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Current methods for the automatic generation of grids are reviewed. The
approaches to grid generation that are discussed include cartesian, multi-
block-structured, overlapping and unstructured. Emphasis is placed on those
methods that can create high-quality grids appropriate for the solution of
equations with a hyperbolic nature such as those that arise in fluid dynamics.
Numerous figures illustrate the different grid generation techniques.
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1. Introduction

The intent of this paper is to give a brief review of current methods for
the automatic generation of grids for the solution of problems from compu-
tational fluid dynamics (CFD), computational electromagnetics and other
fields where the solutions are hyperbolic in nature. These applications re-
quire the generation of high quality grids with a large number of grid points.
It is often the case that the geometry may change with time or it may be
necessary to adaptively refine the mesh. It is thus essential that the grid
generation algorithms be fast since the grid may have to be regenerated at
every step of a time dependent simulation. Various popular methods for
structured and unstructured grid generation will be described. Figures will
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illustrate the current state of the technology. Grid generation capabilities
have improved greatly in recent years. However, it is perhaps not an exag-
geration to say that the construction of a grid is currently the most difficult
and time consuming aspect in determining an accurate solution to a problem
on a complicated domain. Indeed, starting from scratch with some descrip-
tion of the geometry the time to generate a grid is measured in weeks rather
than hours.

Fig. 1. Early grids represented geometry using a cartesian (cut-out) grid.

cut-out grids) whereby the region was covered by a single rectangular
grid and the portions of the grid lying outside the region were cut-out leav-
ing some irregularly spaced cells. This approach was replaced by boundary
conforming grids whereby a logically rectangular grid was mapped onto the
region, with boundaries corresponding to a coordinate line. Grids that con-
formed to boundaries improved solution accuracy and made it easier to
apply boundary conditions. As computers became faster and more compli-
cated problems were attempted it became apparent that this single-block
approach was not flexible enough to handle complicated geometries. This
led to the introduction of the multi-block approach where the domain was
partitioned into blocks and within each block a logically rectangular grid
was constructed. In time, however, it became apparent that this approach
was still not flexible enough (and difficult to automate) for the increasingly
complex geometries being considered and some other approach was needed.
One way to add additional flexibility, while still retaining the logically rect-
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Fig. 2. A multi-block structured grid divides the region into logically rectangular
blocks.

angular structure was the use of overlapping grids in which the component
grids are allowed to overlap. There has also been renewed interest
in the cartesian grid approach, using adaptive mesh refinement to improve
boundary resolution. Recently the main interest and focus of research has
been in unstructured meshes, which allow complete freedom in grid point
placement, although at the expense of speed and memory usage. With little
doubt, unstructured meshes offer the best hope for a completely automatic
mesh generation program. Completely unstructured grids are not without
their difficulties for CFD and perhaps a hybrid method, combining the un-
structured approach with locally structured grids (to resolve boundary layers
for example) will turn out to be most the effective.

The purpose of grid generation is to create a discrete representation for
a domain. This entails distributing points throughout the domain. There
are two main classes of grids, structured and unstructured. In a structured
grid the points covering the domain result from the transformation of a
logically rectangular square (or cube in three dimensions∗). The grid points
can be stored as an array x(i1, i2) and the neighbours of a given grid point
are simply found as the neighbours in index space, x(i1 ± 1, i2 ± 1). In
an unstructured grid, on the other hand, the points are connected to one

∗ Throughout this paper, the terminology will be for two-dimensional grids, (quadrilat-
erals, triangles) but the remarks will usually apply equally well to three-dimensional
grids (hexahedra, tetrahedra)
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Fig. 3. An overlapping grid consists of logically rectangular blocks that overlap,
some blocks have cut-out regions.

another in a general manner, the connectivity information must be explicitly
saved. The grid points might be saved as a list xi, and there would be other
lists giving information about neighbours. Of course, the partition of grids
types into structured and unstructured is not entirely appropriate since some
grids consist of a set of structured grids and other hybrid grids have both
unstructured and structured parts.

Grids are used to solve equations, typically partial differential equations
(PDEs) and integral equations. The computer programs that solve these
equations, which are here-in referred so as solvers, typically discretize a con-
tinuous equation with finite-difference, finite-element, finite-volume, spectral-
element or boundary-integral methods. At the grid generation level, it is
usually not important which particular solver will use the grid, rather the
style of the grid is most relevant. That is, it is important whether the grid
is structured or unstructured, whether the grid elements are triangles or
quadrilaterals, or whether the grid is multi-block-structured or overlapping.
The unstructured triangular grid can be used either with a finite-element
solver or a finite-volume solver, just as a multi-block-structured grid can
be used by a finite-difference solver or by finite-element solver for quadri-
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Fig. 4. An unstructured triangular grid is very flexible for representing geometry.

laterals. Despite these remarks, it is not uncommon to see references to a
finite-element mesh (which usually just means an unstructured grid).

The errors in solving a PDE on a grid depend strongly on the quality
of the grid. The quality of a grid is a relative concept and depends on the
actual equations that will be solved, as well as the numerical method that
will be used. In principle, a given problem could be repeatedly solved with
different grids (with the same number of grid points) and the error in the
numerical solution could be measured as a function of the grid. The smaller
the error, the better the quality of the grid. Some adaptive methods do
indeed redistribute points to try and minimize the error. When creating a
grid initially, however, the grid is usually generated with some general prin-
cipals in mind such as keeping the cell size smoothly varying, and resolving
boundary layers, if appropriate. Generally speaking, the solution of equa-
tions with wave-like behaviour (hyperbolic) require smoother grids than the
solution of elliptic equations. The smoothness of a grid is hard to define in
general but relates to the local variation of the cells. An elliptic problem can
be accurately solved on a relatively poor quality grid since the effects of any
non-smoothness in the grid will be smoothed out by the elliptic operator.
In contrast, hyperbolic operators provided no smoothing effects. To under-
stand this further, note that the properties of the grid such as the variations
in the grid point positions appear, implicitly or explicitly in the discrete
equations used in the solver. Consider the solution of the one-dimensional
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wave equation, for the function u(x, t),

∂u

∂t
+

∂u

∂x
= 0.

If the grid points are allowed to vary according to the parameterization
x = X(r) (that is the grid points will be equally spaced in r) then the
equation for v(r, t) = u(X(r), t) becomes

∂v

∂t
+

1

Xr

∂v

∂r
= 0.

It is now clear that if the parameterization is not smooth then Xr will not be
smooth and this will be reflected in the discrete solution. A grid that is not
smooth can distort waves and cause spurious reflections, something similar
to the effect of a wave passing through a non-uniform media. Higher-order
accurate methods are also popular for the solution of wave-like problems, for
both efficiency and accuracy reasons. Higher-order methods will in general
require higher quality grids than lower order methods.

It is important to realize that solvers written for one type of grid will typi-
cally not work on other types of grids. Although a structured grid can always
be turned into an unstructured grid and used with an unstructured solver,
the unstructured solver would not usually take advantage of the structured
nature of the grid. There is, however, increasing interest in hybrid grids
and hybrid grid solvers. Hybrid grids range from those that are primar-
ily unstructured triangles with some structured quadrilaterals to resolve a
boundary layer to those that are primarily structured blocks with triangles
used to merge the blocks.

The number of grid points required for many three-dimensional problems
is extremely large. For typical big simulations there are on the order of 106

or more grid points, this number being limited only due to lack of computer
memory and speed. Viscous fluid flow computations over an entire aircraft
could easily use orders of magnitude more grid points. Points are required
not only to represent complicated geometries (as illustrated by some of the
figures in this paper) but also to resolve rapidly varying features of the
solution (shocks, boundary layers, vortex shedding).

The following grid generation methods will be discussed in more detail in
the rest of this paper:

• cartesian grids

• multi-block-structured

• overlapping

• unstructured

The area of adaptive mesh refinement, a large and active field in itself, will
only be briefly mentioned here. Further information can be found in many of
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the references. There are a number of issues that must be considered when
evaluating the appropriateness of a given type of grid or grid generator:

• the speed of generating a grid.
• the robustness of grid generation.
• the quality of the generated grid.
• the ability to construct grids from standard computer-aided-design

specifications.
• the level to which the grid generation is automatic - how much user

intervention is required and how many tuning parameters are there?
• the support for adaptivity and moving geometries - can grids be regen-

erated quickly?
• the speed of the solver on the resulting grid.
• the effectiveness the approach on both parallel and serial architectures.

Generally, unstructured grid generators tend to be more robust and auto-
matic while structured grid generators create higher quality grids for which
faster and more efficient solvers can be written. Further remarks on these
issues will be made when the different approaches are discussed.

The field of grid generation is expanding rapidly. Many excellent refer-
ences have been unavoidably omitted from this review and apologies are
due to the authors. For further information, the reader is referred to the
books by Thompson, Warsi and Mastin (1985), George (1991), Knupp and
Steinberg (1993), and Castillo (1991); the conference proceedings edited
by Weatherhill and et.al. (1994), Arcilla, Häuser, Eiseman and Thompson
(1991), and Babuska, Flaherty, Henshaw, Hopcroft, Oliger and Tezduyar
(1995); and the review papers by Löhner (1987), and Eiseman (1985). Some
other excellent sources of information are Robert Schneiders’ Finite element

mesh generation site on the world-wide-web:

http://www-users.informatik.rwth-aachen.de/ r̃oberts/meshgeneration.html

and Steven Owen’s Meshing Research Corner site:

http://www.ce.cmu.edu:8000/user/sowen/www/mesh.html

These sites include information about both unstructured and structured
mesh generation and pointers to a variety of public-domain and commercial
grid generation packages.

2. Basic Steps in Grid Generation

There are some basic steps in constructing a grid that are common to many
of the grid generation approaches.

(1) As a first step in the grid generation process, the geometry of the region
to be discretized must be defined, that is, the surfaces that make up the
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boundary of the region must be described. The geometry can be represented
in many ways such as with analytic shapes (spheres, cylinders), splines,
NURBS (Non-uniform rational b-splines), and interpolation methods. The
geometry may be constructed within a computer-aided-design (CAD) system
or within the grid generation system itself. Many CAD systems emphasize
solid modelling using analytic shapes and do not cater particularly well to
the creation of grids for flow problems. As a result, many grid-generation
packages provide some level of CAD support.

(2) Given the representation of the surface (as a NURB, for example)
it is often necessary to reparameterize the surface. This step is referred
to as constructing a surface grid. (The cartesian grid approach would not
require this step.) Given a smooth surface, the most widely used CAD rep-
resentations of this surface are only guaranteed to be geometrically smooth
– they are often not parametrically smooth. Thus, if grid lines are drawn
on the surface, equally spaced in parameter space, the lines will not vary
smoothly. Typically the parametric derivatives of the surface will not even
be continuous. By relaxing the requirements of parametric smoothness, it
is easier for the CAD system to represent the surface, but unfortunately
such a representation causes major difficulties for the grid generation sys-
tem. Furthermore, CAD programs often represent complicated surfaces by
multiple patches and these patches may not join properly (there may be
gaps between patches, or the patches may overlap). Grid generators must
carefully examine the surfaces and fix such defects. This is a difficult task
and one that in principle should not be necessary.

Grid generators would like to have parametrically smooth surfaces so that
the grid points vary smoothly over the surface. The smoothing of the surface
parameterization typically involves solving an elliptic like equation on the
surface, or in the case of triangles, shifting vertices according to some av-
eraging procedure. This step will also involve clustering of grid point, such
as around regions of high curvature. Surface grid generation techniques are
usually quite similar to volume grid-generation methods.

(3) The third step is the generation of a volume grid. The procedure
followed at this stage differs significantly between the various grid types,
and will be described in the following sections.

3. Cartesian Grid Generation

Lately there has been renewed interested in the cartesian (cut-out) grid
approach due to its simplicity and ease of automatic grid generation. By
combining the cartesian approach with adaptive mesh refinement, several
of the draw-backs of the technique have been eased, reference, for example,
Berger and Melton (1994), Coirier and Powell (1995). In the cartesian grid
approach the region is covered by a rectangular grid. Domain boundaries
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Fig. 5. Cartesian grid for the F16XL.
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cut-out regions of the grid. The boundaries are not covered by boundary-
fitted grids, but adaptive refinement can be used to improve surface resolu-
tion. Adaptively refined cartesian grids combine elements of structured and
unstructured grids and are perhaps best classified as a hybrid grid. Carte-
sian grid solvers are faster and more efficient than more general unstructured
solvers. Since the grids are all rectangular, much less geometrical informa-
tion needs to be saved and there are significantly fewer operations required
per grid point. Figure (5), shows a cartesian grid for an F16XL, Berger and
Melton (1994).

The main draw-back of cartesian-grid method lies in the representation
of the boundary. There are often small cells formed at the boundary. With-
out special treatment these small cells would force the time-step of a time-
dependent solver to become prohibitively small. Typical applications only
solve problems without boundary layers (Euler equations, for example, as
opposed to the Navier-Stokes equations). Since the boundary is not aligned
with a grid line, in order to resolve a boundary layer it is necessary to refine
the grid in two directions in two-dimensions and three directions in three-
dimensions. In contrast, a three-dimensions boundary fitted grid need only
refine the grid in the direction normal to the boundary. This can be an
important consideration since the boundary layer grid spacing can be more
than 103 times smaller than the spacing away from the boundary.

4. Multi-Block-Structured Grid Generation

In the multi-block-structured grid approach the computational volume is
divided into a set of non-overlapping logically rectangular blocks. A volume
grid is created on each block, (Thompson 1988), (Spekreijse 1995). Usually
global smoothing is performed on the blocks to achieve some degree of con-
tinuity in the grid metrics at the block boundaries. Discontinuities in the
grid spacing at block boundaries can result in poor solutions. Grid lines
may or may not join across blocks; if not, the grid is sometimes called a
patched-grid. Patched-grids require more general interpolation, but this can
easily be made conservative.

The multi-block approach has been popular for many years for aerospace
and other applications. It has improved flexibility over a single logically-
rectangular patch. High-quality grids can be created and solvers are fast
and efficient. Efficient numerical methods such as implicit methods and
multigrid methods work well. Good quality, highly stretched boundary layer
grids can be created. The main disadvantage with the method is that it is
difficult to automate the decomposition of a region into non-overlapping
blocks, especially in three-dimensions. There is some difficulty with moving
geometries since the block decomposition may have to change. Generating a
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Fig. 6. Block decomposition of a water-power station.
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Fig. 7. Corresponding grid.
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multi-block grid for a complicated three-dimensional region usually requires
significant human intervention.

Figures (6) and (7) show a block structure grid for a water-power sta-
tion, (Spekreijse, Boerstoel, Vitagliano and Kuyvenhoven 1992). Figure
(8), showing a a multi-block structured grid for the space shuttle is courtesy
of Steven Alter, Lockheed Engineering and Sciences Company.

4.1. Structured Component Grid Generation approaches

One of the most important parts of structured grid generation (whether
multi-block or overlapping) is the creation of the individual blocks. The
blocks will generally have some or all bounding surfaces specified and the
aim is to create a smooth volume filling grid with appropriate grid spacing
and orthogonality. The most common techniques fall into the following
categories:

• algebraic

• elliptic and variational

• hyperbolic

Algebraic grid generation methods create grids for the interior of a domain
by algebraically combining the representations of the boundary surfaces.
The transfinite interpolation procedure uses polynomials to interpolate the
interior grid from the boundaries, see Thompson et al. (1985). For example,
a two-dimensional grid bounded by the two curves C1(s) and C2(s), can be
created using the simple shearing transformation,

G(r, s) = rC1(s) + (1 − r)C2(s).

Whether the grid is useful depends strongly on the shape and parameteriza-
tion of the curves. Algebraic methods are not as flexible as some of the other
methods but their simplicity and speed of generation makes them popular.

Elliptic generation methods, pioneered by Thompson and co-workers, can
handle more general cases. They can be used to construct high quality grids
on rather complicated domains, reference, for example, (Thompson 1987),
(Sorenson 1986), and (Spekreijse 1995). A Poisson equation is solved to
determine the location of the grid points. This equation commonly takes
the form (in two-dimensions)

∂2ri

∂x2
1

+
∂2ri

∂x2
2

= Pi, i = 1, 2.

where ri are the unit square coordinates, xi are the physical domain coor-
dinates and Pi are the control functions. In practice these equations are
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Fig. 8. Multi-block grid for the space shuttle.
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transformed to make ri the independent variables,

∑

µ,ν

gµ,ν

∂2xi

∂rµrν

+
∑

µ

∂xi

∂rµ

Pµ = 0, i = 1, 2.

Here

gµ,ν =
∂x

∂rµ

·
∂x

∂rν

,

are the coefficients of the metric tensor. The equations are elliptic in nature
and this means that the resulting grid has desirable smoothness properties.
One of the keys to elliptic grid generation is the choice of control functions
which determine the grid point spacing and grid orthogonality. The Poisson
system that needs to be solved can be highly nonlinear, and is difficult
and time consuming to solve. The solution to the system is generally not
guaranteed to produce a single valued grid so care must be taken to prevent
the grid from becoming multi-valued (folding).

The variational approach also produces an elliptic equation whose solution

determines the locations of the grids points, (Brackbill and Saltzman 1982)†

and (Knupp and Steinberg 1993). The equations determining the grid point
locations are derived by forming the Euler-Lagrange (variational) equations
of a functional that measures properties of the grid such as orthogonality, cell
area and smoothness. By weighting these different properties it is usually
possible to obtain a grid with the desired features, although care must be
taken to prevent folding grids.

Hyperbolic grid generation methods solve a hyperbolic set of equations
to grow a grid from a boundary, (Starius 1977) (Chan and Steger 1992).
Figure (9) shows a grid generated in this way, (Chan and Steger 1992).
Typically the hyperbolic system is defined by imposing that the grid lines
be orthogonal,

∂x

∂rµ

·
∂x

∂rν

= 0, µ 6= ν,

and that the cell area is specified
∣

∣

∣

∣

∂x

∂r

∣

∣

∣

∣

= ∆.

Hyperbolic methods usually always add smoothing to prevent grid lines
from prematurely crossing. The outer boundary of the grid is determined
as the equations are solved, and thus this method is of limited use for block
structured grids. It is, however and extremely useful technique in the context
of overlapping grids. The method is must faster than an elliptic method since
the grid is constructed by marching.

† It doesn’t hurt to cite your manager whenever possible.
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Fig. 9. Some sections of a three-dimensional grid for the liquid hydrogen feedline
of the space-shuttle, created with hyperbolic grid generation methods.

5. Overlapping Grid Generation

The overlapping (overlaid, overset or Chimera) grid approach is similar to
the block-structured approach except that the component grids are allowed
to overlap, instead of aligning along block boundaries, reference Steger and
Benek (1987), Chesshire and Henshaw (1990), Meakin (1995), Tu and Fuchs
(1995). This approach has added flexibility over the block-structured tech-
nique while still retaining the efficiency of a set of logically rectangular grids.
The great strength of overlapping grids is that component grids can be cre-
ated in a manner that is relatively independent from the other component
grids. New features can be added to the composite grid in an incremental
fashion and the grid only changes locally. Figure (10), shows part of a de-
tailed overlapping grid for the space shuttle, Gomez and Ma (1994). The
method is also attractive for moving geometries. Figure (11), shows the
overlapping grid used for a moving grid computation, (Meakin 1995).



16 William D. Henshaw

Fig. 10. Overlapping grid for the space shuttle, the three-dimensional grid has
over 16 million grid points.
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Fig. 11. Overlapping grid for the V-22 rotor and flapped-wing, used in a moving
grid computation,

Overlapping grids are not as flexible as unstructured grids. It is difficult
to get very many levels of coarser grids for a multigrid algorithm because the
coarsened grids do not overlap enough. Generally the interpolation between
component grids is not conservative, (Chesshire and Henshaw 1994). In
practice this rarely seems to be an issue. Generally the grid generation
step proceeds in two steps. First, separate component grids are constructed
for the various parts of the geometry, using algebraic, elliptic or hyperbolic
methods. Then given a set of component grids, the grid generation process
of determining how the grids overlap can be entirely automatic. The process
can fail, however, if there is insufficient overlap between components.

In an approach similar to overlapping grids, but one which avoids using
non-conservative interpolation, is the hybrid grid technique as shown in
figure (12)(). The figure is courtesy of Dr. K.H. Kao at Nasa Lewis Research
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Fig. 12. A hybrid grid consisting of structured component grids joined with a
region of triangles.
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Center. The region is covered by overlapping blocks but the grid in the
overlapping area is replaced by an unstructured grid of triangles.

6. Unstructured Grid Generation

Unstructured grids have become very popular in recent years, due both
to the influence of the finite-element method and to the increase in the
power of computers. Unstructured grids and unstructured solvers have suc-
cessfully demonstrated their capabilities to handle complex geometries in
the demanding field of aerospace applications (an area dominated for many
years by structured grids). The most flexible and automatic grid generation
codes create unstructured grids. They are well suited to point-wise adap-
tive refinement and to moving mesh methods. See for example, Shostko
and Löhner (1995), Mavriplis (1995), Hasan, Probert, Morgan and Peraire
(1995), George and Seveno (1994) Lo (1995), Johnson and Tezduyar (1995).

It is difficult to achieve good performance on unstructured grids, more
memory is required and it is quite hard to apply certain fast algorithms
such as implicit methods and multigrid. Attaining performance on vector,
parallel and cache based computer architectures is not easy for solvers us-
ing unstructured grids because these machines prefer that operations be
performed on data that is stored locally in memory. On a unstructured
grid the data belonging to the neighbour of a point may be stored a long
distance away. Moreover, triangular (and tetrahedral) meshes inherently re-
quire more elements and more computations per grid point; in three dimen-
sions, there are some five to six times more tetrahedra per grid point than
on a corresponding mesh of hexahedra. The creation of better-quality grids
for hyperbolic problems and forming highly stretched elements in boundary
layers continue to be active areas of research.

Figure (13) shows a three-dimensional unstructured grid refined near the
boundary, for use in a viscous flow computation. The figure has been pro-
vided by Professor Jaime Peraire.

Figure (14), showing a cross-section of a three-dimensional grid for Yucca
Mountain is courtesy of Harold Trease, Los Alamos National Laboratory.

6.1. Un-structured Grid Generation approaches

Three popular methods for creating unstructured grids are

• Delaunay based point insertion methods
• advancing front methods
• quadtree (octree) type methods

Some of the most successful approaches use features of both the Delau-
nay method and the advancing front method, combining the efficiency of
the former approach with the high element quality of the later. Although
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Fig. 13. Three-dimensional unstructured grid for a viscous flow computation
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Fig. 14. Three-dimensional unstructured grid for Yucca Mountain

quadrilateral (hexahedral) meshes are commonly used for structural prob-
lems, meshes for CFD tend to be based on triangles (tetrahedra) with per-
haps some quadrilateral (prismatic) elements near boundaries. There is
some question as to the accuracy of using very thin tetrahedra meshes in
a boundary layer, sometimes prismatic elements are used in the boundary
layer, see for example Kallinderis, Khawaja and McMorris (1995).

Most triangulation algorithms require there to be a a function that is
defined over the entire domain that indicates the locally suggested value for
the triangle size. This back-ground function is often defined on a back-ground
grid, either an existing triangulation for the region or perhaps a rectangular
grid that has been refined in a quadtree fashion.

6.2. Delaunay Based Methods

The Delaunay triangulation of a set of points has the property that the
circumcircle through the vertices of any triangle contains no other points,
figure (15). The Delaunay approach tends to create triangles that are nicely
shaped. When a region is already filled with a distribution of points then
either an incremental approach based on the Bowyer-Watson algorithm,
Watson (1981), Bowyer (1981), or an advancing-front/Delaunay approach
can be used, Tannemura, Ogawa and Ogita (1983), Merriam (1991).

One of the difficulties of the Delaunay approach is maintaining the in-
tegrity of the boundary. The empty circumcircle property of Delaunay tri-
angulations does not hold at the boundary. Care must be taken to prevent
the formation of triangles whose edges cross the specified boundary. Some-
times this problem is initially ignored, the boundary is fixed up at the end
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Fig. 15. In a Delaunay triangulation the circumcircles through the triangles are
empty of other points

Fig. 16. The incremental Delaunay approach begins from an initial triangulation
and progressively adds points; for example, points may be added at the

circumcentre of the largest circumradius

by swapping edges and perhaps adding new points. Another problem is that
the Delaunay criteria is not appropriate for creating very thin triangles in a
boundary layer, some other condition must be used.

In general the positions of the grid points are not initially specified; they
must be determined as part of the grid generation procedure. Incremental
Delaunay methods start from a very coarse initial triangulation. Points are
added one at a time, and the mesh is locally adjusted so that it remains
Delaunay, using the Bowyer-Watson algorithm, Baker (1992). There are
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Fig. 17. The advancing front method grows triangles from the boundaries

a variety of strategies for deciding where to add successive points. This
point placement strategy can be crucial to the quality of the resulting grid.
One simple strategy involves making a list of all triangles which are too
large compared to the value indicated by the back-ground function and
incrementally adding new points to these triangles, (Holmes and Synder
1988). The resulting grid can depend significantly on the order in which the
list is processed. Another approach is to order the list by triangle size and
add points to the largest triangle first. An alternative algorithm suggested by
Rebay (1993) leads to the triangles being processed along a front that begins
at the boundary. It results in a high quality mesh similar to those produced
with the advancing front method, but without some of the difficulties of that
method.

6.3. Advancing-front

A widely-used method that results in high quality triangulations is the
advancing front method, see for example Löhner and Parikh (1988) and
Marcum and Weatherill (1995). As the name suggests the advancing front
method starts from the boundaries and progressively adds triangles, see
figure (17). The triangulated region grows into the interior, forming a pro-
pogating front. Since the procedure begins at the boundary, the triangles
near the boundary can be constructed to be of high quality, this is an es-
pecially important feature for many PDEs. Furthermore, the integrity of
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Fig. 18. The quadtree decomposition recursively sub-divides the region

the boundary is more easily maintained than with the Delaunay approach.
However, significant care must be taken when the fronts merge, especially
when the elements are of widely varying scale; otherwise the triangles may
overlap, creating an invalid grid. This requires efficient yet robust search
algorithms to determine whether a given point is close to some other part of
the front. Sometimes a local Delaunay approach is used when adding new
points to the front, (Mavriplis 1995) (Müller, Roe and Deconinck 1993).

There are also advancing front type methods that use quadrilaterals, but
these meshes are not usually used for CFD computations, see for example
Blacker (1991).

6.4. Quadtree (Octree)

In simple terms, the quadtree approach proceeds by dividing the region into
four rectangles and then recursively subdividing some of those rectangles
into four additional rectangles, see figure (18). The cell size is reduced to
meet certain criteria and so that the boundary is represented to sufficient
resolution. The cells intersecting the boundary are replaced by polygons
that follow the boundary. If a triangular mesh is required, the rectangles
and polygons can be decomposed into triangles. The quadtree approach is
widely used for structural problems, see for example (Shephard and George
1991). It is also used to create grids for the Cartesian mesh approach,
but is not commonly used to create triangular grids for unstructured flow
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computations. One disadvantage of the approach is that it cannot be made
to conform to a specified boundary tesselation. Furthermore, it is difficult
to control the triangle shape near the boundary.

7. Conclusions

Significant advances have been made in the area of automatic grid generation
in recent years. The most notable accomplishment is the success of the un-
structured grid approach. This flexible approach shows the greatest promise
in achieving the goal of a completely automated grid generation procedure
for general applications. Structured grid methods, although less automatic
(and despite announcements of their death by some in the unstructured
community), will continue to be used due to their superior efficiency and
accuracy. The author’s personal bias is that overlapping grids, or the hy-
brid grid approach that replaces the overlapping region by triangles, have
great potential for many classes of problems since they are quite flexible and
fast. In general, all types of hybrid grids, which combine the best features
of structured grids (speed, quality and efficiency ) with the best features
of unstructured grids (flexibility) will probably be more widely used in the
future. One of the reasons why hybrid grids are not used more is probably
due to the complexity in writing solvers for these grids. Improvements in
software through the use of better computer languages and object-oriented
design should alleviate some of these difficulties.

Despite impressive achievements to date, there is still room for improve-
ment at almost every stage of the grid generation process. For example, the
step of taking a CAD description of the geometry and forming smooth sur-
face grids, is in general very difficult. Designers of CAD systems need to be
more aware of the stringent requirements needed in CFD applications. All
grid generation approaches need to be more automatic, more robust, faster,
and produce better quality grids. It is perhaps not unfair to say that even
the most automatic system of today still requires significant human inter-
vention. Grid generation takes too long and still requires that the person
generating the grid not only be an expert in grids but also an expert in CAD
and solvers.
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A. Arcilla, J. Häuser, P. Eiseman and J. Thompson (1991), Numerical Grid Gener-
ation in Computational Fluid Dynamics and Related Fields, North-Holland,
New York.

I. Babuska, J. Flaherty, W. Henshaw, J. Hopcroft, J. Oliger and T. Tezduyar (1995),
Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Dif-
ferential Equations, Springer-Verlag, New York.

T. Baker (1992), ‘Mesh generation for the computation of flowfields over complex
aerodynamic shapes’, Computers Math. Applic. 24, 103–127.



26 William D. Henshaw

M. Berger and J. Melton (1994), An accuracy test of a cartesian grid method for
steady flow in complex geometries, in Proc. Fifth Intl. Conf. Hyperbolic Prob-
lems.

T. D. Blacker (1991), ‘Paving: A new approach to automated quadrilateral mesh
generation’, International Journal For Numerical Methods in Engineering
32, 811–847.

A. Bowyer (1981), ‘Computing Dirichlet tessellations’, Comput. J. 24(2), 162–166.
J. Brackbill and J. Saltzman (1982), ‘Adaptive zoning for singular problems in two

dimensions’, J. Comp. Phys. 46, 342–368.
J. Castillo, ed. (1991), Mathematical Aspects of Numerical Grid Generation, SIAM.
W. M. Chan and J. L. Steger (1992), ‘Enhancements of a three-dimensional hyper-

bolic grid generation scheme’, Applied Mathematics and Computation 51, 181–
205.

G. Chesshire and W. D. Henshaw (1990), ‘Composite overlapping meshes for the
solution of partial differential equations’, J. Comp. Phys. 90(1), 1–64.

G. Chesshire and W. D. Henshaw (1994), ‘A scheme for conservative interpolation
on overlapping grids’, SIAM J. Sci. Comput. 15(4), 819–845.

W. J. Coirier and K. Powell (1995), ‘An accuracy assessment of cartesian-mesh
approaches for the euler equations’, J. Comp. Phys. 117, 121–131.

P. R. Eiseman (1985), ‘Grid generation for fluid mechanics computations’, Annual
Review of Fluid Mechanics 17, 487–522.

P. George (1991), Automatic Mesh Generation. Applications to Finite Element Meth-
ods, Wiley.

P. George and E. Seveno (1994), ‘The advancing-front mesh generation method revis-
ited’, International Journal For Numerical Methods in Engineering 37, 3605–
3619.

R. Gomez and E. Ma (1994), Validation of a large scale chimera grid system for
the space shuttle launch vehicle, Technical Report AIAA-94-1859, AIAA 12th
Applied Aerodynamics Conference.

O. Hasan, E. Probert, K. Morgan and J. Peraire (1995), ‘Mesh generation and adap-
tivity for the solution of compressible viscous high speed flow’, International
Journal For Numerical Methods in Engineering 38, 1123–1148.

D. Holmes and D. Synder (1988), The generation of unstructured triangular meshes
using delaunay triangulation, in Proceedings, Second International Conference
on Numerical Grid Generation for Computational Fluid Mechanics (S. Sen-
gupta, J. Hauser, P. Eiseman and J. Thompson, eds), Pineridge Press Limited.

A. Johnson and T. E. Tezduyar (1995), Mesh generation and update strategies
for parallel computation of 3d flow problems, in Computational Mechanics
’95: Theory and Applications, Proceedings of the International Conference on
Computational Engineering Science (S. Sengupta, J. Hauser, P. Eiseman and
J. Thompson, eds), Vol. 1, Pineridge Press Limited.

Y. Kallinderis, A. Khawaja and H. McMorris (1995), Hybrid prismatic/tetrahedral
grid generation for complex geometries, Technical Report 95-0211, AIAA pa-
per.

P. Knupp and S. Steinberg (1993), Fundamentals of Grid Generation, CRC Press,
Boca Raton.



Automatic Grid Generation 27

S. H. Lo (1995), ‘Automatic mesh generation over intersecting surfaces’, Interna-
tional Journal For Numerical Methods in Engineering 38, 943–954.
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