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Abstract

We describe a method for the numerical solution of high-speed reactive flow in
complex geometries using overlapping grids and block-structured adaptive mesh re-
finement. We consider flows described by the reactive Euler equations with an ideal
equation of state and various stiff reaction models. These equations are solved using
a second-order accurate Godunov method for the convective fluxes and a Runge-
Kutta time-stepping scheme for the source term modeling the chemical reactions.
We describe an extension of the adaptive mesh refinement approach to curvilinear
overlapping grids. Numerical results are presented showing the evolution to detona-
tion in a quarter plane provoked by a temperature gradient and the propagation of
an overdriven detonation in an expanding channel. The first problem, which consid-
ers a one-step Arrhenius reaction model, is used primarily to validate the numerical
method, while the second problem, which considers a three-step chain-branching
reaction model, is used to illustrate mechanisms of detonation failure and rebirth
for the channel geometry.
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1 Introduction

We consider the numerical solution of the reactive Euler equations in two-
dimensional complex geometries. We describe a robust numerical method that
may be used to handle high-speed reactive flows involving the birth, propa-
gation and failure of detonation waves. Such flows are unsteady and highly
nonlinear with the flow hydrodynamics coupled strongly to the behavior of
the reaction zone. The reaction zone is typically very thin so that an ac-
curate numerical resolution of the reaction zone requires a very fine grid. We
use structured adaptive mesh refinement (AMR) to locally increase resolution.
Our AMR scheme is based on the methodology originally developed by Berger
and Oliger [1] for hyperbolic equations. In this approach a hierarchy of refine-
ment grids is constructed dynamically based on a suitable error estimate of
the solution. The reactive Euler equations are discretized on each grid using a
second-order, shock-capturing scheme. The convective flux terms are handled
using a second-order extension of Godunov’s scheme [2] with an approximate
Riemann solver. The stiff source term modeling the chemical reaction is solved
numerically using an adaptive Runge-Kutta scheme. The overall method pro-
vides a robust numerical approach for a wide class of problems.

Our numerical method uses composite overlapping grids to represent the prob-
lem domain as a collection of structured curvilinear grids. This method, as
discussed in Chesshire and Henshaw [3], allows complex domains to be repre-
sented with smooth grids that can be aligned with the boundaries. The use
of smooth grids is particularly attractive for reactive flow problems where the
solution is sensitive to any grid induced numerical artifacts. Also, the majority
of an overlapping grid often consists of Cartesian grid cells so that the speed
and low memory usage inherent with such grids is retained. Overlapping grids
have been used successfully for the numerical solution of a variety of prob-
lems involving inviscid and viscous flows, see [3–13] for example. The use of
adaptive mesh refinement in combination with overlapping grids has been con-
sidered by Brislawn, Brown, Chesshire and Saltzman[14], Boden and Toro[15],
and Meakin[13]. In this paper, we extend the application of overlapping grids
with AMR to problems involving reactive flow.

Solving partial differential equations on overlapping grids with AMR involves
considerable programming complexity due to the multiple computational in-
dex spaces and curvilinear geometries as well as the overlapping grid interpo-
lation and hole cutting requirements. Our reactive flow solver uses many of the
capabilities of the Overture 3 object-oriented class library [16,17] to handle
this complexity and for the interactive and post-processing visualization of the
solutions. As part of the development of our numerical method for the reactive

3 The Overture software is available from http://www.llnl.gov/casc/Overture
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Euler equations, we have built a general AMR capability into Overture. This
AMR toolkit is designed to be fairly general, and may be used to solve a wide
class of problems on structured grids and overlapping grids.

In our numerical approach we choose to resolve, with AMR, the fine temporal
and spatial scales dictated by the chemical reactions. This is done so that we
may apply our method to problems in which the coupling of the reaction zone
and the flow hydrodynamics is important, such as unsteady flows involving
detonation formation and failure, among others. For other problems involv-
ing high-speed reactive flow it is possible to develop numerical methods that
under-resolve the reaction zone and still obtain good accuracy (see [18] for
example). There is a computational savings in this latter approach, but there
are also well-known difficulties arising from the smearing of the detonation
wave inherent in shock-capturing schemes (see [19,20], for example).

The subsequent discussion is organized as follows. The Euler equations for in-
viscid reactive flow are given in Section 2. In these equations, we consider two
state-sensitive reaction models. The first is a standard one-step Arrhenius re-
action model, while the second is a three-step chain-branching reaction model
similar to the one introduced by Kapila [21] and later discussed by Short,
Kapila and Quirk [22] in the context of detonation stability. The numerical
method is discussed in detail in Section 3. There we outline the overlapping
grid framework and discuss both the implementation of the AMR scheme and
the discretization of the equations within that framework. In Section 4, we
present results for two basic problems involving high-speed reactive flow. The
first problem involves the formation of a radially symmetric expanding deto-
nation wave from an initial hot spot, and is used to illustrate the numerical
method and to test its accuracy. This problem is inspired by the work of Niki-
forakis and Clarke [23,24] on the evolution to detonation of a hot spot in a
two-dimensional rectangular channel and by the work of Kapila et al. [25] on
the evolution to detonation provoked by an initial temperature gradient in a
one-dimensional geometry. For this problem, we compute the solution using
both a single Cartesian grid and a composite overlapping grid. This allows
us to study the effect of the overlap on the quality of the solution. We also
compare the solutions computed from these two grids with the radially sym-
metric solution computed on a one-dimensional grid using an extension of the
method described in [25]. It is found that there is no significant error in the
numerical solution computed on the overlapping grid as a result of the detona-
tion wave passing through the overlapping interface between grids. The second
problem discussed in Section 4 considers an overdriven detonation propagating
in a channel with a smooth backward-facing step. This problem is chosen to
give an indication of the ability of the method to handle complex geometries
and shows mechanisms of detonation failure and rebirth within the three-step
reaction model.
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2 Governing Equations

We consider a high-speed reactive flow in which diffusive transport is negligible
so that the flow is governed by the reactive Euler equations. In two space
dimensions, the equations are

ut + f(u)x + g(u)y = h(u), (1)

where
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The state of the flow depends on position (x, y) and time t and is described
by its density ρ, velocity (u, v), pressure p and total energy E. The flow is
a mixture of mr reacting species whose mass fractions are given by Y. The
source term models the chemical reactions and is described by a set of mr

rates of species production given by R. The total energy is taken to be

E =
p

γ − 1
+

1

2
ρ

(

u2 + v2
)

+ ρq,

where γ is the ratio of specific heats and q represents the heat energy due to
chemical reaction.

While the numerical implementation of the governing equations (to be dis-
cussed in the next section) is designed to handle an arbitrary number of re-
acting species, we will focus on two representative reaction models for the
purposes of this paper. The first is a simple one-step, irreversible reaction
given by

F k−→ P ,

where F and P denote fuel and product species, respectively, and k is an
Arrhenius reaction rate whose (dimensionless) form is taken to be

k = σ exp
[

1

ε

(

1 − 1

T

)]

, (3)

where σ is a pre-exponential frequency factor, ε is a reciprocal activation
energy and T = p/ρ is a temperature (with gas constant normalized to 1). For
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this case, Y = Y is a scalar, defined to be the fraction of product, and

R = (1 − Y )k, q = Y Q, (4)

where Q < 0 is a heat release, taken to be negative for an exothermic reaction.
The value for σ in this model essentially picks the time scale. Following [25],
we choose an induction time scale given by

σ =
ε

(γ − 1)Q
. (5)

This choice implies that a spatially uniform sample with T = 1 initially will
explode at t = 1 for the limiting case ε → 0.

The second model represents a three-step, chain-branching reaction of the
form

F kI−→ Y , initiation,

F + Y kB−→ 2Y , branching,

Y kC−→ P , completion,

where F , Y and P denote fuel, radical and product species, respectively, and
kI , kB and kC are the rates of the initiation, branching and completion reac-
tions, respectively (see [22]). The initiation and branching rates are assumed
to have state-sensitive Arrhenius forms

ki = exp
[

1

εi

(

1

Ti

− 1

T

)]

, i = I or B, (6)

where εI and εB are reciprocal activation energies and TI and TB are cross-
over temperatures. The completion reaction rate is taken to be kC = 1 which
specifies the time scale. For this case, Y = [Y1, Y2]

T , where Y1 is the fraction
of product and Y2 is the fraction of radical (the fraction of fuel is 1−Y1 −Y2).
Laws of mass action give

R =







Y2kC

(1 − Y1 − Y2)(kI + Y2kB) − Y2kC





 , (7)

and the contribution to the total energy is

q = Y1Q1 + Y2Q2.

Here, Q1 < 0 is the total chemical energy available in the unreacted mixture
and Q2 > 0 is the amount of energy absorbed by the initiation and branching
reactions to convert fuel to (energetic) radical.

For a particular choice of the reaction model, we will be interested in the
solution of the governing equations for a domain Ω and for t > 0. For a
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given problem we will specify initial conditions for the state u and will spec-
ify boundary conditions on ∂Ω. These boundary conditions, as indicated in
Section 4, will take various forms including inflow and outflow boundary con-
ditions, reflectional (symmetry) boundary conditions, and no-flow boundary
conditions on solid walls.

3 Numerical Method

The governing equations (1) and (2) are discretized on a collection of curvilin-
ear, logically rectangular, overlapping grids. For a given problem domain Ω,
a collection of overlapping grids may be constructed using the grid genera-
tor Ogen [26]. Our flow solver imports the grid information from Ogen and
implements a finite volume approximation of the governing equations for the
grid together with a scheme of adaptive mesh refinement (AMR) in order to
resolve rapid spatial and temporal variations in the solution. Much of the in-
frastructure for adaptive grids is not specific to any particular problem and
thus is implemented as a set of general AMR functions that is part of the
Overture software framework [16,27].

We begin our discussion of the numerical method with a brief overview of
the overlapping grid approach in Section 3.1, a more detailed discussion may
be found elsewhere [3]. In Section 3.2, we discuss the AMR scheme, which is
an extension of the block-structured AMR approach developed originally by
Berger and Oliger [28,1]. In this discussion, we focus on the implementation
to overlapping grids and on the choice of an error-estimator suitable for our
discretization of the reactive Euler equations. A method of discretization of
these equations is carried out on each component grid and this is discussed in
detail in Section 3.3.

3.1 Overlapping Grid Framework

Putting aside the reactive Euler equations for the moment, let us suppose we
wish to solve some PDE on a domain Ω in d space dimensions. An overlapping
grid G for Ω consists of a set of Ng component grids Gg, i.e.,

G = {Gg}, g = 1, 2, . . . ,Ng .

The component grids overlap and cover Ω. Each component grid is a logically
rectangular, curvilinear grid defined by a smooth mapping Cg from parameter
space r (the unit-square or unit-cube) to physical space x:

x = Cg(r), r ∈ [0, 1]d, x ∈ R
d .
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The mapping is used to define grid points at any desired resolution as required
when a grid is refined. Variables defined on a component grid, such as the
coordinates of the grid points, are stored in rectangular arrays. For example,
grid vertices are represented as the array

x
g
i

: grid vertices, i = (i1, . . . , id), iα = 0, . . . , Nα, α = 1, 2, . . . , d.

where Nα is the number of grid cells in α-coordinate direction. We note that
grid vertex information and other mapping information is not stored for Carte-
sian grids which results in a considerable savings in memory use.

Figure 1 shows a simple overlapping grid consisting of two component grids, an
annular grid and a background Cartesian grid. The top view shows the over-
lapping grid in physical space while the bottom views show each component
grid in its parameter space. In this particular example, the annular grid cuts a
hole in the Cartesian grid so that the latter grid has a number of unused points
marked by open circles. The other points on the component grids are classified
as either discretization points (where the PDE or boundary conditions are dis-
cretized) or interpolation points. This information is supplied by Ogen and is
held in an integer mask array. (In fact the bit representation of each element
of the mask holds additional grid information including, for example, which
points are hidden by refinement grids.) In addition, each boundary face of each
component grid is classified as either a physical boundary (where boundary
conditions are to be implemented), a periodic boundary or an interpolation
boundary, and this information is held in the array bc(β, α), where β = 1, 2
denotes the boundary side. Typically, one or more lines of ghost points are
created for each component grid to aid in the application of boundary condi-
tions.

Solution values at interpolation points of a grid g1, for example, are determined
by interpolation from interpolee points on another grid g2. The interpolee
points on grid g2 are required to be either discretization points or interpola-
tion points. The interpolation formula is said to be explicit if the interpolee
points are all discretization points. If some interpolee points are themselves
interpolation points then the interpolation is said to be implicit. Interpolation
is performed in parameter space (unit-square coordinates). For each interpo-
lation point x1 on grid g1, its parameter space coordinates, r2 = C−1

g2
(x1), on

grid g2 may be found using the inverse mapping. In parameter space, standard
tensor-product polynomial interpolation is used, such as linear interpolation
(i.e., bi-linear for d = 2 or tri-linear for d = 3). For first order hyperbolic sys-
tems, such as the reactive Euler equations considered here, linear interpolation
is sufficient for second-order accuracy, while the solution of a second-order el-
liptic equations, such as Laplace’s equation, would normally require quadratic
interpolation for second-order accuracy; see the discussion in Chesshire and
Henshaw [3] for further details.
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i1 = 0 i1 = N1

i 2
=

0
i 2

=
N

2

bc(2,2)

bc(1,2)bc(1,1) bc(2,1)

interpolation
unused
ghost point

Fig. 1. The top view shows an overlapping grid consisting of two structured curvi-
linear component grids. The bottom views show the component grids in the unit
square parameter space. Grid points are classified as discretization points, interpo-
lation points or unused points. Ghost points are used to apply boundary conditions
on each component grid according to its bc array, which is indicated for the annular
grid.

The numerical solution un
i
≈ u(xi, tn) for a PDE is advanced from time t = 0

to t = tfinal on an overlapping grid according to the basic algorithm given in
Figure 2. This algorithm includes steps for adaptive mesh refinement which
are carried out every nregrid time steps. The AMR steps involve estimating
the error, regridding to better resolve the solution, and interpolation of the
solution from the old overlapping grid, including its hierarchy of refined grids,
to a new one. These steps are explained in more detail in the next section.
The algorithm also includes a function for advancing un

i
one time step ∆t on

an overlapping grid. This function, called timeStep in the algorithm, defines
the discretization of the PDE, the reactive Euler equations for this paper, and
this is discussed in Section 3.3.
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PDEsolve(G, tfinal)
{

t := 0; n := 0;
un

i
:= applyInitialCondition(G);

while t < tfinal

if (n mod nregrid == 0)
ei := estimateError(G,un

i
);

G∗ := regrid(G, ei);
u∗

i
:= interpolateToNewGrid(un

i
,G,G∗);

G := G∗; un
i

:= u∗
i
;

end

∆t := computeTimeStep(G,un
i
);

un+1
i

:= timeStep(G,un
i
, ∆t);

t := t + ∆t; n := n + 1;
interpolate(G,un

i
);

applyBoundaryConditions(G,un
i
, t);

end

}
Fig. 2. The basic time stepping algorithm including an AMR regrid performed every
nregrid steps.

3.2 Adaptive Mesh Refinement

The adaptive mesh refinement approach adds new refinement grids where
the error is estimated to be large. The refinement grids are aligned with the
underlying base grid (i.e. the refinement is done in parameter space) and are
arranged in a hierarchy with the base grids belonging to level ` = 0, the next
finer grids being added to level ` = 1 and so on. Grids on level ` are refined
by a refinement ratio nr from the grids on level ` − 1. The grids are properly
nested so that a grid on level ` is completely contained in the set of grids on
the coarser level ` − 1. This requirement is relaxed at physical boundaries to
allow refinement grids to align with the boundary. Figure 3 shows a sample
block-structured AMR grid. A refinement ratio nr = 2 is used in the figure
for illustrative purposes and is supported by our AMR functions, although we
use nr = 4 for the calculations in this paper.

The algorithm given in Figure 2 includes the essential steps in the AMR algo-
rithm. These steps involve error estimation, regridding and AMR interpolation
as described in turn below. For simplicity the algorithm assumes a fixed time
step for all grids. In general a larger time step can be used on coarser grids,
resulting in significant speedups when there are relatively few grid points on
the finest level. For the computations given in this paper a fixed time step
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base grid,
refinement level 0

refinement grid,
refinement level 1

ghost points interpolate
from coarser level

ghost points interpolate
from sibling grid

hidden coarse grid points
interpolate from finer level

Fig. 3. Block structured AMR. Ghost points on refinement grids are interpolated
from sibling grids at the same level or parent grids on the next coarser level. Coarse
grid points are interpolated where they are covered by refinement grids.

was used. The use of different time steps for different levels is left as a future
enhancement.

3.2.1 Error Estimation

The purpose of error estimation is to identify and tag cells where additional
refinement is required. In practice it is important to have a robust error es-
timation scheme which may over-estimate the regions requiring refinement.
Typically, error estimates are based on a combination of magnitudes of first
and second differences in the numerical solution. For example, a general form,
which could be applied to the solution of a variety of PDEs, is given by

ei =
m

∑

k=1

ek,i , (8)

where

ek,i =
1

d

d
∑

α=1

(

c1

sk

|∆0αuk,i| +
c2

sk

|∆+α∆−αuk,i|
)

(9)

is an estimate of the error in the kth component of ui. In (9), sk is a scale factor
for uk,i, c1 and c2 are constants (weights), and ∆0α, ∆+α and ∆−α are the un-
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divided central, forward and backward difference operators, respectively, in
the α-direction in index space. The basic motivation for this formula is that
finite differences should give accurate approximations to the corresponding
derivatives when the solution is smooth with respect to the grid. Thus, for
smooth solutions the scaled undivided differences should be small when the
grid is sufficiently fine.

For the reactive Euler equations, we have adopted a modification of the general
form in (8) and (9). In addition to a measure of the second difference in density
(designed to detect shocks and contact discontinuities mainly), the modified
form includes an estimate of the truncation error in the source calculation
(designed to detect rapid changes near the reaction zone). The modified form
is given by

ei =
1

2

2
∑

α=1

c2

sρ

|∆+α∆−αρi| +
c3

sτ

τi , (10)

where c3 is a constant, τi is an estimate for the source term truncation error
(as described in more detail in Section 3.3.3), and sτ is a scale factor for the
truncation error.

Once the error estimate is computed for all grids, it is smoothed using a few
sweeps of an under-relaxed Jacobi iteration. After each sweep, the error is
interpolated to neighboring component grids. This smoothing process serves
the purpose of propagating the error to nearby grid cells whether they be on
refinement grids from the same component grid or on neighboring component
grids. The latter is particularly important when a sharp feature of the solution
approaches an overlapping grid interpolation boundary. In this case, the error
smoothing ensures that refinement grids are created across the overlap ahead
of the feature so that by the time the feature reaches the overlap, refinement
grids will already be in place on the neighboring component grid.

3.2.2 Regridding

The adaptive grid is rebuilt after every nregrid time steps. Given the smoothed
error estimate, we determine which cells to refine by tagging cells where the
error estimate exceeds a chosen tolerance. A set of boxes is generated in index
space (as described below) which covers the region of tagged cells, and these
boxes form the boundaries of the new refined grids. Once a new set of grids is
generated, the solution is transferred from the old AMR grid hierarchy to the
new one. As a general rule, solution values on the new grid are interpolated
from the finest level grid available on the old grid.

As the solution evolves in time, sharp features (such as shocks or detonations)
move and a new AMR grid is needed based on a new error estimate. There is a
computational cost associated with regridding so that it is desirable to increase
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the number of time steps that can be taken safely with the current AMR grid.
To do this, the boundary of the region of tagged cells is increased slightly
according a chosen integer nbuffer. In our calculations, we take the width of the
buffer zone to be nbuffer = 2 so that the number of steps between regridding
is the refinement ratio nr times the number of buffer cells, nregrid = 2nr. It is
assumed here that a sharp feature moves at most one grid cell per time step
on the fine grid.

The original block-structured AMR regridding algorithm can be found in the
thesis of Berger [28]. Our regridding algorithm is based on that of Berger
and Rigoutsos [29], and extended to handle the case of overlapping grids as
described below.

The basic idea for building new refinement grids at level `+1 for a component
grid at level ` is illustrated in Figure 4. The goal is to cover a set of tagged cells
by a set of non-overlapping boxes which form the boundaries of the refinement
grid patches. The boxes are constructed iteratively by recursive sub-divisions
until the boxes become sufficiently full of tagged cells or until the boxes become
too small. The basic steps in the iteration may be outlined as follows:

(1) Fit an initial box to enclose all tagged cells provided by the (smoothed
and (buffered) error estimator.

(2) Recursively sub-divide the box by splitting the box along its longest di-
rection. The position of the split is intended to separate clusters of tagged
cells and is based on a histogram formed from the sum of the number of
tagged cells in each plane perpendicular to the longest direction, see [29]
for more details.

(3) After splitting the box, fit new bounding boxes to the two new sub-boxes
and repeat the process. Continue until the box becomes too small or the
fraction of tagged cells becomes larger than an efficiency factor ηr (taken
to be 0.7 for our calculations).

After the new boxes have been constructed in parameter space, we must deter-
mine the location of the new grid points in physical space, their classification,
and their connectivity to neighboring grids. For a non-Cartesian grid, the grid
point locations are determined by evaluating the mapping, x = Cg(r), associ-
ated with the grid, a feature of our AMR framework that is particularly im-
portant when refining boundary fitted grids. Once the points are located, they
are classified as either discretization, interpolation or unused points. For in-
terpolation points on the boundary between discretization and unused points,
we must determine from which grid to interpolate, see Figure 5. We have de-
vised an algorithm that classifies the refinement grid points and computes the
interpolation information. The algorithm makes use of the information from
coarser refinement levels so that it is relatively fast and efficient. For example,
the fine grid interpolation points are determined by looking at the interpo-
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Initial boxTagged points

33 33 33 11 11 33 33 22

Box is split into 2

Number of points in each column

Process is repeated on the
two new boxes

tagged cells initial box tagged cells per column

box is split

process is repeated

Fig. 4. The 3 basic steps in regridding for a sample two-dimensional grid: (1) create
a box to enclose tagged cells, (2) split the box in two along its long (horizontal)
direction based on a histogram of tagged cells, (3) fit new boxes to each split box
and repeat the steps as needed.

lation points on the coarse levels in order to determine the likely interpolee
points. The order of preference for the interpolation of an overlapping grid
interpolation point is

(1) interpolate from a refinement grid at the same level belonging to a dif-
ferent base grid

(2) interpolate from a refinement grid at a lower level belonging to a different
base grid

Note that interpolation points of grids on level ` never interpolate from finer
grids on level ` + 1.

3.2.3 AMR Interpolation

Once a new set of grids is generated, the solution is transferred from the
old AMR grid hierarchy to the new one. Solution values on the new grid are
interpolated from the finest level grid available on the old grid hierarchy.

The other basic AMR interpolation operations involve interpolation at ghost
points of refinement grids and interpolation of course grid points that are
hidden by refinement grids. Before a time step is taken, solution values at ghost
points on all refinement grids are evaluated either by applying a discretization
of a boundary condition or by interpolation. In the latter case, the value is
obtained by interpolation from a neighboring grid at the same refinement level
or by interpolation from a grid at the next coarser level. This often amounts
to a direct copy for the case when the data is available from a neighboring
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Component grid 1,
base grid 1

Refinement grids
interpolate from
refinements of a
different base grid

Component grid 2,
base grid 2

Fig. 5. Overlapping grids and AMR; a view of the overlap region showing the in-
terpolation between refinement grids from different base grids. The black squares
indicate interpolation points.

grid at the same refinement level. After a time step is taken, solution data
on coarse grid points that are hidden by fine grids are interpolated from the
data on finer grids. In general, we support interpolation of cell-centered or
node-centered data for various refinement factors, such as nr = 2, 3 or 4, and
for different orders of interpolation. For the computations presented here we
use linear interpolation at ghost points and injection of fine grid values to the
hidden coarse grid values.

3.3 Discretization of the Governing Equations

We now return to the reactive Euler equations in two space dimensions as
given in (1) and (2) and describe a method of discretization of the equations
for a representative component grid (on the base level or on any refinement
level). As mentioned previously, for each component grid there is a smooth
mapping, x = Cg(r), from parameter space r = (r, s) on the unit square to
physical space x = (x, y). In parameter space, (1) becomes

Ut + F(U)r + G(U)s = H(U) , (11)
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where

U = Ju, F = ysf − xsg, G = −yrf + xrg, H = Jh, (12)

and

J(r, s) =

∣

∣

∣

∣

∣

∂(x, y)

∂(r, s)

∣

∣

∣

∣

∣

.

The partial derivatives of the transformation and the Jacobian are regarded
as known functions, and these are supplied on each component grid from the
mapping.

The mapped equations (11) and (12) are discretized using a finite-volume,
shock-capturing scheme. On the unit square, we define a uniform grid (ri, sj) =
(i∆r, j∆s), i = 0, . . . , Nr, j = 0, . . . , Ns, with constant grid spacings ∆r and
∆s, and set

Un
i,j =

1

∆r∆s

∫ sj

sj−1

∫ ri

ri−1

U(r, s, tn) drds . (13)

The cell average is advanced from a time tn to tn+1 = tn + ∆tn on the grid
using the conservative form

Un+1
i,j = Un

i,j −
∆t

∆r

(

F
n+1/2
i,j − F

n+1/2
i−1,j

)

− ∆t

∆s

(

G
n+1/2
i,j − G

n+1/2
i,j−1

)

+ ∆tH
n+1/2
i,j ,

(14)

where F
n+1/2
i,j and G

n+1/2
i,j are numerical fluxes and H

n+1/2
i,j is a numerical source

term. The numerical fluxes and source term are computed in a predictor-
corrector fashion using a modification of the methods described in [30] and [31].
The overall method is a second-order extension of Godunov’s method [2] with
a Runge-Kutta type error-control scheme to handle the source term.

Before proceeding with a discussion of each term in (14), we note that the
calculation of these terms is typically the most expensive part of a particular
simulation (see, for example, the performance statistics given in Section 4.3).
For a calculation on an overlapping grid with AMR, there is often a significant
number of points, either unused or hidden by refinement, where the calculation
of the terms in (14) is not needed. This information is contained in the mask
array for each component grid, and we use this information to update Un

i,j

according to (14) only where needed for computational efficiency.

3.3.1 Predictor Step

The predictor step determines provisional values for U at tn + 1
2
∆tn using

first order Taylor approximations. These approximations are written in terms
of characteristic variables in order to incorporate upwind differencing and
slope limiting. This approach requires the eigenvalues and eigenvectors of the
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derivatives FU and GU. For example, let

FU = a3 (a1fu + a2gu) ,

where

a1 =
ys

√

x2
s + y2

s

, a2 =
−xs

√

x2
s + y2

s

, a3 =

√

x2
s + y2

s

J
.

The eigenvalues of FU are

λ(p) =































a3(w − c), if p = 1,

a3w, if p = 2, . . . ,m − 1,

a3(w + c), if p = m,

(15)

where w = a1u + a2v is the component of the velocity normal to the curve

r = constant, c =
√

γp/ρ is the speed of sound, and m is the number of
equations, equal to 5 for the case of the one-step reaction model or 6 for the
case of the chain-branching reaction model. For m = 6, the corresponding
(right) eigenvectors v(p), p = 1, . . . ,m, are given by the columns of the matrix

V =



































1 0 1 0 0 1

u − a1c a2 u 0 0 u + a1c

v − a2c a1 v 0 0 v + a2c

h − wc a2u − a1v
1
2
(u2 + v2) −Q1 −Q2 h + wc

Y1 0 0 1 0 Y1

Y2 0 0 0 1 Y2



































(16)

where h = (E+p)/ρ is the total enthalpy. The reduction for m = 5 is straight-
forward.

Similar expressions may be obtained for the eigenvalues and eigenvectors of
GU. Let

GU = b3 (b1fu + b2gu) ,

where

b1 =
−yr

√

x2
r + y2

r

, b2 =
xr

√

x2
r + y2

r

, b3 =

√

x2
r + y2

r

J
,

and let µ(p) and w(p) denote, respectively, the m eigenvalues and eigenvectors
of GU. Formulas for these may be found using (15) and (16) with (a1, a2, a3)
replaced by (b1, b2, b3) and with w = b1u + b2v.
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Let us consider a representative cell centered at (ri−1/2, sj−1/2). The predictor
step requires various approximations for U at tn + 1

2
∆tn. For example, at

(ri, sj−1/2) we use

U∗
i,j,+∆r/2 = Un

i,j−
1

2

∑

λ(p)>0

(

∆t

∆r
λ(p) − 1

)

α(p)v(p)− ∆t

2∆s

∑

p

µ(p)β(p)w(p)+
∆t

2
Hn

i,j ,

(17)
where the +∆r/2 subscript indicates the direction in which the expansion is
taken. In (17), the eigenvalues and eigenvectors are evaluated at the cell center
using Un

i,j , and

α(p) = minmod
(

α
(p)
0 , α

(p)
1

)

, β(p) = minmod
(

β
(p)
0 , β

(p)
1

)

,

where minmod is the usual minimum-modulus function, and α
(p)
k and β

(p)
k are

found from

Un
i+k,j − Un

i−1+k,j =
∑

p

α
(p)
k v(p), Un

i,j+k − Un
i,j−1+k =

∑

p

β
(p)
k w(p),

with k = 0 or 1. The source term Hn
i,j in (17) is computed using an error-

control scheme as described below. Expressions similar to (17) are used to give
U∗

i,j,−∆r/2 and U∗
i,j,±∆s/2. These values are used as left and right states in an

approximate Riemann solver in order to obtain the numerical fluxes in (14).
Finally, for the cell center at tn + 1

2
∆tn, we use the approximation

U∗
i,j,0 = Un

i,j −
∆t

2∆r

∑

p

λ(p)α(p)v(p) − ∆t

2∆s

∑

p

µ(p)β(p)w(p) +
∆t

2
Hn

i,j . (18)

which is needed in the calculation of the source term H
n+1/2
i,j in (14).

3.3.2 Corrector Step

The correction step uses an approximate Riemann solver to obtain the numer-
ical fluxes in (14). For example, in order to compute F

n+1/2
i,j we consider the

Riemann problem

Ut + F(U)r = 0, t > 0, |r| < ∞,

U(r, 0) =















UL if r < 0,

UR if r > 0,

where UL = U∗
i,j,+∆r/2 and UR = U∗

i+1,j,−∆r/2. There are many choices of
approximate Riemann solvers available (see [32], for example), but we have
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adopted a simple modification of Roe’s solver [33] for the calculations in this
paper. From the components of UL and UR we define the average quantities
ū, v̄, h̄ and Ȳ using the general form

θ̄ =

√
ρLθL +

√
ρRθR√

ρL +
√

ρR

,

where θ is replaced by u, v, h or Y. An average sound speed c̄ may be computed
from the formula

c̄2

γ − 1
= h̄ − 1

2

(

ū2 + v̄2
)

− q̄ ,

where q̄ is the average heat energy due to chemical reaction computed using Ȳ.
Eigenvalues λ̄(p) and eigenvectors v̄(p) may be computed using the averaged
quantities in (15) and (16), respectively, and then ᾱ(p) may be determined
from

UR − UL =
∑

p

ᾱ(p)v̄(p).

We may now determine the numerical flux F
n+1/2
i,j in (14) using

F
n+1/2
i,j =















































F(UL) if λ̄(1) > 0,

F(UL) + ᾱ(1)λ̄(1)v̄(1) if λ̄(1) < 0 and λ̄(2) > 0,

F(UR) − ᾱ(m)λ̄(m)v̄(m) if λ̄(m) > 0 and λ̄(2) < 0,

F(UR) if λ̄(m) < 0.

(19)

The numerical flux given in (19) is the basic form, but in practice we also
incorporate a ‘sonic fix’ following the discussion in [34]. The numerical flux in

the s-direction, G
n+1/2
i,j , may be computed using straightforward modifications

of the formulas above.

Following Colella and Woodward [35] we also add a small artificial viscosity
contribution to the numerical fluxes. For example, we add

νn
i+1/2,j∆r

(

Un
i+1,j − Un

i,j

)

to F
n+1/2
i,j , where

νn
i+1/2,j = νc max(−∇h · Un

i+1/2,j , 0). (20)

In (20), νc is a constant (approximately equally to 1 for our calculations) and
∇h · Ui+1/2,j is a difference approximation to the divergence of the velocity,

ux+vy. A similar term is added to G
n+1/2
i,j . We found this term to be helpful in

suppressing small, transverse numerical oscillations that may form just behind
a shock or detonation that is travelling parallel to a coordinate direction. These
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oscillations are on the grid-cell scale and are not associated with oscillations
that may develop due to a tranverse instability of the detonation wave. The
latter occurs on the scale of the reaction zone and this scale is resolved over
several cells on the finest grid in our computations.

3.3.3 Source Term

The source terms in (14), (17) and (18) are computed using an error control
scheme. This is done so that both stiff and non-stiff source term contributions
can be handled accurately, and so that an estimate of the truncation error
committed by the numerical treatment of the source term is available for the
error estimator in (10). In order to compute the source terms, we consider
the mr ordinary differential equations implied by the chemical reaction terms
in (11). These ODEs have the general form

yt = Φ(y), (21)

where y = ρY and Φ = ρR. The function Φ on the right-hand-side of (21)
depends on all components of U in general, but for the purposes of the source
term calculations we consider it to be a function of y alone and hold the
other components fixed. For example, let us focus first on the calculation of
Hn

i,j . For this case we take the fixed components to be those in Un
i,j . We may

now compute the numerical solution of (21) using a Runge-Kutta error-control
scheme involving the following order (2, 3) pair:

ỹ = y + K2, (order 2),

ŷ = y + 2
9
K1 + 3

9
K2 + 4

9
K3, (order 3),

where

K1 = δt Φ(y),

K2 = δt Φ(y + 1
2
K1),

K3 = δt Φ(y + 3
4
K2).

Initially, y = (ρY)n
i,j and δt = 1

2
∆tn. An estimate for the truncation error is

τi,j = ‖ỹ − ŷ‖/δt, and if this estimate is less than a chosen tolerance, we set

Hn
i,j =

[

0 0 0 0 (ŷ − y)/1
2
∆tn

]T

.

If, on the other hand, τi,j is greater than the tolerance, then we reduce δt and
re-calculate ỹ and ŷ. The new value for τi,j is checked and y is advanced to
ŷ only if the estimate is less than the tolerance. For this case, a few Runge-
Kutta steps may be taken in order to integrate (21) to 1

2
∆tn. Ideally, only one
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step would be needed, but in regions of rapid chemical reaction more Runge-
Kutta steps are needed or, preferably, ∆tn must be decreased. Since rapid
chemical reaction is often coupled to rapid spatial variations (near detonation
waves, for example) a decrease in ∆tn and the grid spacings is appropriate
for this case. The truncation error is included in the error estimate (10) for
this purpose, and the tolerances are set so that at most 2 Runge-Kutta steps
are taken on grids below the finest level allowed for the calculation. On the
finest level, more Runge-Kutta steps may be taken depending on the stiffness
of the problem, and this gives an indication of how well the reaction zones are
resolved. Ideally, enough refinement levels are used so that no more than 1
or 2 Runge-Kutta steps are taken on all grid levels. This is the case for the
calculations in this paper.

Finally, we note that the source term, H
n+1/2
i,j , in (14) is computed in a similar

manner but we now take the fixed components in Φ to be those in Ũi,j,0 and
integrate (21) to a time ∆tn.

3.3.4 Time Step Determination

For the computations presented in this paper, we use a global time step, ∆t,
for all grids (the subscript n is suppressed here for notational convenience). A
value for the global time step is re-calculated every few time steps according
to the formula

∆t = σCFL min
1≤g≤Ng

∆tg ,

where ∆tg is the time step computed for component grid g and σCFL is a con-
stant taken to be 0.9 for our calculations. The time step for each component
grid (including base grids and AMR grids) is determined primarily from the
Roe-averaged eigenvalues λ̄(p) and µ̄(p) used in the calculation of the numer-
ical fluxes (see (15) and (19) for example). The time step also involves the
coefficient νn

i+1/2,j in (20) which is used in the artificial viscosity contribution

to the flux F
n+1/2
i,j and νn

i,j+1/2 which is added to G
n+1/2
i,j . In particular, we set

∆tg =

{

(

ΛRe,g

2

)2

+
(

ΛIm,g

1

)2
}−1/2

,

where
ΛRe,g = max

i∈Ḡg

(

νn
i+1/2,j , ν

n
i,j+1/2

)

and

ΛIm,g =
1

∆r
max
i∈Ḡg

(

max
p

|λ̄(p)
i
|
)

+
1

∆s
max
i∈Ḡg

(

max
p

|µ̄(p)
i
|
)

.

Here, ΛRe,g and ΛIm,g are bounds for the real and imaginary parts of the time-
stepping eigenvalue Λ (for grid g) and we have approximated the stability
region in the complex Λ-plane to be an ellipse with semi-axes 2 and 1. In
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the expressions for ΛRe,g and ΛIm,g, the maximum maxi∈Ḡg
is taken over all

computed flux locations on grid Gg. We note that in principle ΛRe,g would also
include a contribution from the Godunov scheme, but we have not found it
necessary to add an estimate for this contribution.

4 Numerical Results

We now discuss the numerical solution of the reactive Euler equations for two
specific problems. In Section 4.1, we consider the evolution to detonation in
a quarter plane provoked by an initial temperature gradient. This problem is
inspired by the recent study in [25] where the evolution to detonation in one
space dimension is considered for an ideal gas with a one-step reaction model.
In that study, the aim was to determine the precise mechanisms leading to
detonation depending on the size of the initial temperature gradient. Here, we
consider an extension of the problem to two space dimensions, and use it to test
the accuracy of the present numerical method when the domain is represented
by either a single Cartesian grid or an overlapping grid. In Section 4.2, we
consider the propagation of an overdriven detonation in a smooth expanding
channel. The purpose here is to demonstrate the use of overlapping grids to
represent the channel geometry and to illustrate a mechanism of detonation
failure for the three-step chain-branching reaction model.

4.1 Evolution to Detonation in a Quarter Plane

We first consider the behavior of an unsteady reactive flow in a quarter plane
x > 0, y > 0. The flow is modelled by the reactive Euler equations given in
(1) and (2) with the one-step Arrhenius reaction term given in (3) and (4).
Initially, the flow is at rest and in a uniform state of pressure and species
fraction. We are interested in the evolution of the flow subject to a small
linear temperature gradient, so that the initial conditions are taken to be

u(x, 0) = Y (x, 0) = 0, p(x, 0) = 1, T (x, 0) = 1 − δ‖x‖,

where δ > 0 is a parameter that measures the size of the temperature gra-
dient. This parameter is assumed to be small, of the order of the reciprocal
activation energy ε � 1, so that the reaction rate given in (3) varies by an
order one amount over an order one distance in x. As shown in [25] the size
of the gradient on the ε scale plays a strong role in the mechanisms leading
to detonation. The boundary conditions on x = 0 and y = 0 are taken to
be reflection conditions, so that the inviscid flow may be interpreted as the
evolution of an initial hot spot in a 90◦ corner bounded by solid walls. We will
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focus our attention on the behavior in the window 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2
and take numerical outflow conditions along x = 2 and y = 2. These boundary
conditions are similar to the ones used [25] and have a negligible effect on the
numerical solution in the window of interest. The quarter-plane flow is radi-
ally symmetric so that a highly resolved one-dimensional numerical solution
to this problem can by obtained and used to check the numerical solution on
the two-dimensional domain which assumes no particular symmetry.

The solution of the problem evolves in response to the chemical reaction gen-
erated by the initial temperature profile. There is an initial induction phase
characterized by a relatively slow rise in temperature and a correspondingly
slow consumption of fuel. The initial variation in temperature creates a non-
uniform reaction rate which in turn leads to small acoustic disturbances that
propagate radially in the flow. The variation in density, velocity and pressure
is very small during this phase. At the end of the induction phase, at a time
approximately equal to 1 according to the choice for σ in (5), the tempera-
ture near the origin has increased to a level where a strong reaction occurs.
Depending on the value of δ, a variety of scenarios occur that may or may
not lead ultimately to a detonation forming at some radial distance from the
origin and within our chosen computational domain (see [25] for a further dis-
cussion). For the calculations presented in this section, we have made a choice
for δ such that the explosion at the origin leads to an expanding detonation
which first forms near ‖x‖ = 0.6.

Figure 6 shows the behavior of the product fraction Y , temperature T and
pressure p at times t = 1.50 and t = 1.85 for the case δ = 0.0375, Q = −4.0,
ε = 0.075 and γ = 1.4. The surfaces at t = 1.50 (left column in the figure)
show the local explosion which first occurs near the origin as indicated by the
maximum value of Y ≈ 1 at that point. This explosion creates an expanding
fast flame which transitions to a ZND detonation near ‖x‖ = 0.6. The surfaces
at t = 1.85 (right column in the figure) show this detonation structure. In the
surfaces of temperature and pressure, we note that the shock is very sharp
and the expansion behind it is smooth. The reaction zone immediately behind
the shock is very thin and is resolved by approximately 80 grid cells across
it on the finest AMR grids. There are small, fine-scale numerical oscillations
along the ridge of peak temperature and pressure, but these do not degrade
the overall quality of the results. The calculation uses a single base grid with
400× 400 grid cells and two AMR grid levels on top of it with grid refinement
factor, nr, equal to 4. We found that a rather fine base grid is needed because
the position of the detonation front is sensitive to the solution during the
induction phase when no AMR grids are present. The parameters used in the
error estimator in (10) for this calculation are c2 = .03 and c3 = sρ = sτ = 1,
and a grid cell is tagged for refinement when the estimate of the error is greater
than 0.0005. The first AMR grids appear near the end of the induction phase
and a representative grid at t = 1.85 is shown Figure 7.
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Product fraction, Y , t = 1.5 Product fraction, Y , t = 1.85

Temperature, t = 1.5 Temperature, t = 1.85

Pressure, t = 1.5 Pressure, t = 1.85
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Fig. 6. Evolution to detonation in a quarter plane. Surfaces of Y , T and p at t = 1.50
(left column) and 1.85 (right column).

The two-dimensional solution in the quarter plane may be checked for accuracy
by comparing it to a highly resolved radially symmetric solution. Figures 8(a)
and 8(b) shows the behavior of the temperature and pressure, respectively,
obtained from slices of the two-dimensional solution along y = 0 at time
intervals of 0.1 between t = 1.4 and t = 2.0. Very good agreement is observed
between the solid curves given by the two-dimensional calculation and the
dotted curves given by the radially symmetric solution. A closer view of the
curves in the vicinity of the detonation at t = 1.8 is shown in Figures 8(c)
and 8(d). In these plots, the black curve is the radially symmetric solution and
the colored curves are obtained from slices of the two-dimensional calculation
along rays y/x = tan θ for θ = 0◦, 15◦, 30◦ and 45◦. Here, we note that the
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Fig. 7. The boundaries of the adaptive mesh refinement grids at t = 1.85 for the
expanding detonation calculation. On the left there is a single square base grid. On
the right there are two base grids, an annulus and a square. The base grids are blue
and the collection of grids on AMR levels 1 and 2 are green and red, respectively.

position of the detonation and its peak values are in good agreement with the
radially symmetric solution indicating that the two-dimensional calculation is
accurate and well resolved.

As an added check of the accuracy of the numerical approach, we now consider
the effect of a grid overlap on the numerical solution. This may be done by
embedding an annular grid with 120 × 320 cells covering the region 0.75 ≤
‖x‖ ≤ 1.35 within the existing rectangular grid at the base level, and then
repeating the calculation with two AMR grid levels as before. In this exercise,
we are particularly interested in whether any significant numerical error is
generated due to the overlap during the induction phase which would effect the
later development of the detonation, or whether the passage of the detonation
across the overlap leads to any significant error in the solution. In either case,
an error could be detected by a deviation in the position of the detonation at a
given time or in the peak temperature or pressure generated by the detonation.
These are severe tests of the numerical approach due to the strong sensitivity
of the reactive flow. It is also of interest to check the AMR grid generation as
the detonation passes from the rectangular base grid to the annular base grid,
and then back again.

Figure 9 shows the behavior of the temperature and pressure at t = 1.75, a
time when the detonation encounters the overlap near ‖x‖ = 0.75. We note
that the shock is sharp and that there is only small oscillations along the ridge
of peak temperature and pressure with a similar amplitude as before. A closer
look at the solution is shown in Figure 10 where we show a comparison of
slices of the surfaces of temperature and pressure at t = 1.8 computed using
the rectangular base grid and the annular embedded grid. In this plot, we note
no significant difference in the detonation position or its peak values, indicating
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Fig. 8. Behavior of the temperature (a) and pressure (b) along y = 0 for 1.4 ≤ t ≤ 2.0
with time interval equal to 0.1 between curves, and the behavior of temperature (c)
and pressure (d) in the vicinity of the detonation at t = 1.8. The colored curves are
slices of the two-dimensional calculation and the black curves are from the radially
symmetric solution.

that there is no increased error due to the overlap. A check of the behavior
of the AMR grid as the detonation crosses the overlap near ‖x‖ = 0.75 is
shown in Figure 11. Here, we have a computed the solution using a coarser
base grid so that the grid structure may be seen more readily. The plot shows
an enlarged view of the grid and shows the transition of AMR grids from the
rectangular base grid to the annular one as determined by the error estimator.

4.2 Detonation Wave Propagation in an Expanding Channel

We now consider a problem involving the propagation of a detonation wave
in an expanding channel. The channel geometry is shown in Figure 12. It
consists of a straight inlet section for x < 0, a smooth expansion section from
x = 0 to x = 5, approximately, where the bottom wall slopes downward
at a 45◦ angle, and finally an outlet section for x > 5 where the bottom wall
becomes flat again. The channel geometry is handled readily with a composite
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Fig. 9. Behavior of the temperature and the AMR grid at t = 1.75 for a
two-dimensional calculation on a rectangular base grid with an embedded annu-
lar grid.
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Fig. 10. Behavior of the temperature (a) and pressure (b) along y = 0 in the vicinity
of the detonation at t = 1.8. The red curves are from the grid with the embedded
annulus and the black curves are from the rectangular grid with no annulus.

overlapping grid as shown in the figure. There is a background Cartesian
grid upon which a boundary-fitted grid and an inlet grid are overlaid. The
boundary-fitted grid is used to handle the curved bottom wall smoothly and
the inlet grid is used so that the initial detonation may be represented on a
single grid. As in the previous problem, two AMR grid levels will be employed
to locally increase the resolution of the numerical solution.

For this expanding-channel problem, we consider the reactive Euler equations
with the three-step chain-branching reaction model given in (6) and (7). It is
assumed that a steady, overdriven detonation wave exists in the inlet section
of the channel at t = 0, and that the flow ahead of the wave is uniform and
at rest. Let us suppose that the steady wave propagates with speed D and
that ρ0, u0 = v0 = 0, p0, Y0 = 0 denote the density, velocity, pressure, and
species fractions (product and radical) ahead of the wave, respectively. We
assume that the detonation is overdriven so that D = σDCJ , where σ > 1 is a
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Fig. 11. AMR grid at t = 1.75 for a two-dimensional calculation on a coarser rect-
angular base grid with an embedded annular grid.

chosen parameter measuring the overdrive and DCJ is the Chapman-Jouguet
detonation speed given by

(

DCJ

a0

)2

= ϑ +
√

ϑ2 − 1, ϑ = 1 + (γ2 − 1)
(−Q1)

a2
0

,

where a0 =
√

γp0/ρ0 is the sound speed ahead of the wave and −Q1 > 0 is

the heat release [36]. The state of the flow immediately behind the leading
shock, denoted by quantities with subscript 1, is determined by the usual
shock conditions

ρ1

ρ0

=
(γ + 1)M 2

(γ − 1)M 2 + 2
,

u1

a0

=
2 (M2 − 1)

(γ + 1)M
,

p1

p0

= 1 +
2γ (M 2 − 1)

γ + 1
,

where M = D/a0 (see [37]). The post-shock species fractions remain zero, and
the flow is one-dimensional so that v1 = 0. The behavior of the flow in the
reaction zone downstream of the post-shock state can be worked out from the
governing equations in (1) and (2) assuming that v = 0 and that the remaining
variables depend upon the variable ξ = x−Dt alone. Under these assumptions
the equations for the flow reduce to ordinary differential equations, and these
may be integrated numerically from the shock at ξ = ξ0 towards ξ → −∞.
The asymptotic state far downstream of the shock is uniform and denoted by
quantities with subscript 2.
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5.

Fig. 12. Expanding-channel geometry and overlapping grid representation. The top
view shows the base grid, which, for illustrative purposes, is coarser by a factor
of 2 in each direction than that used in the calculation. The middle and bottom
illustrations show the boundaries of the refinement patches at t = 5 and t = 14,
respectively.

Figure 13 shows the steady detonation profile at t = 0 for the choice of param-
eters given in Table 1. The parameters chosen for the chain-branching reaction
model follow the general prescription

TI > T1, TB < T1, εI � εB � 1, Q2 = 0,

which is typical of the dynamics of chain-branching chemistry [22]. The tem-
perature ahead of the shock is lower than both the initiation and branching
cross-over temperatures so that there is no significant conversion of fuel to
either radical or product. Behind the shock the temperature rises above the
branching cross-over temperature so that a rapid production of radical and a
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Fig. 13. Steady overdriven detonation wave structure: (a) temperature T , product
λ = Y1, radical y = Y2 and fuel f = 1 − Y1 − Y2; and (b) density ρ, velocity u and
pressure p.

correspondingly rapid consumption of fuel occur. This is seen in Figure 13(a)
by the rapid increase in the fraction of radical and the rapid decrease in the
fraction of fuel behind the shock. There is an induction delay before this oc-
curs due to the exponentially small amount of radical available immediately
behind the shock. There is no heat release associated with the branching re-
action since Q2 = 0 is assumed, but the rapid increase in radical triggers the
completion reaction and its associated consumption of radical and release of
heat. As a result of this heat release, the temperature rises and the density
and pressure fall, and all approach an asymptotic state downstream of the
shock as the radical fraction approaches zero.

γ = 1.4 Q1 = −1 Q2 = 0

TI = 3 TB = 0.75 εI = 0.05 εB = 0.125

D = 2.1896 DCJ = 1.6843 σ = 1.3 ξ0 = −0.3

ρ0 = 0.2541 u0 = 0 p0 = 0.0913 T0 = 0.3593

ρ1 = 1 u1 = 1.6332 p1 = 1 T1 = 1

ρ2 = 0.6994 u2 = 0.7955 p2 = 0.8670 T2 = 1.2395

Table 1
Parameters for the expanding-channel problem.

In order to support the steady overdriven detonation, we envision a piston
driving the flow at some distance downstream of the wave in its asymptotic
tail and to the far left of the chosen computational domain shown in Figure 12.
The effect of the piston is made by imposing inflow boundary conditions given
by the asymptotic state with subscript 2 in Table 1 at x = −10. The bottom
curved wall is assumed to be a solid wall, and a zero normal flow boundary
condition is imposed there. The boundary condition on the top wall is a re-
flection condition, and an outflow boundary condition is used at the outlet
along x = 30.

29



Temperature, t = 3 Temperature, t = 5

Radical fraction y, t = 3 Radical fraction y, t = 5

Product fraction λ, t = 3 Product fraction λ, t = 5

shock

contact
shock

contact

1.25

.25

1.25

.25

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

Fig. 14. Detonation failure in an expanding channel: temperature T , radical fraction
y = Y2, and product fraction λ = Y1 at t = 3 (left column) and t = 5 (right column).

The shaded contour plots in Figure 14 show the behavior of the temperature T ,
radical fraction y = Y2 and product fraction λ = Y1 at times t = 3 and 5.
The expansion near the bottom wall weakens the detonation and its leading
shock resulting in a decrease in the post-shock temperature. As the post-
shock temperature falls below the cross-over temperature, TB = 0.75, the
branching reaction fails and the initial steady peak in y thins and decreases in
amplitude. There is no significant production of radical beyond this point, but
the completion reaction continues to convert any available radical to product
which leads to the formation of a contact discontinuity as is seen most clearly
in the behavior of λ near the bottom wall. The detonation remains steady
along the upper wall in the plots shown, but would eventually weaken as the
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expansion from the bottom wall reaches it. We also note that a secondary
shock forms near the bottom wall due a compression created between the
low-pressure gas generated by the expansion at the smooth corner and the
high-pressure gas left behind by the failing detonation.
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Fig. 15. Behavior of the (a) temperature and (b) radical fraction along the bottom
wall of the expanding channel for unit times between t = 0 and t = 5. The arclength
is measured from the inlet at x = −10.

A more detailed view of the behavior of the temperature and the radical
fraction along the bottom wall is shown in Figure 15. The sequence of curves
in Figure 15(a) shows the temperature at unit time intervals from t = 0
to t = 5. At t = 0, the post-shock temperature is 1, but this values falls
quickly as the detonation expands around the smooth corner, and by t = 2
the value is below TB = 0.75. Beyond t = 2, we see first the formation of a
contact discontinuity and then a second shock behind the lead shock of the
failed detonation. By t = 5, this wave structure is well developed. The behavior
of the radical fraction shown in Figure 15(b) gives additional insight in the
mechanism of detonation failure for the three-step, chain-branching model. In
this model, the generation of the radical species is essential for the detonation.
As the detonation expands, the peak in the radical thins and lowers which in
turn starves the completion reaction. There is a corresponding decrease in
the heat released by the completion reaction which is no longer available to
support the detonation.

At later times, the leading shock enters the outlet section of the channel where
the bottom wall becomes horizontal. This compression creates a Mach reflec-
tion of the leading shock as seen in the shaded contour plots of temperature in
Figure 16. The temperature behind the Mach stem is higher than TB so that
the branching reaction is turned back on and a significant production of radi-
cal occurs at a short distance behind the Mach stem as is seen in the plots of
radical fraction. The production of radical, in turn, feeds the completion reac-
tion and its generation of heat which further strengthens the Mach stem. The
product fraction created by the completion reaction advects with the flow and
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Fig. 16. Detonation rebirth at a Mach reflection: temperature T , radical fraction
y = Y2, and product fraction λ = Y1 at t = 10 (left column) and t = 14 (right
column).

funnels into a narrow region close to the bottom wall. As the wave structure
advances in the outlet section, we note a ‘island’ of increased radical fraction
growing behind the leading shock. This is a result of the temperature rise
behind the reflected shock at the triple point of the Mach reflection. Finally,
we also note a clear roll-up of the vortex sheet from the triple point in this
well-resolved calculation.
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4.3 Code Performance

We conclude the discussion of the results by providing some performance
statistics for both the quarter-plane and expanding-channel calculations. (The
quarter-plane statistics are for the calculation using the overlapping grid.) Ta-
ble 2 gives the total number of time steps taken for each calculation, and gives
information concerning the number of grids and grid points used. Here, we
note that the expanding-channel calculation required significantly more time
steps and grids (both average and maximum number), although the number
of grid points used for the two calculations is about the same. Both calcula-
tions use 2 AMR grid levels with nr = 4 so that a comparable grid resolution
without adaptive mesh refinement would require a grid with 256 times more
points on the base level. For the quarter-plane calculation, for example, this
would require about 52 million points instead of the average of about 1 million
points actually used.

Quarter plane Expanding channel

time steps 12418 21030

grids (min,ave,max) (2, 57, 353) (5, 274, 588)

points (min,ave,max) (2.0e5, 9.2e5, 1.9e6) (1.2e5, 6.4e5, 1.3e6)

Table 2
Total number of time steps and the minimum, average and maximum number of
grids and grid points used for the quarter-plane and expanding-channel calculations.

A break down of the average CPU time spent on various parts of the code is
given for both calculations in Table 3. These results show that the overhead
due to the use of overlapping grids and adaptive mesh refinement is quite
acceptable. Most of the CPU time is spent computing the difference approxi-
mation to the reactive Euler equations, i.e. ∆Un

i,j ≡ Un+1
i,j −Un

i,j in (14) for all
component grids. Even though most of the computer code is written in C++,
a number of critical routines are written in Fortran or C. The discretization of
the reactive Euler equations, for example, is written in Fortran and optimized
for performance. The CPU time spent on computing boundary conditions or
interpolating at grid overlaps is very small. The time spent on AMR regridding
and interpolation depends on the number of AMR grids required during the
calculation. The largest value occurred for the expanding-channel calculation,
but this value, 11.6%, is still relatively small. For reference, the computa-
tions were performed on a Linux desktop with a 2.2 GHz Xeon processor and
2 Gbytes of memory.
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Quarter plane Expanding channel

s/step % s/step %

compute ∆U
n
i,j 13.85 92.7 11.50 82.4

boundary conditions .12 .8 .14 1.0

interpolation (overlapping) .09 .6 .45 3.2

AMR regrid/interpolation .54 3.6 1.62 11.6

other .34 2.3 .25 1.8

total 14.94 100 13.96 100

Table 3
CPU time (in seconds) per step for various parts of the code and their percentage
of the total CPU time per step.

5 Conclusions

We have described a numerical approach for the solution of high-speed reac-
tive flows in complex geometries. The reactive Euler equations are discretized
using a second-order Godunov method for the fluxes and a Runge-Kutta time-
stepping procedure for the source term modelling the chemical reactions. The
geometry is represented with overlapping grids. Adaptive mesh refinement is
used to accurately resolve fine temporal and spatial scales dictated by the fast
chemistry and the wave structures (shocks and detonations) that develop. We
have described an implementation of a block-structured AMR approach for
curvilinear overlapping grids. The implementation includes an error-estimator
which we have tuned for our discretization of the reactive Euler equations, as
well as procedures for regridding and interpolation which we have described
for overlapping grids.

We have presented numerical results for two problems involving high-speed re-
active flow. The first problem, the evolution to detonation in a quarter-plane,
is used to validate the present numerical approach in comparison to a highly
resolved radially symmetric calculation. Excellent agreement is obtained be-
tween the radially symmetric solution and the corresponding solution using
the present numerical method on a two-dimensional grid (without assuming
axial symmetry). This agreement is obtained for calculations using either a
single Cartesian grid on the base level or an overlapping grid. In the latter
case, we have examined the propagation of a detonation through the interface
between overlapping component grids and have shown that the overlap does
not create any additional error in the numerical solution. The second example
considers the propagation of an overdriven detonation in a smooth expanding
channel. For this case, we have demonstrated the use of an overlapping grid
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to handle the flow geometry and have described mechanisms for detonation
failure and rebirth within a three-step, chain-branching reaction model. The
essential feature of the failure/rebirth mechanism involves the interplay be-
tween the flow geometry and the weakening/strengthening of the leading shock
of the detonation. For the chain-branching model, the production of radical
species from fuel is essential for the detonation, and this reaction is sensitive to
the post-shock temperature. Flow divergence weakens and the shock and low-
ers the corresponding post-shock temperature leading to detonation failure,
and this process was illustrated in our example calculation. In a later section
of the channel, a flow convergence occurred and this resulted in a rebirth of
the detonation.

Finally, we have given some performance statistics for our two example calcu-
lations and these have shown that the main computational cost involves the
discretization of the equations on the collection of component grids and that
the overhead cost for interpolation at grid overlaps and for AMR regridding
and interpolation is small, approximately 15% of the total cost for the larger
of the two example calculations.
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