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Abstract. The solution of elliptic partial differential equations on composite overlapping grids
using multigrid is discussed. An approach is described that provides a fast and memory efficient
scheme for the solution of boundary value problems in complex geometries. The key aspects of the
new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for
adjusting residuals on different component grids, and the use of local smoothing near interpolation
boundaries. Other important features include optimizations for Cartesian component grids, the use
of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin
averaging. Numerical results in two and three dimensions show that very good multigrid convergence
rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison
to Krylov based solvers shows that the multigrid solver can be much faster and require significantly
less memory.
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1. Introduction. The multigrid method is an effective way for efficiently solving
a wide class of partial differential equation (PDE) boundary value problems. Compos-
ite overlapping grids are an effective approach for building a collection of structured
grids on a complicated domain. The combination of multigrid with overlapping grids
provides an efficient approach for solving PDE boundary value problems on com-
plicated domains. One of the benefits of using overlapping grids is that efficient
geometric multigrid algorithms can be applied. Geometric multigrid relies on the
ability to explicitly generate grid coarsenings in contrast to algebraic multigrid which
builds coarsenings with no reference to a grid. Although each component grid in
an overlapping grid is a logically rectangular grid and can thus be easily coarsened,
the collection of coarser grids must be connected with interpolation to achieve good
multigrid convergence rates. Due to the difficulty in connecting the coarse level grids
through interpolation most if not all other researchers have left the coarse grids uncou-
pled, applying a zero Dirichlet or Neumann type boundary condition at interpolation
points [26, 27, 13, 32, 14]. If the coarse grids are not connected with interpolation, one
will in general experience a degradation in the convergence rate since the decoupled
coarse grids cannot represent some of the low frequency components of the error. In
this paper a new approach is presented for automatically generating the coarse level
overlapping grids. By relaxing the requirements for interpolation between component
grids, and allowing the grids to grow larger as they are coarsened, very coarse grids
can be generated. The algorithm is both fast and robust. This is important for the
case of moving grid problems where the coarse grids need to be regenerated each time
a component grid moves. The equations on the coarse grids can be automatically
generated by averaging the fine grid equations. This so-called Galerkin coarse grid
operator [25] has the benefits of making the solver more automatic, is fast to compute,
and usually improves the convergence rates.

A crucial aspect of any multigrid solver is the design of a good smoother. An
adaptive smoothing algorithm for overlapping grids is presented that significantly
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improves convergence rates. The adaptive method uses different smoothers on each
component grid and adjusts the number of sub-smooths per grid in order to keep the
residuals on the different grids approximately the same size. The addition of local
smoothing near interpolation boundaries is also shown to be significant.

The algorithm presented in this paper has been implemented in the Ogmg solver,
part of the Overture object-oriented framework [5, 4] for solving PDEs on composite
grids 1. The solver has been optimised for some commonly occurring problems such
as equations defined with the Laplace operator. Ogmg is particularly efficient when a
majority of the grid points belong to Cartesian component grids; this is often the case
when grids become sufficiently fine. For predefined equations on Cartesian grids there
is no need to store the grid point locations or coefficients of the operators, resulting in
significant savings. This manuscript deals only with the case of second-order accurate
discretizations; fourth-order accurate discretizations are considered in a forth-coming
paper.

The first overlapping grid computations were apparently performed by Starius
who solved elliptic and hyperbolic problems [21, 22]. Since then the method has been
widely used to solve a wide variety of problems including aerodynamics [23, 6], com-
bustion, blood flow [16], and Hele-Shaw flow [8]. The multigrid method has been
coupled to the overlapping grid method in a variety of works. The first consideration
of multigrid for overlapping grids seems to be the work of J. Linden who showed
results for a model problem [24]. Henshaw extended the overlapping grid generator
of B. Kreiss [17] to generate multigrid levels and used these for ocean flow computa-
tions [10]. Chesshire and Henshaw extended the CMPGRD overlapping grid genera-
tor [7] to generate multigrid levels for general two-dimensional domains. These grids
were used to solve elliptic problems in two dimensions for general domains and showed
good multigrid convergence rates [12]. Tu and Fuchs [26, 27] use a multigrid method
on overlapping grids for applications to internal-combustion. In their approach, how-
ever, the coarse grids are not coupled by interpolation. Johnson and Belk [15] and
Jespersen, Pulliam and Buning [14] use multigrid to accelerate the convergence of
solutions to the Euler and Navier-Stokes equations on overlapping grids. Hinatsu and
Ferziger [13] introduce the notion of incomplete composite multigrid (ICMG) and com-
plete composite multigrid (CCMG). With ICMG the component grids are connected
through overlapping grid interpolation only on the finest level. On coarser levels the
grids are decoupled. With CCMG overlapping grid interpolation is performed at all
levels, as is done with the algorithm presented here. They find that ICMG gives
reasonable results although this conclusion was based on solving problems on fairly
coarse grids. Perng and Street [19] use ICMG on “block structured” grids. Zang
and Street [32] use an ICMG approach to solve a pressure equation for the incom-
pressible Navier-Stokes equations. The multigrid algorithm for overlapping grids also
bears similarities to approaches for adaptive mesh refinement grids [2, 18] and domain
decomposition methods [20]. For further details on the multigrid approach one may
refer to one of the numerous good books on the subject such as Trottenberg et.al. [25],
Briggs et.al. [3], Wesseling [28] and Hackbusch [9].

Here is an outline of the paper. Section (2) establishes notation and gives a brief
description of the overlapping grid approach. This is followed by a description of how a
PDE boundary value problem can be discretized to second-order accuracy. Section (4)
discusses the ways in which the smoothing, restriction and prolongation operators
are altered for use with overlapping grids. In section (5) a technique is described

1The Overture software is available from http://www.llnl.gov/casc/Overture
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for the generation of coarse multigrid levels which permits the generation of much
coarser grids compared to previous approaches. The generation of the Galerkin coarse
grid operator is described in section (5). Numerical results, presented in section (6),
demonstrate that excellent multigrid convergence rates can be obtained on overlapping
grids. In many cases the convergence rates for overlapping grids are almost as good
as those for a single rectangular grid. A comparison is also made to some popular
Krylov-based solvers.
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Fig. 2.1. An overlapping grid consisting of two structured curvilinear component grids. Each
component grid is represented by a mapping from the unit square to physical space. Each grid point
is classified as either a discretization point, interpolation point or unused point. Ghost points are
used to apply boundary conditions.

2. Composite overlapping grids. This section introduces some of the basic
features of a composite overlapping grid, as illustrated in figure (2.1). An overlapping
grid G in d space dimensions consists of a set of component grids, Gg,

G = {Gg}, g = 1, 2, . . . , ng

A component grid is a logically-rectangular structured grid. The component grid is
defined by a mapping from the unit-square or unit-cube to physical space

x = Cg(r), r ∈ [0, 1]d, x ∈ R
d
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Here x = (x1, x2, x3) = (x, y, z) and r = (r1, r2, r3) = (r, s, t) for d = 3. Variables
defined on a component grid are stored in rectangular arrays. The grid point vertices
are

xg
i , i = (i1, i2, i3) , iα = 0, 1, 2, . . . , Ng

α

where Ng
α is the number of grid points in direction α. The Jacobian derivatives,

∂xm/∂rn, are computed directly from the mapping, Cg(r), and are used when forming
discrete approximations. The component grids are usually created with one or more
lines of ghost points as shown in figure (2.1). Ghost points are useful for applying
boundary conditions. Each face of each grid is classified as a physical, periodic or
interpolation boundary. Each point on an overlapping grid is classified as one of
discretization, interpolation or unused. Interpolation points may extend out to the
ghost points on interpolation boundaries. A list is kept of all the interpolation points,
the donor grid from which they interpolate and the location of the interpolation point
in the unit square coordinates of the donor grid. In particular, if grid g has ng

I

interpolation points then for each n = 1, 2, . . . , ng
I , let

i = ipg
n (interpolation point n on grid g)

d = dgg
n (donor grid for interpolation)

w = iwg
n (width of the interpolation formula)

r = dcg
n (donor grid location, r = C−1

d (xg
i ))

j = dsg
n (lower left corner of the donor grid stencil)

denote the interpolation data associated with the interpolation point. The interpola-
tion formula in two-dimensions is given by standard Lagrange interpolation,

Ug
i =

w−1
∑

m1=0

w−1
∑

m2=0

βmUd
j+m , βm = Lw

m1
(r̃1) Lw

m2
(r̃2) , r̃α = rα∆rα − jα . (2.1)

Here m = (m1,m2), ∆rα = 1/Ng
α, and the Lagrange polynomials Lw

µ are defined in

the usual way as Lw
µ (r) =

∏w−1
j=0,j 6=µ(r − j)/

∏w−1
j=0,j 6=µ(µ − j).

3. Discretization on overlapping grids. Consider an elliptic boundary value
problem in d = 2, 3 space dimensions,

Lu = f x ∈ Ω

Bu = g x ∈ ∂Ω

where L is an elliptic operator, and B the boundary operator. For the purposes of
this manuscript, L is chosen to be a second-order, linear, variable-coefficient operator
and B is chosen to define a Dirichlet, Neumann or mixed boundary condition. In two
space dimensions these take the form

Lu := c̃11uxx + c̃12uxy + c̃22uyy + c̃1ux + c̃2uy + c̃0u = f (3.1)

Bu := α̃1∂nu + α̃0u = g (3.2)

Here ∂nu = n · grad u is the normal derivative of u, with n the unit outward normal
to the boundary ∂Ω. The extension to three-dimensions is straight forward.
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There are many ways that a discrete approximation to these equations can be
defined for which the multigrid algorithm could be applied. For this paper a straight-
forward discretization based on the well known mapping method will be used. Consider
a problem on a two-dimensional overlapping grid, G. For each component grid Gg the
equations (3.1-3.2) are transformed to the unit square coordinates r = (r1, r2) = (r, s),

Lu := c11urr + c12urs + c22uss + c1ur + c2us + c0u = f , (3.3)

Bu = α1∂ru + α2∂su + α0u , (3.4)

where, for example,

c11 = c̃11 r2
x + c̃22 r2

y , c1 = c̃1 rx + c̃2 ry + c̃11 rxx + c̃22 ryy .

The inverse Jacobian derivatives ∂rm/∂xn are determined from the mapping x =
Cg(r). Let Ug

i denote the numerical approximation to the solution on grid Gg, Ug
i ≈

u(xg
i ). The equations are discretized to second-order accuracy using standard centred

approximations such as

∂r ≈ D2r ≡ D0r , ∂s ≈ D2s ≡ D0s ,

∂2
r ≈ D2rr ≡ D+rD−r , ∂2

s ≈ D2ss ≡ D+sD−s , ∂r∂s ≈ D2rs ≡ D2rD2s ,

where D+r, D−r, and D0r are the forward, backward and central divided difference
operators. For example D+rUi = (Ui1+1,i2 −Ui)/∆r1, with ∆r1 = 1/Ng

1 . The second-
order discrete approximation to (3.3-3.4) is given by

LhU := c11D2rrUi + c12D2rsUi + c22D2ssUi + c1D2rUi + c2D2sUi + c0Ui = fi (3.5)

BhU := α1D2rUi + α2D2sUi + α0Ui = gi

Consider a problem with a boundary condition at r1 = 0, i1 = 0. On a boundary
with a Dirichlet condition, the discrete equations will be of the form

LhUi = fi i1 = 1, 2, 3, . . .

Ui = gi i1 = 0

On a boundary with a Neumann or mixed condition the interior PDE is applied on
the boundary and one ghost line is introduced,

LhUi = fi i1 = 0, 1, 2, 3, . . . (3.6)

α1D2rUi + α2D2sUi + α0Ui = gi i1 = 0

The Neumann boundary condition is thought to define the value of Ui at i1 = −1.

To give a concrete example, consider the discretization of a one-dimensional Pois-
son equation,

uxx = f x ∈ (0, 1)

ux(0) = g0, u(1) = g1

on the overlapping grid shown in figure (3.1).
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U−1 U0 U1 U2 · · · UN1−2 UN1

V0 V1 V2 · · · VN2

x = 0 a b x = 1

Fig. 3.1. Overlapping grid in one dimension. The values at the interpolation points, UN1
and

V0 are obtained by three-point interpolation.

A second-order discretization to this problem is

(U1 − U−1)/(2h1) = g0 (Neumann BC)

(Ui−1 − 2Ui + Ui+1)/h
2
1 = f(x1

i ) i = 0, 1, 2, . . . , N1 − 1

UN1
−

(

α0V0 + α1V1 + α2V2

)

= 0 (interpolation) (3.7)

V0 −
(

β0UN1−2 + β1UN1−1 + β2UN1

)

= 0 (interpolation)

(Vi−1 − 2Vi + Vi+1)/h
2
2 = f(x2

i ) i = 1, 2, 3, . . . , N2 − 1

VN2
= g1 (Dirichlet BC)

Here Ui ≈ u(x1
i ), x1

i = ih1, h1 = b/N1, denotes the solution on the sub-interval
[0, b] and Vi ≈ u(x2

i ), x2
i = a + ih2, h2 = (1 − a)/N2, denotes the solution on the

sub-interval [a, 1]. The interpolation weights αm and βn are chosen appropriately,
see equation (2.1). The value at the ghost point, U−1, is usually considered to be
defined by the Neumann boundary condition, specifically U−1 = U+1 − 2h1 g0. Fur-
ther discussion of the use of ghost points can be found, for example, in Trottenberg
et.al.[25].

4. The multigrid algorithm for overlapping grids. This section discusses
the multigrid algorithm as applied to overlapping grids. The equations defining a dis-
cretization of an elliptic boundary value problem on an overlapping grid, Gh, discussed
in the previous section, can be written in the form

Lhuh = fh xi ∈ Ωh (interior equations)

Bhuh = gh xi ∈ Γh (boundary equations)

Ihuh = 0 xi ∈ ΓI
h (interpolation equations from (2.1))

These fine grid equations are written as a single matrix equation,

Ahuh = bh . (4.1)

Assume that is possible to define a coarse grid, GH defined on a discrete domain ΩH ,
with H = 2h. The coarse grid equations,

LHuH = fH xi ∈ ΩH

BHuH = gH xi ∈ ΓH

IHuH = 0 xi ∈ ΓI
H

are written as

AHuH = bH .
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The equations appearing in the matrix Ah or AH are not scaled by any factors of the
grid spacing but are left in the form (2.1,3.5,3.6). The scaling of the equations could
be important when residuals are averaged to a coarse grid. However, in practice the
boundary conditions and interpolation conditions are treated as constraints so that
residuals in these equations will generally be zero. In addition, the residuals from the
interior equations are not averaged with the residuals from the boundary conditions
or interpolation equations. Therefore the relative scaling between interior, boundary
and interpolation equations, as they appear in the matrix, is not critical.

The fundamental structure of the multigrid algorithm for overlapping grids re-
mains the same as for a single grid. Introduce the following operators

Sh : the composite smoothing operator, an iteration that is effective at reducing the
high frequency components of the error to the fine grid equations (4.1).

IH
h : restriction operator, the operator that transfers a grid function from the fine

grid to the coarse grid.
Ih
H : prolongation operator, the operator that transfers a grid function from the coarse

grid to the fine grid.

Although the operators IH
h and Ih

H represent a form of interpolation, in this manuscript
the term interpolation will always refer to the updating of the overlapping grid interpo-
lation points (2.1), unless explicitly stated otherwise. The standard defect correction
multigrid procedure is given as algorithm 1.

Algorithm 1 (The defect correction multigrid algorithm).
procedure multigrid(uh, fh)
{

while not converged do
vh ← Sν1

h vh (smooth ν1 times)
fH ← IH

h (bh −Ahvh) (transfer defect to coarser grid)
AHvH ≈ fH ( “solve” the defect equation)

vh ← vh + Ih
HvH (add correction)

vh ← Sν2

h vh (smooth ν2 times)
end while

}

The coarse grid equations can be approximately solved in a recursive manner by
using an even coarser grid. On the very coarsest grid the equations are solved with a
sparse matrix solver using either an iterative or direct method. Algorithm 1 is only
appropriate for linear problems. For nonlinear problems the above algorithm could be
used, for example, to solve the linearized problems resulting from a Newton iteration.
Alternatively the full approximation scheme, FAS, could be used. With the exception
of the use of the Galerkin coarse grid operator, the extension of the present scheme
to nonlinear problems should be straight-forward.

An overlapping grid for some “shapes” and the corresponding multigrid levels are
shown in figure (5.3). The component grids on the finest level are not arranged in
any particular hierarchy although each grid is given a priority. The priority is used
when the overlapping grid is first generated; higher priority grids will tend to retain
grid points in regions of overlap with lower priority grids. Background Cartesian
grids are usually given a low priority, for example. Each component grid is coarsened
by a factor of two in each coordinate direction to form the grid on the next coarser
level. Each grid belongs to one and only one level and there is a unique coarse
grid for each component grid. The coarse grids are generated so that the restriction
and prolongation operators can be efficiently implemented. For example, a standard
full weighting restriction operator can be applied at all coarse grid points where the
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interior equation is applied. More generally one could allow for coarsening factors
other than two. In particular, allowing a coarsening factor of one could be useful for
component grids with relatively few grid points as this would permit a greater number
of multigrid levels to built.

In the following sections a description will be given of the operators S, IH
h , Ih

H

and the coarse grid equations AH , as they are defined for overlapping grids.

4.1. Composite smoothing operator. Application of the operator Sh rep-
resents a composite-smooth where each component grid in turn is smoothed. The
composite smoother should be designed so that after smoothing the resulting defect,
dh = bh − Ahvh, is smooth on the entire overlapping grid. Since not all grids will be
smoothed to the same degree, each component grid is permitted to have a variable
number of sub-smooth steps. Let νg denote the number of sub-smooths for component
grid Gg. The pseudo-code given in algorithm 2 outlines the composite-smooth.

Algorithm 2 (The composite smoothing algorithm).
procedure compositeSmooth(u)
{

determineSubSmooths(νg) (given by algorithm 3)
for g = 1, . . . , ng do (loop over component grids)

if g > 1 interpolate(ug) (interpolate grid g, equation (2.1))
for m = 1, . . . , νg (multiple sub-smooths)

ug ← smooth(ug) (component grid smoother)
apply boundary conditions to ug

end for
end for
interpolate(u) (update interp. points, equation (2.1))
interpolationBoundarySmoother(u) (extra smoothing near interp. points)

}

It is found that the best results are usually obtained when the very latest values
for interpolation points are used when smoothing a grid. For Neumann or mixed
boundary conditions it is important to apply the boundary conditions after each sub-
smooth so that the grid function maintains the proper symmetries at the boundary.
This will be discussed more in section (4.8).

4.2. Variable sub-smooths. A variety of component grid smoothers have been
implemented in the Ogmg multigrid solver including Jacobi, Gauss-Seidel, Red-Black,
and line smoothers. In addition, a variety of Krylov based algorithms can be used for
smoothers. Over-relaxed Red-Black smoothers as suggested by Yavneh [31] have been
found to be very effective for Cartesian grids and curvilinear grids with mild stretching.
The type of smoother and the number of sub-smooths may vary from component grid
to component grid. The number of sub-smooths, νg, on each component grid Gg is
chosen to keep the discrete L2-norms of the residuals on the different grids roughly
the same size. The discrete L2-norm is defined by ‖u‖2

h = N−1
∑

i |ui|
2 where the

sum is taken over all valid points on the grid and N is the number of terms in the
sum.

Before each composite smooth, νg may be increased or decreased by one depending
on the relative size of the residual on grid Gg compared to that of a reference grid
Ggref

. The number of sub-smooths on the reference grid is fixed (usually to be one).
Although the reference grid might be chosen as the one with minimum residual; a
better selection seems to be the component grid with the largest number of grid
points. This latter choice avoids the unwanted situation whereby a grid with a small
number of points and with a small residual forces a large number of sub-smooths
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Fig. 4.1. The convergence rate is improved when a variable number of sub-smooths is used on
each component grid. The number of sub-smooths is chosen to keep the discrete L2-norm of the
component grid residuals nearly the same. Results are shown for an ellipsoid in a box with a V[2,1]
cycle.

to be taken on a grid with a large number of points. The procedure for choosing
νg is given by algorithm 3. The number of sub-smooths, νg, is increased by one if
the residual on the grid is a factor (σ+)1/νg larger than the residual on the reference
grid. The number of sub-smooths is decreased by one if the residual ratio is less than
(σ−)1/νg . The number of sub-smooths is usually restricted to be greater than zero and
less than some predefined maximum value. Comparing the residual ratio to (σ+)1/νg

instead of σ+ allows larger values of νg to change more easily. Through numerical
experimentation the values of (σ−, σ+) = ( 1

2 , 2) seem to give reasonable results. For
efficiency, the discrete L2-norms of the defects, dg, are computed approximately using
a sub-set of the total number of points.

Algorithm 3 (Determine the number of sub-smooths per component grid).
procedure determineSubSmooths(νg)
{

νmax ← maximum number of sub-iterations allowed (e.g. 10).
dg ← ‖Agug − bg‖h , g = 1, . . . , ng (discrete L2−norm of the residual on Gg)
gref : Ggref

is the component grid with the most grid points.
dref ← dgref

(residual on the reference grid)
for g = 1, . . . , ng do

if dg/dref < (σ−)1/νg

νg ← max(1, νg − 1) (decrease sub-smooths)
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else if dg/dref > (σ+)1/νg

νg ← min(νmax, νg + 1) (increase sub-smooths)
end if

end for
}

Figure (4.1) presents some convergence results for solving a three-dimensional
Poisson equation on a domain exterior to an ellipsoid and interior to a box. Con-
vergence rates are shown with and without the variable smoothing algorithm. A
comparison of the residuals on the different component grids shows that when the
number of sub-smooths is fixed the residual becomes much larger on one grid than
the others (the residual is largest on the large curvilinear grid that covers most of the
ellipsoid), see figure (4.1). However, when the number of sub-smooths is allowed to
vary, the residuals on the different component grids are nearly the same size. The
convergence rate, CR, and effective convergence rate, ECR, as defined in section (6),
are both significantly better with a variable number of sub-smooths. With fixed sub-
smooths, a maximum residual of 6.2e-10 was achieved using 40 cycles and 26.8 CPU
seconds. With variable sub-smooths, a maximum residual of 2.1e-10 was achieved
using 8 cycles and 9.0 CPU seconds; a speedup of almost a factor of 3.

4.3. Interpolation boundary smoothing (IBS). During the multigrid iter-
ation the defect can sometimes become large in a narrow region next to the interpo-
lation points. This can cause a degradation of the convergence rate. The source of
the problem is illustrated in figure (4.2) which shows three sub-steps in the compos-
ite smoothing algorithm applied to a one-dimensional overlapping grid function. As
shown in the figure, the solution may lose smoothness when the interpolation points
are updated. When there is a small overlap, say some fraction of a mesh width, the
loss of smoothness is usually minor. However, when the overlap is larger, which may
occur when the grid spacings on adjacent grids are not commensurate, a large de-
fect can form near the interpolation points and the convergence rate can slow. To

u1 u2 Step 1

Step 2

Step 3

interpolation points

Fig. 4.2. The solution at different steps in the composite smooth. Step 1: initial guess at the
solution. Step 2: u1 is smoothed and the left endpoint of u2 is interpolated. Step 3: u2 is smoothed
and the right endpoint of u1 is interpolated. The solution can be non-smooth near the interpolation
points, especially when the overlap is large.

remedy this problem, an additional interpolation-boundary-smoothing (IBS) step is
applied as the last stage of the composite-smooth. The IBS procedure is outlined in
algorithm 4. Extra smoothing is performed at discretization points that lie near inter-
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polation points. A Gauss-Seidel smoother with ω = 1 is usually used. For efficiency,
the list of the interpolation neighbours that require smoothing is pre-computed.

Algorithm 4 (Smoothing the solution near interpolation boundaries).
procedure IBS: interpolationBoundarySmoother(u)
{

for µ = 1, . . . , nI do (global smoothing iterations)
for g = 1, . . . , ng do (ng component grids)

for i = 1, . . . , mI do (smoothing points on grid Gg)
for each discretization point i on grid g that lies within

wI grid points of an interpolation point of grid g. do
ui ← Smooth(ui)

end for
end for

end for
interpolate(u) (update all interpolation points)

end for
}

Algorithm 4 contains three parameters, the number of global smoothing itera-
tions, nI , the number of local smoothing iterations, mI and the number of layers of
grid points, near interpolation points, to be smoothed, wI . Typical choices for the
parameters are nI = 2, mI = 2, and wI = 4. These values would mean that for each
of nI = 2 global iterations, wI = 4 layers of discretization points near interpolation
points are smoothed, with mI = 2 sub-iterations of Gauss-Seidel. Figure (4.3) shows
an example where smoothing near the interpolation boundaries improves the conver-
gence rate. With no IBS smoothing, a maximum residual of 2.1e-9 was reached using
9 cycles and 14.9 CPU seconds. With IBS smoothing, a maximum residual of 2.1e-9
was achieved in 7 cycles and 12.7 CPU seconds.
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Fig. 4.3. A comparison showing the benefit of using interpolation boundary smoothing (IBS)
for two Joukowsky airfoils in a channel, W[2,1].

4.4. Over-relaxed Red-Black Smoothers. The Red-Black Gauss-Seidel smoother,
RB-GS, is an excellent smoother for Poisson’s equation on Cartesian grids. The local
smoothing factor on a Cartesian grid with equal grid spacing in each direction is 1

4
in two-dimensions and 4

9 in three-dimensions. The smoothing factor, defined for ex-
ample in [25], measures the reduction in the rough modes of the error per smooth.
The smoothing rate of Red-Black Gauss-Seidel smoothers with a relaxation parame-
ter, ω−RB-GS, can be improved through the appropriate choice of ω, as described in
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Yavneh [31]. For example, the smoothing factor in three-dimensions improves from
µ ≈ .444 for ω = 1 to µ ≈ .23 for ω = 1.13. In two-dimensions the smoothing factor
improves from µ = .25 for ω = 1 to a value of µ ≈ .16 for ω = 1.05. Following the
suggestion in[31], the value for ω is allowed to vary on curvilinear grids, based on the
relative local sizes of the coefficients in the operator. The resulting smoother works
well on curvilinear grids provided the aspect ratios of the cells do not become too
large. Over-relaxation can also be used for zebra-line smoothers in three-dimensions.

4.5. Fine to coarse grid restriction operator. The restriction operator IH
h

is used to transfer the defect on the fine grid Gh to the coarse grid GH . For example,
a commonly used restriction is the full-weighting operator which in two-dimensions
is

dH
i =

1

4
dh
2i +

1

8
(dh

2i1+1,2i2 + dh
2i1−1,2i2 + dh

2i1,2i2+1 + dh
2i1,2i2−1)

+
1

16
(dh

2i1+1,2i2+1 + dh
2i1−1,2i2+1 + dh

2i1+1,2i2−1 + dh
2i1−1,2i2−1)

(For ease of notation, in this section the fine and coarse grid defects will be denoted by
dh and dH instead of dh and dH .) Some care is required when transferring the defect
near physical boundaries and interpolation boundaries. The basic philosophy for
averaging the defect from a fine grid to a coarse grid is to only average defects that arise
from equations of the same type; see, for example, the discussion in [25](section 5.6.1).
Thus defects from the interior equations should not be averaged with defects from
the equations that define the boundary conditions or defects from the interpolation
equations. In general the defects for the boundary conditions should be transfered
separately, using a lower dimensional restriction operator that only operates on the
defects in the boundary conditions. However, this step is not needed if the defects in
the boundary condition equations are zero, as is the case here.

The restriction procedure for overlapping grids is given in algorithm 5. The first
step in the algorithm is to assign values at the interpolation points of the fine grid
defect, dh. The reason for this step is as follows. A valid defect for the interior
PDE can be computed at all discretization points but not at interpolation points.
In some cases a discretization point on the coarse grid will, using the full-weighting
operator, require a defect to be defined at an interpolation point. For example, in the
one-dimensional Poisson problem, equation (3.7), a defect in the interior equations
may be needed at the interpolation points x1

N1
and x2

0. Rather than define a special
restriction operator for some points, values are assigned to the interpolation points of
dh, These values should approximate the defect in the interior equations. It has been
found that interpolating the defect from neighbouring grids gives, in general, better
results than using a one-sided approximation.

The next step in algorithm 5 is to loop over the grids and assign values of the defect
on the ghost points of boundaries where a Neumann (or mixed) boundary condition is
assigned. The value of dh on the ghost point is set equal to the value of dh on the first
point inside, for example dh

−1,i2
= dh

1,i2
for a boundary where i1 = 0. When the full

weighting operator is subsequently applied to a point on the boundary, the result will
be equivalent to using a modified full-weighting operator as discussed, for example,
in [25] (section 5.6.2). After updating the values on periodic boundaries of dh, the
coarse grid defect dH is assigned using the full-weighting operator. This operator is
applied at all points where the interior equation is applied; this includes boundary
points on Neumann boundaries. The value of dH is zero at interpolation points,
boundary points of Dirichlet boundaries and ghost points of Neumann boundaries.
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Algorithm 5 (Restrict the defect to the coarse grid).
procedure IH

h : restriction (dh,dH)
{

interpolate( dh ) (assign defect interp. points, equation (2.1))
for g = 1, . . . , ng do

for each Neumann/mixed boundary

dh,g(ghost-line) ← dh,g(first line in) (symmetry condition)
end for

Update periodic boundaries of dh,g.
foreach point of GH where the interior equation is applied

dH,g ← fullWeighting(dh,g) (interior and Neumann bndry pts)
else

dH,g ← 0 (interpolation, Dirichlet boundary and Neumann ghost pts)
end foreach

end for
}

4.6. The coarse to fine prolongation operator. The prolongation opera-
tor Ih

H adds the coarse grid correction, uH , to the current fine grid solution, uh.
It is straight-forward to define the composite prolongation operator for overlapping
grids. The standard prolongation operator (such as linear interpolation) is applied to
the solution on each component grid. The boundary conditions are applied and the
overlapping grid interpolation points are updated to be consistent with the corrected
solution.

4.7. Coarse grid operators. The operator on the coarse grid can be con-
structed using the same discrete approximation as on the fine grid, such as equa-
tion (3.5). Another way is to use the Galerkin coarse grid operator defined as

AH := IH
h AhI

h
H (4.2)

where IH
h and Ih

H are the restriction and prolongation operators. There are a number
of advantages to using equation (4.2):

1. The coarse grid operator can be computed with little knowledge of the original
PDE allowing the multigrid solver to act in the manner of a black box solver.

2. Use of the Galerkin operator can lead to improved convergence rates as shown
later in section (6). Although the Galerkin operator may be somewhat more
costly to evaluate (a 5 point stencil for the Laplace operator in 2D becomes
a 9 point operator) this extra cost appears to be generally insignificant on
modern cache-based machines.

3. The Galerkin coarse grid operator is useful for problems with discontinuous
coefficients.

4. Even for problems with smooth coefficients, but where the geometry contains
fine scale features, the Galerkin operator will effectively smooth out the ge-
ometry on coarser grids. To see this, note that the coefficients of the elliptic
operator depend on the geometry through the Jacobian derivatives of the
mapping. These coefficients are averaged when the coarse grid operator is
formed.

Formally the Galerkin coarse grid operator (4.2) is constructed by multiplying to-
gether the matrices defined by the restriction operator, the fine grid operator and the
prolongation operator. In practice the coefficients of the Galerkin coarse grid oper-
ator can be efficiently computed by taking the appropriate weighted averages of the



14 W.D. HENSHAW

coefficients of the fine grid operator. Note, however, that equations corresponding to
boundary conditions should not be averaged with equations coming from the PDE.
Similarly, on an overlapping grid, the interpolation equations should not be averaged
with the neighbouring equations for the PDE. In practice, the interpolation equations
are not directly added to the discrete operator; a discrete approximation to the PDE is
inserted in their place to facilitate the averaging process. The interpolation equations
are not averaged in any way on the coarse grid operator.

4.8. Neumann and mixed boundary conditions. It is well known that care
is required in the treatment of Neumann or mixed boundary conditions to avoid a
degradation in the convergence rate. As indicated earlier, on a boundary with a
Neumann or mixed boundary condition, both the interior PDE and the boundary
condition are applied discretely on the boundary and one ghost line is introduced, see
equation (3.6) or equation (3.7).

It is common practice to eliminate the values at the ghost points by combin-
ing the interior equation and the boundary condition, see for example the discussion
in Wesseling [28]. Even if the ghost points are not eliminated, as is the case here,
the same effect can be achieved by treating the boundary condition as a constraint
that should always be satisfied. For example, in the one-dimensional problem, equa-
tion (3.7), U−1 should be set equal U1 − 2h1g0 before it is used in a smoothing step.
Convergence results can sometimes be quite sensitive to the enforcement of the Neu-
mann boundary condition. Figure (4.4) compares the convergence rates when the
Neumann boundary conditions are applied after both Red and Black sub-steps of a
RB-GS smoother (CR=.011), to only applying the boundary conditions once at the
end of each Red-Black smooth (CR=.038).

Some insight into this phenomena can be gained by considering the multigrid
algorithm applied to the model problem of Poisson’s equation on the unit square; only
a brief discussion will be given here. Standard Fourier analysis for this model problem
generally relies on properties of the discrete eigenfunctions [9, 28, 25]. When using an
ω−Jacobi smoother and Dirichlet boundary conditions, the eigenfunctions of both the
discrete operator and the smoother are sines while for Neumann boundary conditions
they are cosines. The multigrid convergence rates for the Dirichlet and Neumann
problems are essentially the same. However, if the Neumann boundary condition is
not treated as a constraint, the discrete eigenfunctions of the smoother may become
a linear combination of both sines and cosines. The Neumann problem no-longer
behaves in the same way as the Dirichlet case. The eigenfunctions will no longer
have an even symmetry property at the boundary and high-frequency eigenfunctions
may be significantly changed. Whether the convergence rate is affected depends, of
course, on the detailed interactions between the smoother, prolongation, restriction
and coarse grid operators.

As a general principle, it seems wise to treat Neumann and mixed boundary con-
ditions as constraints. Furthermore, use of the symmetry properties of the eigenfunc-
tions, leads one to choose appropriate restriction operators at Neumann boundaries
(as described in section 4.5) and to choose appropriate conditions for corner ghost
points as described in the next section.

4.8.1. Boundary conditions for corner and edge ghost points. On a two
dimensional grid it is necessary to specify boundary conditions to determine values
of the solution at the ghost points in the four corners, u−1,−1, uN1+1,−1, u−1,N2+1

and uN1+1,N2+1. On a three dimensional grid values are required for the ghost points
along the twelve edges (such as ui1,−1,−1, u−1,i2,N2+1, uN1+1,N2+1,i3 etc.) and the eight
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Fig. 4.4. The proper assignment of ghost points is important for Neumann and mixed boundary
conditions. Left: the convergence rate degrades if the ghost points are only updated at the end of
the Red-Black smooth as compared to updating after the both the Red and Black sub-steps. Right: A
boundary condition for the corner ghost points that preserves even symmetry performs better than
extrapolation. The corner ghost points appear in the Galerkin coarse grid approximation for the
Laplace operator. Results are shown for a W[2,1] cycle for a 10242 square with three Neumann and
one mixed boundary condition.

corners (such as u−1,−1,−1, u−1,−1,N2+1, uN1+1,N2+1,−1 etc.) For Neumann and mixed
boundary conditions the value of the solution at the corner ghost point are chosen
with an approximation that will be both accurate and preserve an even symmetry
condition if the solution has this symmetry. A straightforward use of extrapolation,
for example, can lead to a significant reduction in the convergence rate as shown in
figure (4.4).

The following approximation derived from Taylor series seems to work well and
leads to convergence rates for Neumann and mixed boundary conditions that are
almost the same as the Dirichlet case. The equations will be derived for the corner
point u(−∆r,−∆s), expressions for the other corners follow easily. Adding the Taylor
series approximation for u(∆r,∆s) to that for u(−∆r,−∆s) gives

u(−∆r,−∆s) = u(∆r,∆s) − 2∆r ur − 2∆s us + O(max(∆r,∆s)3) .

Using the approximations ur ≈ D0rU0,0 and us ≈ D0sU0,0 results in the following
(third order accurate) expression to be used at corners,

U−1,−1 = U1,1 − (U1,0 − U−1,0) − (U0,1 − U0,−1) (4.3)

This even-symmetry Taylor boundary condition (4.3) will reduce to an even symmetry
boundary condition if the neighbouring points also satisfy the symmetry condition.
Note that an odd-symmetry boundary condition can also be derived by subtracting
the Taylor series u(∆r,∆s) and u(−∆r,−∆s). Equation (4.3) can immediately be
extended for use at edges in three dimensions. For a corner in three dimensions one
can follow the above argument to arrive at the even-symmetry Taylor-series boundary
condition

U−1,−1,−1 = U1,1,1 − (U1,0,0 − U−1,0,0) − (U0,1,0 − U0,−1,0) − (U0,0,1 − U0,0,−1) (4.4)

5. Coarse grid generation. This section describes a new algorithm for gener-
ating the multigrid levels for an overlapping grid. The overlapping grid for the finest
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level, Gh, can be constructed with the Ogen grid generator[11]. In previous work [12],
the overlapping grid generator was also used to build the coarser levels. Usually,
however, only a few multigrid levels could be computed before there was insufficient
overlap to permit the creation of a valid grid. The new algorithm does not use the
general overlapping grid generation algorithm to build the coarse levels. Instead, by
using the information contained in the existing valid overlapping grid, Gh, the coarse
level overlapping grids and interpolation points can be generated in a faster, simpler
and more robust manner. Furthermore, since only approximate solutions of the coarse
grid equations are needed, the accuracy requirements on the interpolation can be re-
laxed as the grids are coarsened; this will allow an overlapping grid to be constructed
which would not be considered valid by the general algorithm.

The problem of coarsening an overlapping grid can be characterized as follows.
Given an overlapping grid Gh with corresponding component grids {Gh,g}

ng

1 , classifi-

cation mask maskh,g
i (that classifies each grid point as one of discretization, interpola-

tion or unused) and interpolation information (see section (2)) the aim is to determine
a valid coarse overlapping grid GH with component grids {GH,g}

ng

1 containing half as

many points in each direction, a classification mask maskH,g
i and interpolation infor-

mation. To be valid the coarse grid should be classified so that each discretization
point is surrounded by either discretization points or interpolation points. An exam-
ple of the mask array for fine and coarse grids is shown in figures 5.1 and 5.2. Of
course it is always possible to start from a valid coarse grid and then refine it to get
as many multigrid levels as desired. Unfortunately this easier approach is, in general,
neither convenient nor practical.

When an overlapping grid is generated, interpolation points are determined so
that the overlap distance greater than but nearly equal to a constant times the local
mesh spacing, αh(x). Here h(x) is an approximate spacing between grid points. The
factor α is called the effective overlap. When the discrete stencil has a width of 3
points in each direction the minimum overlap is usually chosen so that α ≥ 1

2 (the
equations become singular when α → 0). For explicit interpolation all points in the
interpolation stencil are discretization points and the effective overlap will be α ≥ 3

2 .
For implicit interpolation some points in the interpolation stencil may be themselves
interpolation points and then α ≥ 1

2 . The key ingredients to the coarsening algorithm
are as follows:

1. Use the overlapping information and interpolation information contained in
the fine grid to help determine the properties of the coarse grid. Thus the
topology of the coarse region, such as location of holes and boundaries, is
given by the fine grid and does not need to be computed.

2. Relax the accuracy and explicitness of interpolation on coarse grids. As the
grids are coarsened,
(a) allow explicit interpolation to become implicit since implicit interpola-

tion requires less overlap.
(b) allow the width of the interpolation stencil to decrease. Thus each in-

terpolation point may have a possibly different interpolation width.
(c) allow a coarse grid interpolation point that has extended outside the

domain to be given a reasonable value based on nearby values on the
boundary. Figure (5.3), for example, shows points that have extended
outside the computational domain.

3. interpolate ghost points on interpolation boundaries. In previous work the
boundary points were interpolated which meant that the effective overlap
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would tend to decrease as the grids were coarsened. However, when ghost
points are interpolated, the ghost points on the coarsened grid will extend
further into the neighbouring grids and thus the effective overlap will tend to
increase.
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Fig. 5.1. Mask array for the fine grid.
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Fig. 5.2. Mask array for the coarse grid. Left: initial state. Middle: after assigning from fine
grid mask. Right: after filling in extra interpolation points.

Algorithm 6 (Generate coarse level overlapping grids).
procedure buildCoarseMultigridLevel(Gh,GH)
{

for g = 1, . . . , ng do

maskH,g
i
← maskh,g

2i for i in the coarse grid GH,g

where unused point i is next to a discretization point

maskH,g
i
← interpolation

end where
end for
for g = 1, . . . , ng do

where maskH,g
i

and maskh,g
2i are both interpolation points

InterpInfoH,g
i
← InterpInfoh,g

2i (get interpolation data from the fine grid)
end where

where maskH,g
i

=interpolation and maskh,g
2i 6=interpolation

Determine the interpolation information for point i on GH,g:

foreach maskh,g
2i±1 =interpolation (nearby fine grid interp pts)

gd ← donor grid from point 2i± 1 (potential donor grid)

r← C−1
gd

(xH,g
i

) (unit square coords in donor grid)
if r is a good quality location to interpolate from
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InterpInfoH,g
i
← interpolation information

break (this point has been found)
else

save this info but keep looking for a better quality donor
end if

end foreach
if unresolved interpolation points remain

search other possible grids and choose the best quality donor.
end if

end where
end for

}

The coarsening algorithm consists of two main stages. In the first stage, the
classification mask on the coarse grid is defined and the location of all interpolation
points is determined. In the second stage the interpolation data is evaluated (such as
the donor grid and the interpolation coordinates in the donor grid). For efficiency, as
much information as possible is derived from the valid fine grid. At the end of the
first stage (consisting of the first “for” loop in algorithm 6) the interpolation points in
the coarse grid mask will partition the grid points into those that are discretization
separated from those that are unused. Each discretization point will be surrounded
by discretization or interpolation points. For coarse grid interpolation points that
coincide with fine grid interpolation points the interpolation data can be immediately
computed. For a coarse grid point that does not coincide with a fine grid interpolation
point a search is made to find nearby interpolation points. In some cases there may
be more than one potential donor grid and a decision is made based on the quality of
the interpolation. The quality of the interpolation is ranked from most desirable to
least desirable:

Quality 1: valid interpolation with the same interpolation width as the fine grid.
Quality 2: valid interpolation with reduced interpolation width.
Quality 3: extrapolation outside a physical boundary.
Quality 4: extrapolation outside an interpolation boundary.

When interpolation data has been found that is quality 1 or 2, the data is considered
acceptable and no more searching is performed. When the quality is 3 or 4, the search
continues for a better quality donor grid until all possibilities are exhausted. Figure
(5.3) shows four multigrid levels for an overlapping grid for some “shapes”. Notice
how the curvilinear grids grow in size as they are coarsened.

6. Numerical results. In this section numerical results are presented for some
two- and three-dimensional problems. Poisson’s equation is solved with Dirichlet,
Neumann (α0 = 0, α1 = 1) or mixed (α1 = 1 and α0 = 1) boundary conditions:

∆u = f x ∈ Ω , (6.1)

α1
∂u

∂n
+ α0u = g x ∈ ∂Ω . (6.2)

The method of analytic solutions is used to choose f and g so that the exact so-
lution to (6.1-6.2) is known. For example, any sufficiently smooth function w(x)
will be a solution provided f = ∆w and g = α1

∂w
∂n + α0w. With this approach

the error in the discrete solution can be easily determined. Two common choices
for exact solutions are a low degree polynomial or a trigonometric function such as
w(x) = cos(fxπx) cos(fyπy) cos(fzπz). Convergence rates are generally insensitive to
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overlap increasesinterpolation accuracy reduced

Fig. 5.3. An overlapping grid for some shapes, 4 multigrid levels.

the choice of f and g. The trigonometric function will be used in the examples given
in this section. Introduce the following notation

WU = number of work units for a cycle ,

‖res‖∞ = maximum residual ,

CR = average convergence rate for a cycle ,

ECR = effective convergence rate = (‖resi‖∞/‖resi−1‖∞)
1/WU

,

W[ν1,ν2] = denotes a W cycle with ν1 pre-smooths and ν2 post-smooths.

A work unit is defined to be the amount of work (number of multiplications) required
for a single Jacobi iteration. The work units reported here are only reasonable approx-
imations. The effective convergence rate (ECR) is a normalized convergence rate that
takes into account the amount of work required for each multigrid iteration. Roughly
speaking, for a given problem, smaller values of the ECR will correspond to smaller
computational times.

To allow for a comparison between the different examples, results for the W cycle
are given. Although the V cycle is often more efficient (note that a V[1,1] cycle is
used for the timing comparison in table 6.3), the W cycle is more robust and gives
better results for some of the more difficult cases such as the submarine-in-a-box. As
a remark, the F cycle seems to give almost the same results as the W cycle and is
slightly more efficient.
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6.1. Accuracy. Table 6.1 shows the maximum errors and estimated order of
accuracy, error ∝ hσ, for a square, circle-in-a-channel, box and sphere-in-box. The
order of accuracy was estimated by a least squares fit to the log of the errors versus
log(h). Note that as the overlapping grids are refined, the positions of the interpolation
points will change since the effective overlap decreases. As a result, the reduction in
errors is not always as uniform as those from a single grid. The results demonstrate
the second-order accuracy of the discretization.

h
h0

error

1 1.4e−4

2 3.6e−5

4 9.0e−6

8 2.3e−6

16 5.7e−7

32 1.4e−7

σ 2.00

square

BC=Dirichlet

h
h0

error

1 8.2e−4

2 2.0e−4

4 5.1e−5

8 1.3e−5

16 3.2e−6

32 8.0e−7

σ 2.00

square

BC=NMNN

h
h0

error

1 7.0e−3

2 1.7e−3

4 3.2e−4

8 7.8e−5

16 2.2e−5

32 4.9e−6

σ 2.09

cic

BC=Dirichlet

h
h0

error

1 1.9e−4

2 4.8e−5

4 1.2e−5

σ 2.00

box

BC=NDDDDD

h
h0

error

1 2.3e−2

2 5.1e−3

4 8.8e−4

6 3.9e−4

σ 2.34

sib

BC=Dirichlet

Table 6.1
Maximum errors and estimated order of accuracy, error ∝ hσ, for Poisson’s equation with a

trigonometric exact solution. The first column gives the ratio of the grid spacing to that on the
coarsest grid. The cic grid is a circle in a channel. The sib grid is a sphere-in-a-box. BC=NMNN
means there is a Neumann condition on 3 sides and a mixed condition on the other. Notice that
the finest sib grid is only 1.5 times as fine as the previous grid.

6.2. Rectangular grids. Some convergence results for a 10242 square grid and
a 1283 box grid are given in figure (6.1) and serve as a bench mark for comparison
with overlapping grids. The results show that when the boundary conditions are
handled properly, the convergence rates for Neumann/mixed boundary conditions are
as good as the convergence rates for Dirichlet boundary conditions. The ECR’s for
the three-dimensional box are actually better than those for the square.

ω-RB-GS LFA (theory) Computed

[ν1, ν2] Galerkin ω µloc ρ
(2G)
loc ρ

(3G)
loc CR(W) CR(V)

[1, 1] No 1 .0625 .074 .104 .061 .092
[1, 1] Yes 1 .0625 .0625 .066 .059 .058

[1, 1] Yes 1.10 .0734 .0388 .052 .034 .037

[2, 1] No 1 .0335 .0523 .074 .044 .064
[2, 1] Yes 1 .0335 .0284 .040 .026 .034

[2, 1] Yes 1.10 .0440 .0157 .024 .014 .015

Two-dimensional, 5 point Laplacian.
Table 6.2

Theoretical smoothing rates and asymptotic convergence factors for various ω-RB-GS cycles
compared to the computed convergence rates for a 10242 square. ω-RB-GS is the over-relaxed Red-
Black Gauss-Seidel smoother with [ν1, ν2] the number of pre- and post-smooths. Galerkin refers to
the use of Galerkin coarse grid operators. CR(V) and CR(W) are the convergence rates for a V
and W cycle.

The numerical convergence rates can be validated by comparing them to the re-
sults predicted theoretically by local Fourier analysis (LFA). Local Fourier analysis



MULTIGRID FOR OVERLAPPING GRIDS 21

0 1 2 3 4 5 6 7 8
10

−10

10
−5

10
0

10
5

Multigrid Convergence, Square1024, W[2,1]

m
ax

im
um

 r
es

id
ua

l

multigrid cycle

 ← Dirichlet, CR=.014, ECR=.51

Neumann, CR=.011, ECR=.49 → 

0 1 2 3 4 5 6 7 8

10
−10

10
−5

10
0

Multigrid Convergence, Box128, W[2,1]

m
ax

im
um

 r
es

id
ua

l
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 ← Dirichlet, CR=.016, ECR=.45

Neumann, CR=.017, ECR=.45 → 

i ||res||∞ CR WU ECR
1 3.8e + 03 0.002 8.1 0.46
2 5.6e + 01 0.015 6.1 0.50
3 5.2e − 01 0.009 6.1 0.46
4 7.6e − 03 0.015 6.1 0.50
5 8.7e − 05 0.011 6.1 0.48
6 1.3e − 06 0.015 6.1 0.50
square1024, Dirichlet, W[2,1], 5 levels.

i ||res||∞ CR WU ECR
1 1.9e + 02 0.004 6.9 0.45
2 2.9e + 00 0.016 4.9 0.43
3 4.1e − 02 0.014 4.9 0.42
4 5.5e − 04 0.014 4.9 0.42
5 9.8e − 06 0.018 4.9 0.44
6 1.6e − 07 0.016 4.9 0.44
box128, Dirichlet, W[2,1], 5 levels.

Fig. 6.1. Convergence history for a 10242 square and 1283 box. A comparison between Dirichlet
and Neumann/mixed boundary conditions. In the Neumann case the square has 3 Neumann and
1 mixed boundary condition while the box has 3 Neumann and 3 mixed boundary conditions. The
tables show results for Dirichlet boundary conditions.

can be used to predict the smoothing factor, µloc, and the asymptotic two-grid, ρ
(2G)
loc

and asymptotic three-grid convergence factor, ρ
(3G)
loc , see [25, 30]. The smoothing

factor is an indication of the reduction in residual for each smooth, while the asymp-
totic convergence factors reflect the convergence rate for a cycle. Table 6.2 shows the
smoothing factor, two-grid and three-grid asymptotic convergence rates, as computed
by local Fourier analysis, for a standard 5-point operator in two-dimensions. These
results were computed with the Wienands’ excellent LFA software[29]. The last two
columns show the numerically computed convergence rates for V and W cycles on
a 10242 square. In general, one might expect the two-grid convergence factor to re-
flect the results of a W-cycle while the three-grid convergence factor should be more
indicative of a V-cycle. Overall there is reasonable agreement between the theory

and computation. For example, The two-grid convergence factor ρ
(2G)
loc = .0157 for

[ν1, ν2] = [2, 1] using Galerkin coarse grid operators should be compared to the value
of about .014 actually obtained on a 10242 square. These results illustrate that a sig-
nificant improvement in convergence rate can be realized by using a Galerkin coarse

grid operator and accelerated Red-Black smoothers with ρ
(2G)
loc improving from about

.044 to approximately .014 for the computed results of a W[2,1] cycle. Although these
methods require more work, in practice the additional computational time required
is found to be small.

The results in table 6.2 illustrate that even though the smoothing factor is worse
for ω = 1.1 compared to ω = 1, the overall convergence rates are better. Local Fourier

analysis can be used to determine the value of ω that minimizes ρ
(2G)
loc or ρ

(3G)
loc . These

values of ω will, in general, be different from the value that minimizes the smoothing
factor, especially as the number of smooths, ν1 + ν2, increases.
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shapes.bbmg5, 3.4e+06 points, 5 levels.

 ← W[1,1], CR=.025, ECR=.52

W[2,1], CR=.017, ECR=.57 → 

Fig. 6.2. Left: Multigrid level 5 of the shapes grid. Right: convergence history beginning with a
full multigrid cycle. Most of the grid points are on the Cartesian grid. CR and ECR are the average
convergence rate and effective convergence rate, not including the first cycle.

6.3. Overlapping grids. The coarsest level grid and the convergence history
or the “shapes” geometry are shown in figure (6.2). The iteration started with a
full-multigrid cycle. In full-multigrid, the cycles begin on the coarsest grid and work
themselves up to the finest grid. A Red-Black smoother was used on the square, a
line zebra smoother was used on the body fitted grids. This choice of smoothers,
Red-Black for Cartesian grids and line-zebra for curvilinear grids, usually gives the
best results. Results are shown for a W[1,1] and W[2,1] cycle. Although the W[2,1]
cycle has a better convergence rate, it is about 30% slower than the W[1,1] cycle;
this is reflected in a smaller ECR for the W[1,1] cycle. Since the majority of the
grid points on the finest level are on the Cartesian background grid, one might hope
that the convergence rates would be close to that of a single Cartesian grid. Indeed
the W[2,1] convergence rates of CR=.017 (ECR=.57) are close to that of a square,
CR=.014 (ECR=.51). Figure (6.3) shows similar convergence results for a grid about
two Joukowsky airfoils.

Figure (6.4) shows the convergence results for a three-dimensional grid for the
region exterior to a sphere and inside a box. These results, CR=.010 (ECR=.48)
for a W[2,1] cycle, compare favourably to the results for a three-dimensional box,
CR=.016 (ECR=.45). In figure (6.5) results are given for a geometry consisting of a
collection of spheres in a box. This grid has over 5 million grid points and 15 different
component grids. The convergence rates, although not quite as good as for the single
sphere are also very good with CR=.028 (ECR=.60) for a W[2,1] cycle. Results for the
submarine-in-a-box grid are shown figure (6.6). The overlapping grid consisted of 18
component grids. The convergence rates are not quite as good as for the sphere-in-a
box but are still quite acceptable.

6.4. Performance and comparison to other methods. Results from the
Ogmg multigrid solver are compared to some good Krylov-based iterative solvers in
table 6.3. The first five rows show results for a two-dimensional circle-in-a-channel
grid. The last four rows consider a three-dimensional ellipsoid-in-a-box. The stabilized
bi-conjugate-gradient (biCG-stab) method with incomplete LU (ILU) preconditioning
was found to give the best results amongst the Krylov methods that were tested. The
Krylov solvers used here are from the PETSc library [1]. The setup time for Ogmg
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Joukowsky, 2.2e+06 points, 4 levels.

 ← W[1,1], CR=.035, ECR=.54

W[2,1], CR=.024, ECR=.59 → 

Fig. 6.3. An overlapping grid for two airfoils in a channel (multigrid level l = 3). Convergence
history including an initial full multigrid cycle. An alternating zebra smoother is used on the body
fitted grids.

i ||res||∞ CR WU ECR

1 1.2e + 00 .0004 8.0 0.38
2 1.3e− 02 0.010 5.9 0.46
3 8.6e− 05 0.007 6.4 0.46
4 8.0e− 07 0.009 6.2 0.47
5 1.2e− 08 0.015 6.8 0.54

Sphere in a box. Dirichlet BC’s.
Full Multigrid.

W[2,1]: RB ω = 1.12, lz3 ω = 1.09
2.78e+06 grid-points. 4 levels.

Average CR=0.010, ECR=0.48.

Fig. 6.4. Left: computed solution for a sphere in a box. Right; convergence history with a full
multigrid cycle.

includes the time needed for generation of the multigrid levels and generation of the
coarser grid operators by averaging. The setup time for the Krylov solvers includes the
time required to copy the matrix coefficients from Overture to PETSc and the time
needed to build the preconditioner. The reals/pt column indicates the approximate 2

number of double-precision floating point numbers that are required per grid point.

For the two-dimensional grid circle-in-a-channel, which has about 1.1 million grid
points, the computing time for the multigrid solver is about 45 times faster and
uses about 11 times less storage than biCG-stab, ILU(5). Compared to biCG-stab
ILU(0), Ogmg is about 100 times faster and uses about 7 times less memory. For the
three-dimensional case, Ogmg is about 10 times faster than biCG-stab, ILU(2), and

2The memory for the PETSc solvers was taken as the Maximum memory used obtained with the
-trmalloc log option.
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multiSphere3, 5.4e+06 points, 4 levels.

 ← W[1,1], CR=.049, ECR=.56

W[2,1], CR=.028, ECR=.60 → 

Fig. 6.5. Left: computed solution for multiple spheres in a box. Right: convergence history
with a full multigrid cycle.
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subAndFins2, 3.6e+06 points, 3 levels.

 ← W[1,1], CR=.122, ECR=.62

W[2,1], CR=.087, ECR=.65 → 

Fig. 6.6. Left: Grid for a submarine-in-a-box, Right: convergence history.

uses approximately 7 times less storage. As the grids become finer, Ogmg should be
expected to have an even larger advantage in speed.

All the results presented in this manuscript were performed on a Linux desktop
with a 2.2GHz Xeon processor and 2 GBytes of memory.

7. Conclusions. A multigrid algorithm for the solution of elliptic boundary
value problems on two- and three-dimensional overlapping grids has been described.
The approach has been implemented in the Ogmg solver. A new procedure for auto-
matically generating the coarse grid levels and the connecting interpolation informa-
tion has been presented. A composite smoothing operator that automatically adjusts
the number of sub-smooths on each component grid is combined with a procedure for
locally smoothing the defect near interpolation boundaries. Convergence rates are im-
proved through the use of operator averaging and over-relaxed Red-Black smoothers.



MULTIGRID FOR OVERLAPPING GRIDS 25

CPU time (s) storage

Solver grid pts its ||res||∞ total setup solve reals/pt

Ogmg V[1,1] FMG cic 1.1e6 7 5.7e-10 3.34 .537 2.8 4.6

biCG-stab, ILU(5) cic 1.1e6 144 8.9e-9 152 35. 117 53.5
gmres ILU(5) cic 1.1e6 435 1.0e-8 271 35 236 65.0
biCG-stab, ILU(0) cic 1.1e6 554 8.6e-9 342 32 310 33.3
gmres ILU(0) cic 1.1e6 2657 8.9e-9 1135 33 1102 49.0

Ogmg V[1,1] FMG elb 2.0e6 10 3.3e-10 21.5 4.52 17.0 9.9

biCG-stab, ILU(2) elb 2.0e6 46 4.1e-10 222. 106 116 70.3
biCG-stab, ILU(0) elb 2.0e6 113 3.7e-10 264. 77. 187 41.6
gmres(20), ILU(0) elb 2.0e6 218 5.2e-10 306. 70. 236 56.5

Table 6.3
A comparison of the multigrid solver Ogmg to some Krylov based solvers. The cic grid is a

two-dimensional circle-in-a-channel, the elb grid is an ellipsoid-in-a-box.

Performance was enhanced using optimizations for predefined equations and Cartesian
component grids. Numerical results in two and three space dimensions demonstrate
that very good multigrid convergence rates can be obtained. For overlapping grids
dominated by Cartesian component grids, the results approach the “text-book” con-
vergence rates of single Cartesian grids. A comparison to some good Krylov-based
iterative solvers showed the multigrid solver can be much faster and use significantly
less memory.
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