
A++/P++ { Quik Referene Manual(version 0.7.5)Daniel QuinlanLawrene Livermore National LaboratoryL-560Livermore, CA 94550925-423-2668 (oÆe)925-422-6287 (fax)dquinlan�llnl.govQuinlan's Web Page: http://www.llnl.gov/as/people/dquinlanA++/P++ Web Page http://www.llnl.gov/as/Overture/A++P++A++/P++ Manual (postsript version)A++/P++ Quik Referene Manual (postsript version)LACC Number: LA-CC-96-1LAUR Number: LA-UR-95-3273August 16, 2000

August 16, 2000

Chapter 1Referene1.1 Legendtype double, oat, or intVariables used in examples belowi,j,k,l integers used as salar index variablesSpan I,Span J,Span K,Span L objets of type RangeI,J,K,L objets of type IndexList I,List J,List K,List L objets of type intArrayA,B,C typeArray variablesMask an intArray variablen,m,o,p any positive integerFortran Array Pointer pointer to a Fortran arrayx variable of typeaxis dimension 0-3 of the 4D typeArray1.2 Debugging A++P++ Code1.2.1 Turning On Bounds ChekingBounds Cheking in A++P++ must be turned on and is OFF by default.Turning On Bounds Cheking For All But Salar IndexingBounds heking in A++P++ must be turned on and is OFF by default.Index::setBoundsChek (On); Turns ON array bounds heking!Index::setBoundsChek (O�); Turns OFF array bounds heking!
3

Turning On Bounds Cheking For Salar IndexingSalar bounds heking in A++P++ must be set at ompile time. Bounds heking is OFFby default. It may be set on the ompile ommand line or at the top of eah program �le(before #inlude<A++.h>).CC -DBOUNDS CHECK other options Turns on salar index bounds heking.#de�ne BOUNDS CHECK Turns on salar index bounds heking in �le.1.2.2 Using dbx with A++dbx supports alling funtions and with the orret version of dbx that understands C++name mangling, member funtions of the A++ array objets may be alled with thefollowing example syntax:all A.display() dbx alls the display member funtion for an A++P++ array A1.2.3 Mixing C++ streams and C printfMixing of C++ "out <<" like I/O syntax with C stype "printf" I/O syntax will generatestrange behavior in the ordering of the user's I/O messages. To �x this insert the followingall to the I/O Streams library of C++ at the start of your main program.ios::syn with stdio(); Synhronize C++ and C I/O subsystems!1.3 Range Objets1.3.1 ConstrutorsNote: The base must be less than or equal to the bound to de�ne a valid span of an array, ifbase > bound then the range is onsidered null.Range Span K (�base,�bound),�stride); Range objet Span K from base, to bound, by strideRange Span I; Range objet whih is nullRange Span J = Span I; Span J is a opy of Span I (not an alias)1.3.2 OperatorsSpan J = Span I; assignment operatorSpan I+n; builds new Range objet with position of Span I + nn+Span I; builds new Range objet with position of Span I + nSpan I-n; builds new Range objet with position of Span I - nn-Span I; builds new Range objet with position of Span I - n1.3.3 Aess FuntionsSpan I.getBase(); returns base of Span ISpan I.getBound(); returns bound of Span ISpan I.getStride(); returns bound of Span ISpan I.length(); returns (bound-base)+1 for Span I

1.4 Index Objets1.4.1 ConstrutorsThe stride in the examples below default to 1 (unit stride) if not spei�ed. That we providean Index onstrutor whih takes a Range objet allows Range objets to be used where everIndex objets are used (e.g. indexing operators).Index K (�position,ount); Index objet K referenes from position, for ount elements, with default stride = 1Index K (�position,ount,stride); Index objet K referenes from position, for ount elements, with strideIndex I; Index whih referenes all of any array objetIndex I(�i); Index with position=�i, ount=1, stride=1Index J = I; J is a opy of I (not an alias)Index K = Span I; Index K is built from a Range objet, Span K1.4.2 OperatorsI+n; new Index with position of Index I + nn+I; new Index with position of Index I + nI-n; new Index with position of Index I - nn-I; new Index with position of Index I - nJ = I; assignment operator1.4.3 Aess FuntionsI.getBase(); returns base of II.getBound(); returns bound of II.getStride(); returns stride of II.length(); returns length of I (aounting for stride)1.4.4 Display FuntionsI.display("label"); Prints Index values and all other internal data for I along with harater string "label" to sdtout1.5 Array Objets1.5.1 ConstrutorsA++ arrays are repliated on eah proessor in P++, while P++ arrays are distributableaross proessors using user de�ned distributions (not overed here). Note that the Rangeobjets an be used to build an A++ array, if used, they de�ne the size and the base of thearray from the Range objet provided for eah dimension.typeArray A; array objet A (zero length array)typeArray B = A; array B as a opy of AtypeArray C (n); 1D array C of length ntypeArray C (n,m); 2D array C of length n � m

typeArray C (n,m,o); 3D array C of length n � m � otypeArray C (n,m,o,p); 4D array C of length n � m � o � ptypeArray C (Span I); 1D array C of length of Span ItypeArray C (Span I,Span J); 2D array C of length of Span I � Span JtypeArray C (Span I,Span J,Span K); 3D array C of length of Span I � Span J � Span KtypeArray C (Span I,Span J,Span K,Span L); 4D array C of length of Span I � Span J � Span K � Span LA++ onlytypeArray C (Fortran Array Pointer, n); 1D array C of length n using existing arraytypeArray C (Fortran Array Pointer, n,m); 2D array C of length n � m using existing arraytypeArray C (Fortran Array Pointer, n,m,o); 3D array C of length n � m � o using existing arraytypeArray C (Fortran Array Pointer, n,m,o,p); 4D array C of length n � m � o � p using existing arraytypeArray C (Fortran Array Pointer, Span I); 1D array C using existing datatypeArray C (Fortran Array Pointer, Span I,Span J); 2D array C using existing datatypeArray C (Fortran Array Pointer, Span I,Span J,Span K); 3D array C using existing datatypeArray C (Fortran Array Pointer, Span I,Span J,Span K,Span L); 4D array C using existing dataP++ onlytypeArray C (Fortran Array Pointer, n, Loal Size n); 1D array C of length n using existing arraytypeArray C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n); 2D array C of length n � m using existing arraytypeArray C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o); 3D array C of length n � m � o using existing arraytypeArray C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o,p, Loal Size p); 4D array C of length n � m � o � p using existing arrayP++ onlytypeArray C (n, Partition); Use existing Partitioning TypetypeArray C (m, n, Partition); Use existing Partitioning TypetypeArray C (m, n, o, Partition); Use existing Partitioning TypetypeArray C (m, n, o, p, Partition); Use existing Partitioning Type1.5.2 Assignment OperatorsA(I,J) = B(I-1,J+1); Set elements of A equal to elements of BA = x; Set elements of A equal to x1.5.3 Indexing OperatorsNote that indexing support for Range objets is available beause Index objets areonstruted from the Range objets and the resulting Index objet is used.Indexing operators for salar indexing: denotes a salarA(i) Salar indexing of a 1D array objet

A(i,j) Salar indexing of a 2D array objetA(i,j,k) Salar indexing of a 3D array objetA(i,j,k,l) Salar indexing of a 4D array objetIndexing operators for use with Index objets: denotes a typeArrayA(I) Index objet indexing of a 1D array objetA(I,J) Index objet indexing of a 2D array objetA(I,J,K) Index objet indexing of a 3D array objetA(I,J,K,L) Index objet indexing of a 4D array objetIndexing operators for use with Range objets: denotes a typeArrayA(Span I) Range objet indexing of a 1D array objetA(Span I,Span J) Range objet indexing of a 2D array objetA(Span I,Span J,Span K) Range objet indexing of a 3D array objetA(Span I,Span J,Span K,Span L) Range objet indexing of a 4D array objetIndexing operators for use with intArray objets: denotes a typeArrayA(List I) intArray objet indexing of a 1D array objetA(List I,List J) intArray objet indexing of a 2D array objetA(List I,List J,List K) intArray objet indexing of a 3D array objetA(List I,List J,List K,List L) intArray objet indexing of a 4D array objet1.5.4 Indiret AddressingThe subsetion Indexing Operators (above) presents the use of intArrays to index A++arrays (even other intArray objets). The value of the elements of the intArray are used tode�ne the relevant elements of the indexed objet (view). It is often required to onvertbetween a mask returned by an relational operator and an intArray whose values representthe non-zero index positions in the mask, however this onversion of a mask to an intArrayis urrently supported only for 1D.intArray Indiret Address = Mask.indexMap() builds intArray objet with values of non-zero index position in MaskintArray I = (A == 5).indexMap() builds intArray I as a mapping (into A) of elements in A equal to 51.5.5 Arithmeti OperatorsAll arithmeti operators return a typeArray onsistent with their input, no mixed typeoperations are allowed presently. Casting operators will be added soon to permit mixedoperations. All operations are performed elementwise and the result returned in a separatetypeArray (unless one of the operands is a result from a previous expression in whih asethe temporary operand is reused internally).B + C; Add B and CB + x; Add B and xx + C; Add x and CB += C; Add C to B store result in BB += x; Add x to B store result in BB - C; Subtrat C from BB - x; Subtrat x from Bx - C; Subtrat C from x

B -= C; Subtrat C from B store result in BB -= x; Subtrat x from B store result in BB * C; Multiply B and CB * x; Multiply B and xx * C; Multiply x and CB *= C; Multiply C and B store result in BB *= x; Multiply x and B store result in BB = C; Divide B by CB = x; Divide B by xx = C; Divide x by CB == C; Divide B by C store result in BB == x; Divide B by x store result in BB % C; B Modulo CB % x; B Modulo xx % C; x Modulo CB %= C; B Modulo C to store result in BB %= x; B Modulo x store result in B1.5.6 Relational OperatorsAll relational operators return an intArray, no mixed type operations are allowed presently.All operations are performed elementwise and return onformable mask (intArray objet).Mask values are zero if the onditional test was false, and non-zero if operation was true.See Indiret Addressing for onversion of zero/non-zero masks into intArrays for use withindiret address indexing.!B; mask based on test for zero elements of BB < C; mask speifying elements of B < CB < x; mask speifying elements of B < xx < C; mask speifying elements of C where x < CB <= C; mask speifying elements of B <= CB <= x; mask speifying elements of B <= xx <= C; mask speifying elements of C where x <= CB > C; mask speifying elements of B > CB > x; mask speifying elements of B > xx > C; mask speifying elements of C where x > CB >= C; mask speifying elements of B >= CB >= x; mask speifying elements of B >= xx >= C; mask speifying elements of C where x >= CB == C; mask speifying elements of B == CB == x; mask speifying elements of B == xx == C; mask speifying elements of C where x == CB ! = C; mask speifying elements of B ! = CB ! = x; mask speifying elements of B ! = xx ! = C; mask speifying elements of C where x ! = CB && C; mask speifying elements of B && CB && x; mask speifying elements of B && x

x && C; mask speifying elements of C where x && CB k C; mask speifying elements of B k CB k x; mask speifying elements of B k xx k C; mask speifying elements of C where x k C1.5.7 Min Max funtionsThese funtions (exept in the ase of the single input redution operations) return arrayobjets with an elementwise interpretation. Both "min" and "max" represent redutionoperations in the ase of a single array input. These funtions thus return a salar valuefrom the array input. In A++ the operation is straightforward. In P++ the redutionoperators return a salar, but internally do the required message passing to fore the samesalar return value on all proessors (assuming a data parallel model of exeution).min (A); return salar minimum of all array elementsmin (B,C); min elements of B and Cmin (B,x); min elements of B and xmin (x,C); min elements of x and Cmin (A,B,C); min elements of A,B and Cmin (x,B,C); min elements of x,B and Cmin (A,x,C); min elements of A,x and Cmin (A,B,x); min elements of A,B and xmax (A); return salar maximum of all array elementsmax (B,C); max elements of B and Cmax (B,x); max elements of B and xmax (x,C); max elements of x and Cmax (A,B,C); max elements of A,B and Cmax (x,B,C); max elements of x,B and Cmax (A,x,C); max elements of A,x and Cmax (A,B,x); max elements of A,B and x1.5.8 Misellaneous FuntionsAll funtions return a typeArray onsistent with their input, no mixed type operations areallowed presently. Funtions fmod and mod apply to double or oat arrays and integerarrays, respetively. Funtions log, log10, exp, sqrt, fabs, eil, oor, os, sin, tan, aos, asin,atan, atan2, osh, sinh, tanh, aosh, asinh, atanh; only apply to doubleArray andoatArray objets. Funtion abs applies to only intArray objets.For P++ operation of redution funtions ("sum," for example) see note on redutionoperators in P++ in previous subsetion (Min Max funtions).fmod (B,C); B modulo C equivalent to operator B % Cfmod (B,x); B modulo x equivalent to operator B % xfmod (x,C); x modulo C equivalent to operator x % Cmod (B,C); B modulo C equivalent to operator B % Cmod (B,x); B modulo C equivalent to operator B % xmod (x,C); B modulo C equivalent to operator x % Cpow (B,C); B(i)C(i) for elements of B and Cpow (B,x); B(i)x for elements of B and x

pow (x,C); xC(i) for elements of x and Csign (B,C); C with sign of Bsign (B,x); array with values of x but with sign of Bsign (x,C); C with sign of xsum (B); sum of elements of Blog (B); log of elements of Blog10 (B); log10 of elements of Bexp (B); exp of elements of Bsqrt (B); sqrt of elements of Bfabs (B); fabs of elements of Beil (B); eil of elements of Boor (B); oor of elements of Babs (B); abs of elements of Bos (B); osine of elements of Bsin (B); sine of elements of Btan (B); tangent of elements of Baos (B); arosine of elements of Basin (B); arsine of elements of Batan (B); artangent of elements of Batan2 (B,C); artangent of elements of B/Cosh (B); hyperboli osine of elements of Bsinh (B); hyperboli sine of elements of Btanh (B); hyperboli tangent of elements of Baosh (B); ar hyperboli osine of elements of Basinh (B); ar hyperboli sine of elements of Batanh (B); ar hyperboli tangent of elements of B1.5.9 Replae funtionsReplaement of elements is done for non-zero mask elements. Mask and input arrays mustbe onformable. Sine this feature of A++/P++ is redundent with the where statementfuntionality, the replae member funtion may be devalued at a later date and thenremoved from A++/P++ sometime after that.A.replae (Mask , B); replae elements in A with elements in B depending on value of MaskA.replae (Mask , x); replae elements in A with salar x depending on value of MaskA.replae (x , B); replae elements in A with elements in B depending on value of x(equivalent to if (x) A = B;)1.5.10 Array Type Conversion FuntionsThe onversion between array types is ommonly represented by asting operators. However,suh asting operators ould be alled as part of automate onversion whih an beespeially problemati to debug. To failitate the onversion between types of arrays weprovide member funtions that ast an array of one type to an array of another typeexpliitly. These member funtions an, for example, onvert an array of type intArray to anarray of type oatArray. Or we an onvert a oatArray to an intArray. As and example,this mehanism simpli�es the visualization of intArray objets using graphis funtionalityonly written for oatArray or doubleArray types. Future work implement asting operatorsthat make the onversion impliit.A.onvertTo intArray(); return an intArray (onvert typeArray A to an intArray

A.onvertTo oatArray(); return a oatArray (onvert typeArray A to a oatArrayA.onvertTo doubleArray(); return a doubleArray (onvert typeArray A to a doubleArray1.5.11 User de�ned BasesA++/P++ array objet may have user de�ned bases in eah array dimension. This allowsfor array objets to have a base of 1 (as in FORTRAN), or any other positive or negativevalue.A.setBase(�n); Set base to �n along all axes of AA.setBase(�n,axis); Set base to �n along axis of AsetGlobalBase(�n); Set base to �n along all axes for all future array objetssetGlobalBase(�n,axis); Set base to �n along axis for all future array objets1.5.12 Indexing of ViewsThe base and bound of a view of an array objet are dependent on the base and bound ofthe Index or Range objet used to build the view. Thus a view, A(I), of an array, A, isanother array objet whih arries with it the index spae information about it's view of thesubset of data in the original array, A.1.5.13 Array Size funtionsArray axis numbering starts at zero and ends with the max number of dimensions (aonstant MAX ARRAY DIMENSION stores this value) for the A++/P++ array objetsminus one. These provide aess into the A++ objets and assume an A++ objet is beingused. An alternative method is de�ned to permit aess to the same data if a raw pointer isbeing used, this later method is required if a pointer to the array data is being passed toFORTRAN. The aess funtions for this data have the names getRawBase(),getRawBound(), getRawStride(), getRawDataSize().A.getBase(); Get base along all axes of A (bases must be equal)A.getBase(axis); Get base along axis of AA.getRawBase(axis); Get base along axis of AgetGlobalBase(); Get base along all axes for all future array objetsgetGlobalBase(axis); Get base along axis for all future array objetsA.getStride(axis); Get stride along axis of AA.getRawStride(axis); Get stride along axis of AA.getBound(axis); Get bound along axis of AA.getRawBound(axis); Get bound along axis of AA.getLength(axis); Get dimension (array size) of A along axisA.getFullRange(axis); return a Range objet (base,bound,stride of the array)A.dimension(axis); Get dimension (array size) of A along axis (returns a Range objet)A.elementCount(); Get total array size of AA.numberOfDimensions(); Get total number of dimensions of AA.isAView(); returns TRUE if A is a subArray (view) of another array objetA.isNullArray(); returns TRUE if A is an array of size zeroA.isTemporary(); returns TRUE if A is a result of an expressionA.rows(); Get number of rows of A (for 2D array objets)A.ols(); Get number of ols of A (for 2D array objets)

1.5.14 Array Objet Similarity test funtionsArray axis numbering starts at zero and ends with the max number of dimensions (aonstant MAX ARRAY DIMENSION stores this value) for the A++/P++ array objetsminus one. These member funtions allow for the testing of Bases, Bounds, Strides, etalong eah axis for two array objets. For example, the return value is TRUE if the Basesmath along all axes, and FALSE if they di�er along any axis.A onformability test is inluded to allow the user to optionally test the onformability oftwo array objets before the array operation.A.isSameBase(B); Chek bases of both arrays along all axes (all bases equal return TRUE)A.isSameBound(B); Chek bounds of both arrays along all axes (all bounds equal return TRUE)A.isSameStride(B); Chek strides of both arrays along all axes (all strides equal return TRUE)A.isSimilar(B); Chek bases, bounds, and strides of both arrays along all axesA.isConformable(B); Cheks onformability of both arrays1.5.15 Array Objet Internal Consistany TestThis funtion tests the internal values for onsistany it is mostly inluded for ompleteness.It is most usefull within P++ where there is signi�ant testing that an be done betweenloal and global data to verify onsistant internal behavior. It is used within A++ and P++when internal debugging is turned on (not the default in distribution versions of A++ andP++.A.isConsistant(); Cheks internal onsistany of array objet1.5.16 Shape funtionsThese shape funtions redimension an existing array objet. The reshape funtion allows theonversion of an nxm array to an mxn array (2D example), the total number of elements inthe array must remain the same and the data values are preserved. The redim funtionredimensions an array to a di�erent total size (larger of smaller), but does not preserve thedata (data is left uninitialized). The resize funtion is similar to the redim funtion exeptthat it preserves the data (trunating the data if the new dimensions are smaller and leavingnew values uninitialized if the new dimensions are larger. Eah funtion an be used witheither salar or Range objet input parameters, additionally eah funtion may be providedan example array objet from whih the equivalent Range objets are extrated (internally).All these member funtions preserve (save and reset) the original base of the array objet.A.reshape(i,j,k,l); Change dimensions of array using the same array data (same size)A.reshape(Span I,Span J,Span K,Span L); Change dimensions of array using the same array data (same size)A.reshape(typeArray); Change size of array objet using another array objetA.resize(i,j,k,l); Change size of array objet (old data is opied and trunated)A.resize(Span I,Span J,Span K,Span L); Change size of array objet using Range objetsA.resize(typeArray); Change size of array objet using another array objetA.redim(i,j,k,l); Change size of array objet (old data is lost)A.redim(Span I,Span J,Span K,Span L); Change size of array objet using Range objetsA.redim(typeArray); Change size of array objet using another array objettranspose (A); transpose of elements of A1.5.17 Display Funtions

A(I,J).display("label"); Prints array data for the view A(I,J) along with harater string "label" to sdtoutA.view("label"); Prints array data and all other internal data for A along with harater string "label" to sdtoutDetails of the display of the values within an array by the display funtion are ontroled bythe values assigned to the typeArray::DISPLAY FORMAT variable. This variable has adefault value of typeArray::SMART DISPLAY FORMAT whih allows for the autoseletion of either DECIMAL or EXPONENTIAL format depending upon the values withinthe array. Display Format Control Values:typeArray::DISPLAY FORMAT = typeArray::DECIMAL DISPLAY FORMAT; Uses xxx.yyyy formattypeArray::DISPLAY FORMAT = typeArray::EXPONENTIAL DISPLAY FORMAT; Uses x.yyyye�zz formattypeArray::DISPLAY FORMAT = typeArray::SMART DISPLAY FORMAT; Auto-selets either of above formats1.5.18 Array Expressions Used For Funtion InputFuntions passing array objets by referene an't be passed an expression sine expressionsreturn temporaries that are managed di�erently internally. Funtions passing expressions byvalue require no speial handling.foo (evaluate (A+B)); Fore (A+B) temporary to be persistent for funtion foo , whih passes an array objet by referene1.5.19 Array AliasingA++ and P++ arrays an be aliased however all aveats apply as in the use of FORTRANequivalene. This permits array objet to be views of other array objets or indexed parts ofother array objets. Note that P++'s adopt funtion must build the distributed array fromthe olletion of pointers to loal memory in eah proessor and so requires both global andloal domain size information (P++ organizes any ommuniation that is required to buildthe distributed array (urrently there is no ommuniation required)).B.referene (A(I,J)); Fore B to referene A(I,J)B.breakReferene (); Break referene to A(I,J) (builds a opy of previous referene)A++ onlyC.adopt (Fortran Array Pointer, n); 1D array C of length n using existing arrayC.adopt (Fortran Array Pointer, n,m); 2D array C of length n � m using existing arrayC.adopt (Fortran Array Pointer, n,m,o); 3D array C of length n � m � o using existing arrayC.adopt (Fortran Array Pointer, n,m,o,p); 4D array C of length n � m � o � p using existing arrayP++ onlyC.adopt (Fortran Array Pointer, n, Loal Size n); 1D array C of length n using existing arrayC.adopt (Fortran Array Pointer, m, Loal Size m,n, Loal Size n); 2D array C of length n � m using existing arrayC.adopt (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o); 3D array C of length n � m � o using existing arrayC.adopt C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o,p, Loal Size p); 4D array C of length n � m � o � p using existing array

1.5.20 Fill FuntionMore �ll funtions will be added to later releases of A++/P++. Its purpose is to initializean array objet to value or set of values.B(I,J).�ll(x); Set elements of B(I,J) equal to xB(I,J).seqAdd(Base,Stride); Set elements of B(I,J) equal to Base, Base+Stride, ... , Base+n*Stridedefault value for Base and Stride are 0 and 11.5.21 Aess To FORTRAN Ordered ArrayA++/P++ provides aess to the internal data of the array objet using the followingaess funtions. Arrays are stored internally in FORTRAN order and a pointer to the startof the array an be obtained using the getDataPointer member funtion. In the ase of aview the pointer is to the start of the view. It is up to the user to orretly manipulate thedata (good luk). Similar aess is provide to the array desriptor (though info for it's use isnot ontained in this Quik Referene Manual).Fortran Array Pointer = A.getDataPointer(); Array Desriptor Type = A.getDesriptorPointer();1.6 "where" StatementExample of where statement support in A++/P++. Note that elsewhere statements maybe asaded and that an optional parameter (Mask) an be spei�ed. Note that elsewheremust have a set of parenthesis even if no parameter is spei�ed. The mask must beonformable with the array operations in the ode blok. On the Cray, and with the GNUg++ ompiler, the statement elsewhere(mask) taking a mask as a parameter is alledelsewhere mask(mask). This is due to a problem with parameter heking of maros.The syntax for elsewhere(), not taking a mask, does not hange. This aspet of A++syntax may be hanged slightly to aommodate these non-portable aspets of the Cpreproessor.where (A == 0)fB = 0; elements of B set to zero at positions where A = 0A = B + C; B added to C and assigned to A at positions where A = 0gelsewhere (B > 0) Use elsewhere mask on the Cray and with GNU g++fB = A; elements of B set to A at positions where A 6= 0 and B > 0gelsewhere ()fB = A; elements of B set to A at positions where A 6= 0 and B � 0g1.7 P++ Spei� InformationThere are aess funtions to the lower level objets in P++ whih an be manipulated bythe user's program. Spei�ally we provide aess to the Partitioning Type that eaharray uses internally (if it is not using the default distribution). The purpose of providingmanual ghost boundary updates is to permit override of the message passing interpretationprovide in P++. The resulting redued overhead provides a simple means to optimizeperformane of operations the user reognizes as not requiring more than an update of the

internal ghost boundaries. The "displayPartitioning" member funtion prints out ASCIItext whih desribes the distribution of the P++ array on the multiproessor system. Thesame funtions exist in A++ but don't do anything, this supports bakward ompatibilitybetween P++ and A++.1.7.1 Control Over Array Partitioning (Distributions)The distribution of P++ array objets is ontroled though partitioning objets that areassoiated with the array objets. The assoiation of a partitioning objet with and array isdone either at onstrution of the array objets or later in the probram. An unlimitednumber of array objets may be assoiated with a given partitioning objet. Themanipulation of the partitioning objet translates diretly to manipulation of eah of thearray objets assoiated with the partitioning. This feature makes it easier to manipulatelarge number of arrays with a simple interfae. Partitioning objets are valid objet in A++,but have no meaningful e�et, so they are only funtional in P++. This is to permitbidiretional portability between A++ and P++ (the serial and parallel environments). Anunlimited number of Partitioning Type objets may be used within an appliation. Oneof the main purposes of the partitioning objets is to de�ne the distribution of P++ arraysand permit the dynami redistribution. The expeted usage is to have many P++ arraysassoiated with a relatively small number of Partitioning Type objets.ConstrutorsAt present the onstrutor taking a intArray as a parameter is not implemented, it's purposeis to provide a simple means to ontrol load balaning; it is the interfae for a load balaner.But load balaning is not a part of A++/P++, load balaners used with parallel P++appliations are presently separate from P++. The most ommon usage of the partitioningobjet is to either all the onstrutor whih spei�es a subrange of the virtual proessorspae (this will be trunated to the exitisting virtual proessor spae if too large a range isspei�ed), or all the default onstrutor (the whole virtual proessors spae) and then allmember funtions to modify the partitioning objet.Partitioning Type P (); Default onstrutorPartitioning Type P (Load Map); Load Map is a intArray speifying the work distributionPartitioning Type P (Number Of Proessors); integer input spei�es number of proessors to use (start=0)Partitioning Type P (Span P); Range input spei�es range of proessors to usePartitioning Type P1 = P; Deep opy onstrutorMember funtionsThe operations on a Partitioning Type objet are done to all P++ arrays that areassoiated through that Partitioning Type objet. This provides a powerful mehanismfor the dynami ontrol of array distributions; load balaners are expeted to take advantageof this feature. The "applyPartition" member funtion is provided so that multiplemodi�ations to the partitioning objet may be done and a single restruturing of the P++arrays assoiated with the partitioning objet ompleted subsequently. P++ operation isunde�ned if the partitioning is never applied to it's assoiated objets. At present, only thepartitionAlongAxis member funtion does not all the applyPartition funtion automatially.This detail of the interfae may hange in the near future to allow a more simple usage.The partitionAlongAxis member funtion takes three parameters: int Axis, bool Partitioned,int GhostBoundaryWidth. This simpli�es the setting and modi�ation of the partitioning.Afterward this only takes e�et one the applyPartition member funtion is alled. Then alldistributed arrays assoiated with the partitioning objet are redistributed with the ghostboundaries that were spei�ed.

SpeifyDeompositionAxes (Input Number Of Dimensions To Partition); Integer inputSpeifyInternalGhostBoundaryWidths (int,int,int,int); Default input is zerodisplay (Label); printout partition datadisplayDefaultValues (Label); printout default partition datadisplayPartitioning (Label); graphis display of partition datadisplayDefaultPartitioning (Label); graphis display of default partition dataupdateGhostBoundaries (X); X is a P++ arraypartitionAlongAxis (int Axis, bool PartitionAxis, int GhostBoundaryWidth);input spei�es axisapplyPartition (); fore partitioning of previously assoiated P++ arrays1.7.2 Array Objet Member FuntionsArray objets have some spei� member funtions that are meaningful only within P++, asA++ array objets the member funtions are de�ned, but have do nothing. This is done forbakward ompatability.Partitioning Type *X = A.getPartition(); get the internal partitionA.partition(Partition); repartition dynamiallyA.partition(typeArray); repartition same as existing array objetA.getLoalBase(axis); return base of loal proessor dataA.getLoalBound(axis); return bound of loal proessor dataA.getLoalStride(axis); return stride of loal proessor dataA.getLoalLength(axis); return length of loal proessor dataA.getLoalFullRange(axis); return a Range objet (base,bound,stride of the loal array)A.getSerialArrayPointer(); return a pointer to the loal array (and A++ array)A.getLoalArray(); return a shallow opy of the loal array (and A++ array)A.getLoalArrayWithGhostBoundaries(); return a shallow opy (with ghost boundaries)A.updateGhostBoundaries(); updates all ghost bondariesA.displayPartitioning(); prints info on distribution of array dataA.getGhostCellWidth(Axis); aess to ghost boundary widthA.getInternalGhostCellWidth(Axis); aess to ghost boundary width (devalued, will be removed in future release)A.setInternalGhostCellWidth(int,int,int,int); dynamily adjusts ghost boundary widthA.setInternalGhostCellWidthSaveData(int,int,int,int);as above but preserves the data and updates ghost boundaries1.7.3 Distributed vs Repliated Array DataWithin P++ arrays are distributed, distributions have the following properties:� 1 An array is distributed in some or all of the dimensions of the array (the user seletssuh details).� 2 An array is distributed over a subset of proessors.� 3 An array is distributed over only a single proessor (a trivial ase of #2 above).� 4 An array is built onto only one proessor and only that proessor knows about it(i.e. an A++ array objet is built loally on a proessor).� 5 An array is repliated onto all proessors (this is really a trival ase of #4 abovewhere eah array is built loally on eah proessor). In this ase the user isresponiple for maintaining a onsistant representation of the data whih is repliated.This later ase is useful for when a small array is required and is analogous to the aseof repliation of salars onto every proessor sine no overhead of parallel support.P++ also ontains SerialArrays, (e.g. doubleSerialArray). These arrays are simplyA++ array objets on eah proessor. In a data parallel way, if all proessors build a serialarray objet, then eah proessor builds an array and the array is repliated aross allproessors. It is up to the user to maintain the onsistany of the array data aross allproessors in this ase. Many arrays that are small are simply repliated, this osts little inadditional spae and avoid any ommuniation when data is aessed.

1.7.4 Virtual ProessorsP++ uses a number of proessors independent upon the number of atual proessors inhardware. On mahines that support it the exess proessors are evenly distributed amongthe hardware proessors. This allows for greater ontrol of granularity in the distribution ofwork. Where it is important to take advantage of this is appliation dependent. For most ofthe development this has allowed us to test problems on a number of proessors indepentendof the atual number of mahines that we have in our workstation luster.1.7.5 Synhronization PrimativeNote that the Communiation Manager::Syn() is helpful in verifying the all proessorsreah a spei� point in the parallel exeution. This is helpful most often for debuggingparallel odes.Communiation Manager::Syn(); Call barrier funtion to syn all proessors1.7.6 Aess to spei� Parallel EnvironmentInformationAlthough aess to the underlying parallel information suh as proessor number, et. anbe used to break the data parallel model of exeution suh information is made availablewithin P++ beause it an be useful if used orretly. As an example of orret useagemoving an appliation using graphis from A++ to P++ often is simpli�ed if a spei�proessor is used for all the graphis work while others are idle. Aess to the proessnumber allows the ode on eah proessor to branh dependent upon the proessor numberand thus simpli�es (at initially) the movement of large sale A++ appliations onto parallelmahines using P++. Some of the data is only valid for either PVM or MPI, and some datais interpreted di�erent by the two ommuniation libraries.Communiation Manager::numberOfProessors(); get number of virtual proessorsCommuniation Manager::loalProessNumber(); get proessor id numberCommuniation Manager::Syn(); barrier primativeCommuniation Manager::My Task ID; get proess idCommuniation Manager::MainProessorGroupName; Name of MPI Group1.7.7 Esaping from the Data Parallel Exeution ModelSine the data parallel style is only assumed for the exeution of P++ array operations, butnot enfored, it is possible to break out of the Data Parallel model and exeute any parallelode desired. Users however are expeted to handle their own ommuniation. Sine somedegree of synronization is helpful in moving into and out of the data parallel modes, theCommuniation Manager::Syn() funtion is expeted to be used (though not required).1.7.8 Aess to the loal arrayEah P++ distributed array on eah proessor ontains a loal array (aSerialArray objet (same as an A++ array objet)). The loal array isavailabel with and without ghost boundaries.

Aess to the loal array without ghost boundariesThe loal array stores the loal part of the distributed array data. Aess tothe loalArray is obtained from:A.getLoalArray(); return a shallow opy of the loal array (an A++ array)Aess to the loal array with ghost boundariesGhost boundaries are not visible within the loal array sine the loal array isa view of the partition of the distributed spae on the urrent proessor. Theghost boundaries (if the ghost boundary width is nonzero) are present, butaess to them from the view would result in an out of range error. Anothermehanism for aessing the loal array is required to get the loal arrayontaining the ghost boundaries.A.getLoalArrayWithGhostBoundaries(); return a shallow opy (with inlude ghost boundaries)The aess to the ghost boundaries is possible from this view, but the usermust know how to interpret the ghost boundaries within the returned loalarray objet. (Hint: they are at the boundaries and the widths along eahaess are given by the ghost boundary widths obtained from the partitions.)1.7.9 Examples of P++ spei� operationsWe provide some simple examples within the A++/P++ manual, pleaseonsult that hapter on Examples to see illustrations of the useage of the P++spei� funtions.1.8 Optimization ManagerOptimization manager is an objet whose member funtions ontrol propertiesof the exeution of the A++ and P++ array lass (see referene manual).More member funtions later will allow for improved optimization potential.The setup of the "Virtual Mahine" may be separated outside of the P++interfae sine not all mahine environments require it (both MPI and PVMdo, so it is present in P++ urrently).The "Program Name" should be initialized with the omplete name of theexeutable (inluding path), however in environments where it is supportedP++ will automatially searh for the string if only "" is spei�ed. This is afeature that an not be supported on all arhitetures (or PVM would handleit internally).Initialize Virtual Mahine (har* Program Name = "" , int Num Proessors = 1, int arg, har** argv);First P++ statementExit Virtual Mahine (); Last P++ statementsetOptimizedSalarIndexing (On O� Type On O� = On); Optimize performane of P++ salar indexing

1.9 Diagnosti ManagerThere are times when you want to know details about what is happeninginternally within A++/P++. We provide a limited number of ways of seeingwhat is going on internally and getting some data to understand the behaviorof the users appliation. More will be added in future versions of A++/P++.1.9.1 Report GenerationThere are a number of Diagnosti manager funtion whih generate reports ofthe internal useage. Some reports are quite long, other are brief andsummarize the exeution history for the whole appliation.getSizeOfClasses(); Reports the sizes of all internal lasses in A++/P++getMemoryOverhead(); returns memory overhead for all arraysgetTotalArrayMemoryInUse(); returns memory use for array elementsgetTotalMemoryInUse(); reports total memory use for A++/P++getnumberOfArraysConstantDimensionInUse(dimension,inputTypeCode);reports by array dimensiongetMessagePassingInterpretationReport(); Communiation ReportgetRefereneCountingReport(); Referene Counting ReportdisplayCommuniation (onst har* Label = ""); ommuniation report by proessordisplayPurify (onst har* Label = ""); Displays memory leaks by proessor (uses purify)report(); Generates general report of A++/P++ behaviorsetTrakArrayData(Boolean trueFalse = TRUE);Trak and report on A++/P++ diagnostisgetTrakArrayData(); get Boolean value for diagnosti mehanismbuildCommuniationMap (); Builds map of ommuniations by proessorbuildPurifyMap (); Builds map of purify errors by proessorgetPurifyUnsupressedMemoryLeaks(); Total Memory leakedFeatures and ounted quantities inlude:� The use of int Diagnosti Manager::getSizeOfClasses()displays a text report of the sizes of di�erent internal strutures inA++P++.� The use of int Diagnosti Manager::getMemoryOverhead()returns an integer that represents the number fo byte of overhead usedto store intenal array desriptors, partitioning information (P++ only),et.; for the whole appliation at the time that the funtion is alled.� The use of intDiagnosti Manager::getTotalArrayMemoryInUse()returns an integer representing the total number of array elements in usein all array objets at the time that funtion is alled.� The use of int Diagnosti Manager::getTotalMemoryInUse()

returns the total number of bytes in use within A++/P++ for alloverhead and array elements at the time the funtion is alled.� The use of int Diagnos-ti Manager::getnumberOfArraysConstantDimensionInUse()returns the number of arrays of a partiular dimension and of apartiular type. this funtion is an example of the sort of diagnostiquestions that an be written whih interogate the runtime system to�nd out both global and loal properties of its operation.� The use of intDiagnosti Manager::getMessagePassingInterpretationReport()generates a report (organized from eah proessor, but reported onproessor 0). The report details the number of MPI sends, MPI reeives,the number of ghost boundary updates (one update implies the updateof all ghost boundaries on an array, even if this generates fewer MPImessages than ghost boundaries), and the number VSG updates regularsetion transfers (the more general ommuniation model whih permitsoperations between array objets independent of the distribution arossmultiple proessors).� The use of intDiagnosti Manager::getRefereneCountingReport()generates a report of the internal referene ounts used in the exeutionof array expressions. This funtion is mostly for internal debugging ofreferene ounting problems.� The use of int Diagnosti Manager::report()generates a summary report of the exeution of the A++/P++appliation at the point when it is alled.� The use of int Diagnosti Manager::setTrakArrayData()turns on the internal traking of array objets as part of the internaldiagnostis and permits the summary report to report more detail. It iso� by default so that there is no performane penalty assoiated withinternal diagnostis. This must be set at the top of an appliation beforethe �rst array objet is built.1.9.2 Counting FuntionsOptional mehanisms in A++/P++ permit many details to be ountedinternally as part of the report generation mehanisms. All funtions return aninteger.resetCommuniationCounters (); reset the internal message passing ounting mehanismgetNumberOfArraysInUse(); returns the number of arrays inusegetMaxNumberOfArrays(); returns the max arrays in used at any point in time

getNumberOfMessagesSent(); returns the number of messages sentgetNumberOfMessagesReeived(); returns the number of messages reeivedgetNumberOfGhostBoundaryUpdates(); returns number of updates to ghostboundariesgetNumberOfRegularSetionTransfers(); # of uses of general ommuniation mehanismgetNumberOfSalarIndexingOperations(); salar indexinggetNumberOfSalarIndexingOperationsRequiringGlobalBroadast();salar indexing with ommuniationFeatures and ounted quantities inlude:� The use of intDiagnosti Manager::resetCommuniationCounters()permits the internal ounters to be reset to ZERO.� Number of arrays in use intDiagnosti Manager::getNumberOfArraysInUse()The number of arrays in use at any point in the exeution is useful forgauging the relative use od A++/P++ and spotting potential memoryleaks.� Max arrays in use intDiagnosti Manager::getMaxNumberOfArrays()This funtion tallies the most number of arrays in use at any one timedurring the exeution history (note: reords use in inrements of 300).� Reset message ounting intDiagnosti Manager::resetCommuniationCounters()Resest the message ounters to ZERO to permit loalized ounting ofmessages generated from ode fragements.� Number of messages (sent) intDiagnosti Manager::getNumberOfMessagesSent()returns the total messages sine the beginning of exeution or from thelast all to Diagnosti Manager::resetCommuniationCounters().� Number of messages (reeived) intDiagnosti Manager::getNumberOfMessagesReeived()returns the total messages sine the beginning of exeution or from thelast all to Diagnosti Manager::resetCommuniationCounters().� Number of messages (reeived) intDiagnosti Manager::getNumberOfGhostBoundaryUpdates()Returns the total number of alls to update the ghost boundaries ofarrays. Note that some alls will not translate into message passing (e.g.if only run on one proessor or if the ghost boundary width is ZERO).Reports on number of messages sine the beginning of exeution or fromthe last all toDiagnosti Manager::resetCommuniationCounters().

1.9.3 Debugging MehanismsThese funtions provide mehanisms to simplify the error heking anddebugging of A++/P++ appliations.getPurifyUnsupressedMemoryLeaks(); Total Memory leakedsetSmartReleaseOfInternalMemory(On/O�); Smart Memory leanupgetSmartReleaseOfInternalMemory(); get Boolean value for smart memory leanupsetExitFromGlobalMemoryRelease(Boolean); setup exit mehanismgetExitFromGlobalMemoryRelease(); get Boolean value for exit mehanismtest (typeArray); Destrutive test of array objetdisplayPurify (onst har* Label = ""); Displays memory leaks by proessor (uses purify)buildPurifyMap (); Builds map of purify errors by proessor� The use of voidDiagnosti Manager::setSmartReleaseOfInternalMemory()(alled from anywhere in an A++/P++ appliation) will trigger themehanism to leanup all internally used memory within A++/P++after the last array objet has been deleted. Spei�ally it ounts thenumber of arrays in use (and the number of arrays used internally (e.g.where statement history, et.) and when the two values are equal it allsthe void globalMemoryRelease() funtion whih then deletesexisting arrays in use and other data used internally (referene ountarrays, et.). The user is warned in the output of the voidglobalMemoryRelease() funtion to not all any funtions that woulduse A++/P++ sine the results would be unde�ned.� The use of the voidDiagnosti Manager::setExitFromGlobalMemoryRelease() willfore the appliation to exit after the global memory release (and fromwithin the void globalMemoryRelease() funtion itself. The usermay then speify that the normal exit from the base of the mainfuntion is an error and thus detet the proper leanup of memory intest programs using the exit status (stored in the $status enviromentvariable on all POSIX operating systems (most avors of UNIX). Ifpurify is in use (both A++/P++ on�gured to use purify and runningwith purify) then purify exit(int) is alled. This funtion or's thememory leaks, memory in use, and purify errors into the exist status sothat the $status enviroment variable an be used to detet purify detailswithin test odes. A++/P++ test odes are tested this way whenA++/P++ is on�gured to use PURIFY. P++ appliations an notalways ommuniate deteted purify problems on other proesses ANDoutput the orret exit status, this is only a limitation of how mpirunreturns it's exit status.

� The use of void Diagnosti Manager::test(typeArray A) allows forexhaustive (destrutive) tests of an arrya objet. This is useful in testingan array objet for internal orretness (more robust testing than thenondestrutive testing done in the Test Consistany() array memberfuntion).� The use of void Diagnosti Manager::displayPurify() generates areport of purify problems found (urrently this mehanism does not workwell, sine many purify errors an only be found at exit).1.9.4 Mis FuntionsAll other funtions not yet doumented in detail.getMessagePassingInterpretationReport(); Communiation ReportgetRefereneCountingReport(); Referene Counting ReportgetSizeOfClasses(); Reports the sizes of all internal lasses in A++/P++getMemoryOverhead(); returns memory overhead for all arraysgetTotalArrayMemoryInUse(); returns memory use for array elementsgetTotalMemoryInUse(); reports total memory use for A++/P++getnumberOfArraysConstantDimensionInUse(dimension,inputTypeCode);reports by array dimensiondisplayPurify (onst har* Label = ""); Displays memory leaks by proessor (uses purify)getPurifyUnsupressedMemoryLeaks(); Total Memory leakedreport(); Generates general report of A++/P++ behaviorsetSmartReleaseOfInternalMemory(On/O�); Smart Memory leanupgetSmartReleaseOfInternalMemory(); get Boolean value for smart memory leanupsetExitFromGlobalMemoryRelease(Boolean); setup exit mehanismgetExitFromGlobalMemoryRelease(); get Boolean value for exit mehanismsetTrakArrayData(Boolean trueFalse = TRUE); Trak and report on A++/P++ diagnostisgetTrakArrayData(); get Boolean value for diagnosti mehanismtest (typeArray); Destrutive test of array objetbuildCommuniationMap (); Builds map of ommuniations by proessorbuildPurifyMap (); Builds map of purify errors by proessordisplayCommuniation (onst har* Label = ""); ommuniation report by proessorresetCommuniationCounters (); reset the internal message passing ounting mehanism1.10 Deferred EvaluationExample of user ontrol of Deferred Evaluation in A++/P++. DeferredEvaluation is a part of A++ and P++, though it is not well tested in P++ atpresent.Set Of Tasks Task Set; build an empty set of tasksDeferred Evaluation (Task Set) start deferred evaluation

fB = 0; array operation to set B to zero { DEFERREDA = B + C; array operation to set A equal to B plus C { DEFERREDgTask Set.Exeute(); now exeute the deferred operations1.11 Known Problems in A++/P++� Copy onstrutors are aggressively optimized away by some ompilers and this resultsin the equivalent of shallow opies being built in the ase where an A++/P++ arrayis onstruted from a view. Note that as a result shallow opies of A++ arrays an bemade unexpetedly. A �x for this is being onsidered, but it is not implemented.� Performane of A++ is at present half that of optimized FORTRAN 77 ode. This isbeause of the binary proessing of operands and the assoiated redundent loads andstored that this exeution model introdues. A version of A++/P++ usingexpression templates will resolve this problem, this implementation is available and ispresent as an option within the A++/P++ array lass library. However, ompiletimes for expression templates are quite long.� Internal debugging if turned on at ompile time for A++/P++ will slow theexeution speed. The e�et on A++ is not very dramati, but for P++ it is muhmore dramati. This is beause P++ has muh more internal debugging ode. Thepurpose of the internal debugging ode is to hek for errors as agressively as possiblebefore they e�et the exeution as a segment fault of other mysterious error.� Performane of P++ is slower if the array operations are upon array data that isdistributed di�erently aross the multiple proessors. This ase requires moreommuniation and for arrays to be built internally to save the opies originallyloated upon di�erent proessors. P++ performane is most eÆient if the arrayobjets are aligned similarly aross the multiple proessors. This ase allows the mosteÆient ommuniation model to be used internally. This more eÆientommuniation model introdues no more ommuniation than an expliitly handoded parallel implementation on a statement by statement basis.The ChangeLog in the top level of the A++P++ distribution reords all modi�ations to theA++/P++ library.

Chapter 2Appendix2.1 A++/P++ Booh DiagramsBooh diagrams detail the objet oriented design of a lass library. Theseparate louds represent di�erent lasses. Those whih are shaded representlasses that are a part of the user interfae, all others are those whih are apart of the implementation. The onnetions between the "louds" representthat the lass uses the lower level lass (the one with out the assoiated "dot")within its implementation.2.2 A++/P++ Error Messages

25

Array_Descriptor_Type

1

1

doubleArray

1

d

array of *intArrays

1

1

1

1

floatArray intArray

(d = maximum array dimension)

A++ Class Design

Index Range

Figure 2.1: A++ Class Design.

Parallel_IO

1

doubleArray

1

floatArray intArray

1

1

1

1

1

1

doubleSerialArray floatSerialArray intSerialArray

SerialArray_Descriptor_Type
1

d (d = maximum array dimensions)

array of *intSerialArray

1

Array_Descriptor_Type

1 1

1

d

array of *intArray

(d = maximum array dimensions)

1

P++ Class Design

111

1 11

Where_Statement_Support

Partitioning_Type

1

1

2

1

1

1

BLOCK PARTI

Index

Range

Figure2.2:P++ClassDesign.

