluid
flows using, for example, our cgcns solver. The approach can also be extended to treat moving rigid bodies
following the technique described in [5]. Another future direction will be to couple fluid flow and deforming
solids.

Appendix A. Proof of Theorems

Here we provide proofs to Theorems 1 and 2.

Theorem 1 The solution to the one-dimensional interface problem (35-41) is stable and second order ac-
curate.
Proof.

Laplace transforming the equations (35)-(41) and replacing (38) with the equivalent condition U1,0(t) =
U2,0(t) gives

sÛ1,j − u0
1(x1,j) = D1D+D−Û1,j , for j = 0,−1,−2 . . . (A.1)

sÛ2,j − u0
2(x2,j) = D2D+D−Û2,j , for j = 0, 1, 2, . . . (A.2)

K1D0Û1,0 = K2D0Û2,0, (A.3)

Û1,0 = Û2,0. (A.4)

‖Û1‖h < ∞, ‖Û2‖h < ∞, (A.5)

where Ûm,j(s) is the Laplace transform of Um,j(t) with dual variable s. The Laplace transform of the error
in the approximation is

êm,j = Ûm,j − ûm(xm,j , s), (A.6)

where ûm(x, s) is the Laplace transform of um(x, t). The error satisfies the equations

sê1,j = D1D+D−ê1,j + D1
h2

1

12
∂4

xû1(ξ1,j , s), for j = 0,−1,−2 . . ., (A.7)

sê2,j = D2D+D−ê2,j + D2
h2

1

12
∂4

xû2(ξ2,j , s), for j = 0, 1, 2, . . ., (A.8)

K1D0ê1,0 = K2D0ê2,0 −K1
h2

1

6
∂3

xû1(η1,0, s) −K2
h2

2

6
∂3

xû2(η2,0, s), (A.9)

ê1,0 = ê2,0, (A.10)

‖ê1‖h < ∞, ‖ê2‖h < ∞, (A.11)

for some ξm,j ∈ [xm,j−1, xm,j+1], and ηm,j ∈ [xm,j−1, xm,j+1]. In the usual way we can subtract out functions
that make the forcing terms in the first two equations zero and that only changes the forcings in the boundary
conditions by O(h2

1 +h2
2). This results in a new error equation with inhomogeneous boundary conditions for

the error functions W1,j and W2,j ,

sW1,j = D1D+D−W1,j , for j = 0,−1,−2 . . . (A.12)

sW2,j = D2D+D−W2,j , for j = 0, 1, 2, . . . (A.13)

K1D0W1,0 = K2D0W2,0 + C1h
2, (A.14)

W1,0 = W2,0 + C2h
2. (A.15)

‖W1‖h < ∞, ‖W2‖h < ∞, (A.16)
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where C1 and C2 are constants and h2 denotes a term of order O(h2
1+h2

2). The solution to the problem (A.12-
A.16) is of the form

W1,j = Aκ−j
1 , W2,j = Bκj

2,

where
κm = 1 + sm/2 −

√
sm + s2

m

is a root of the characteristic equation
κ − 2 + κ−1 = sm,

with sm = sh2
m/Dm, for m = 1, 2. To satisfy (A.16), the branch of the square root is taken so that |κm| < 1

for Re(s) > 0. Applying the interface conditions (A.14) and (A.15) implies

AK1
κ−1

1 − κ1

2h1
= BK2

κ2 − κ−1
2

2h2
+ C1h

2,

A = B + C2h
2,

with solution

A = D−1
(
C1h

2 − C2h
2K2

κ2 − κ−1
2

2h2

)
, (A.17)

B = A − C2h
2, (A.18)

D =
K1

h1
(s1/2 + 1 − κ1) +

K2

h2
(s2/2 + 1 − κ2). (A.19)

To show the accuracy of the scheme we consider the limit sh2
m � 1, which implies

κm ∼ 1 −
√

s/Dmhm + 1
2sh2

m/Dm + O(h3
m), (A.20)

κm − κ−1
m

2hm
∼ −

√
s/Dm + O(h2

m), (A.21)

D ∼ K1

√
s/D1 + K2

√
s/D2 + O(h2), (A.22)

A ∼ [K1

√
s/D1 + K2

√
s/D2]

−1
(
C1h

2 + C2h
2K2

√
s/D2

)
. (A.23)

The scheme is therefore second-order accurate since A = O(h2) and B = O(h2) for sh2
m � 1. For stability

we need to prove that D is bounded away from zero for Re(s) > 0. Let κm = αm + iβm be the complex
representation for κm, where αm and βm are real. Whence from (A.19),

Re(D) =
K1

h1
(Re(s1)/2 + 1 − α1) +

K2

h2
(Re(s2)/2 + 1 − α2), (A.24)

= 1
2 (K1h1/D1 + K2h2/D2)Re(s) +

K1

h1
(1 − α1) +

K2

h2
(1 − α2). (A.25)

Note that |κm| < 1 implies |αm| < 1 and 1 − αm > 0. Therefore

Re(D) > 1
2 (K1h1/D1 + K2h2/D2)Re(s) > 0, for Re(s) > 0,

and the scheme is stable. This completes the proof of the theorem.
2

Theorem 2 Solutions to the equations (44)-(50) are stable in the sense of Godunov-Ryabenkii provided the
time step ∆t satisfies the von Neumann stability conditions

dm ≡ Dm∆t

h2
m

< 1
2 , m = 1, 2. (A.26)

Proof. Proceeding along the lines of the previous proof, the solution to the homogeneous equations will be
of the form

Un
1,j = znκ−j

1 , j = 1, 0,−1,−2, . . . , (A.27)

Un
2,j = znκj

2, j = −1, 0, 1, 2, 3, . . . , (A.28)
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where

κm = 1 + sm/2 ±
√

sm + s2
m/4, (A.29)

= 1 +
z − 1

2dm
±

√
z − 1

dm

(
1 +

z − 1

4dm

)
, (A.30)

with sm = (z − 1)/dm and where we choose the branch of the square root so that |κm| < 1 for |z| > 1.
Substitution of the expressions for κm into the interface condition (46) and using κm−κ−1

m = 2(κm−1)−sm,
gives a nonlinear equation satisfied by z,

(±)
K1

h1

√
z − 1

d1

(
1 +

z − 1

4d1

)
= −(±)

K2

h2

√
z − 1

d2

(
1 +

z − 1

4d2

)
(A.31)

The sign taken for each square root will depend on z and dm and we note the possibilities with (±). We need
to show that there are no solutions to this equation with |z| > 1. We first show that all solutions to (A.31)
are real. Taking the square of (A.31) implies that

K2
1

h2
1

z − 1

d1

(
1 +

z − 1

4d1

)
=

K2
2

h2
2

z − 1

d2

(
1 +

z − 1

4d2

)
. (A.32)

Thus z = 1 or z satisfies

α(z − 1) = β − 1, with α =
1

4d1
− β

4d2
, and β =

K2
2

h2
2

h2
1

K2
1

. (A.33)

If α 6= 0 then z = 1+(β−1)/α is another real root. The special case α = 0 and β = 1 suggests that any value
of z could be a solution. However this is a spurious solution introduced when squaring expression (A.31)
since in this case d1 = d2, s1 = s2 and κ1 = κ2 (implying that both square roots take the same sign) and
(A.31) becomes

√
1 +

z − 1

4d1
= −

√
1 +

z − 1

4d1
, (A.34)

with z = 1−4d1, z ∈ R, as the only solution. Therefore, given that solutions for z are real and |z| > 1, there
are two cases to consider, z > 1 and z < −1. Define D(z) by

D(z) = (±)
K1

h1

√
z − 1

d1

(
1 +

z − 1

4d1

)
+ (±)

K2

h2

√
z − 1

d2

(
1 +

z − 1

4d2

)
. (A.35)

We need to show that there are no solutions to D(z) = 0 when z > 1 or when z < −1. If z > 1 then
from (A.30) we note that the arguments of the square roots are positive and also that the negative sign
for the square roots must be taken to make |κm| < 1. This implies that D(z) is the sum of two negative
quantities and thus there can be no real solutions for z > 1. When z < −1, and dm < 1

2 then the arguments
of the square roots are also positive but we must take the positive sign for both square roots to make
|κm| < 1. Thus in this case D(z) is the sum of two positive quantities and therefore there are no real roots
with z < −1. We have thus shown that there are no solutions with |z| > 1, proving the theorem.
2
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