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Abstract. We discuss the solution of partial differential equations on over-
lapping grids. This is a powerful technique for efficiently solving problems in
complex, possibly moving, geometry. An overlapping grid consists of a set of
structured grids that overlap and cover the computational domain. By allowing
the grids to overlap, grids for complex geometries can be more easily constructed.
The overlapping grid approach can also be used to remove coordinate singulari-
ties by, for example, covering a sphere with two or more patches. We describe the
application of the overlapping grid approach to a variety of different problems.
These include the solution of incompressible fluid flows with moving geometry,
the solution of high-speed compressible reactive flow with moving rigid bodies
using adaptive mesh refinement, and the solution of the time-domain Maxwell’s
equations of electromagnetism.

1. Introduction

We give an overview of our work on overlapping grids and describe its applica-
tion to the solution of a variety of partial differential equations (PDEs). Our
intent is to provide a flavour of the types of problems that the technique has
been applied to and provide some details on the discrete approximations used.
Our approach is based on the use composite overlapping grids to represent the
problem domain as a collection of structured curvilinear grids. This method,
as discussed in Chesshire and Henshaw (1990), allows complex domains to be
represented with smooth grids that can be aligned with the boundaries. The use
of smooth grids is particularly important for obtaining accurate approximations
to PDEs and boundary conditions. The majority of an overlapping grid often
consists of Cartesian grid cells so that the speed and low memory usage inherent
with such grids is retained. Overlapping grids, also known as Chimera or overset
grids have been used successfully for the numerical solution of a wide variety of
problems, see for example, Meakin (1999); Henshaw and Schwendeman (2008),
and the references therein.

Solving partial differential equations on overlapping grids with moving ge-
ometry and adaptive mesh refinement (AMR) involves considerable program-
ming complexity due to the multiple grids and the curvilinear geometries. In
addition, there is a need for specialized component grid generation and overlap-
ping grid generation algorithms. We have developed a freely available software
framework called Overture that provides support for the solution of PDEs on
overlapping grids. We have also developed a set of composite grid solvers that
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Figure 1. Left: an overlapping grid for three moving valves. Right: contours
of the vorticity at some instant in time computed from the solution to the
incompressible Navier-Stokes equations. The valves move at each time step
according to a specified motion.

are available with the CG software1. These include solvers for incompressible
and compressible fluid flow as well as Maxwell’s equations, as described further
in subsequent sections.

2. Incompressible Flows

We solve the incompressible Navier-Stokes (INS) equations with a pressure-
velocity formulation and a split-step method where the pressure is solved as a
separate step. For a given domain Ω, with boundary ∂Ω, the equations are given
by

ut + (u · ∇)u + ∇p − ν∆u − f = 0, t > 0, x ∈ Ω

∆p + ∇u : ∇u − α∇ · u −∇ · f = 0, t > 0, x ∈ Ω

with some appropriate initial and boundary conditions,

u(x, 0) = uI(x), t = 0, x ∈ Ω,

B
F (u, p) = 0, t > 0, x ∈ ∂Ω .

Here u = u(x, t) is the velocity, p the pressure and ν the kinematic viscosity.
The term α∇ · u in the pressure equation is important to add to the discrete
approximation as it acts as a damping term on the divergence of the velocity. A
second-order accurate and fourth-order accurate scheme have been developed to
solve these equations on overlapping grids, see Henshaw (1994); Henshaw et al.
(1994); Henshaw and Petersson (2003) for more details. There has been some
controversy as to the appropriate boundary conditions to use for the pressure
at no-slip walls. For a no-slip wall we use the following physical boundary

1Overture and CG are available at www.llnl.gov/casc/Overture
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Figure 2. An overlapping grid for the end section of an accelerator cavity
and the computed solution (Ez) for a moving source charge.

conditions (i.e. conditions required by the continuous equations to define a
well-posed problem),

u = 0, ∇ · u = 0, x ∈ ∂Ω,

as well as the numerical boundary conditions (i.e. conditions required by the
discrete scheme to define an accurate and stable approximation),

pn = −n · (ν∇×∇× u + ∂tu + (u · ∇)u),

extrapolate tm · u,

where n is the outward-normal and tm, m = 1, 2 are linearly independent tangent
vectors at the boundary. See Petersson (2001); Henshaw and Petersson (2003)
for a discussion of this boundary condition and the benefits gained from using
the curl-curl operator ∇×∇× u, instead of ∆u, for implicit time-stepping.

The INS equations can be solved on domains with moving boundaries. Fig-
ure 1 shows the overlapping grid and solution from a moving valve computation.
At each time-step the component grids associated with the valves are moved
and the interpolation points are re-computed. The equations on each grid are
solved in the moving coordinate frame associated with the grid. As the grids
move there will be some hidden, unused grid-points that become exposed and
active. Values for these exposed points are interpolated from other valid values
as discussed in Henshaw and Schwendeman (2006).

3. Electromagnetics

The overlapping grid approach has been applied to the solution of Maxwell’s
equations. We solve the time-domain equations in second-order form,

εµ ∂2

t E = ∆E + ∇

(

∇ ln ε · E
)

+ ∇ ln µ ×

(

∇× E
)

−∇(
1

ε
ρ) − µ∂tJ,

εµ ∂2

t H = ∆H + ∇

(

∇ ln µ · H
)

+ ∇ ln ε ×
(

∇× H
)

+ ε∇× (
1

ε
J).
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Figure 3. A shock hitting a collection of moving cylinders. Contours of the
density are shown along with the boundaries of the base grids (in blue) and
the AMR grids (in green). The annular grids around each cylinder can move
at each time step. The AMR grids are recomputed every few time steps based
on a estimate of the error.

A fully fourth-order accurate in space and time approximation has been devel-
oped, Henshaw (2006). The advantage of using the second-order form is that
there is no need to use a staggered grid. In addition, in many cases only the
E field need be solved for. The spatial approximation uses efficient high-order
accurate finite-difference approximations on Cartesian grids and some newly de-
vised high-order accurate symmetric finite-volume approximations for curvilin-
ear grids. The modified-equation time-stepping method is used which provides
fourth-order accuracy in time while using only three levels in time. In addi-
tion, unlike most higher-order time-stepping approaches which require a smaller
time-step for stability as the order increases, the time step for the modified-
equation scheme does not decrease as the order increases. A key component of
the discrete scheme for Maxwell’s equations was the development of accurate
and stable approximations for boundary conditions and material interfaces. We
use high-order centered approximations at boundaries and interfaces that are
derived from the governing equations.

Figure 2 shows results from a computation of a charge source moving
through a section of an accelerator cavity. The overlapping grid for this ge-
ometry was constructed with the aid of the geometry, CAD, and grid generation
capabilities in Overture.

4. Compressible Flows and Adaptive Mesh Refinement

We have developed capabilities to solve the compressible Navier-Stokes equations
and reactive-Euler equations on overlapping grids. The later equations are given
by

∂u

∂t
+

∂

∂x1

F1(u) +
∂

∂x2

F2(u) +
∂

∂x3

F3(u) = H(u),
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Figure 4. Left: the overlapping grid for the quarter-sphere problem consists
of four component grids. Orthographic patches are used at the poles of the
sphere to remove the coordinate singularities. Right: contours of the density
along with the adaptive mesh refinement grids. An incident shock moving
from left to right has diffracted around most of the sphere. A reflected shock
is also shown. The grid shown is coarsened by a factor of 4.
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Here ρ is density, v = (v1, v2, v3) is velocity, p is pressure, E the total energy and
Y the species mass fractions. These equations are discretized with a higher-order
accurate extension of Godunov’s method as described in Henshaw and Schwen-
deman (2003). Adaptive mesh refinement (AMR) is used to add resolution near
sharp features. The approach has been applied to the solution of problems with
moving geometry and the motion of rigid bodies as discussed in Henshaw and
Schwendeman (2006), as well as multi-material flows, Banks et al. (2007) and
detonations, Banks et al. (2008). Figure 3 shows results from a computation of a
shock hitting a collection of rigid cylinders. The figure shows the density of the
gas along with the boundaries of the grids at two different times. Each cylinder
is evolved by solving the Newton-Euler equations for rigid-body motion with
the pressure from the fluid providing the force on the boundaries. An annular
grid surrounds each cylinder and this annular grid can move at each time step.
The AMR grids are also shown in the figure. AMR grids are constructed in the
parameter space of each annular grid as well as on the Cartesian background
grid. The locations of the AMR grids are recomputed every few time steps based
on an estimate of the error.

The solution approach for compressible flows has been extended to three-
dimensions and parallel, see Henshaw and Schwendeman (2008). Figure 4 shows
results from a parallel AMR computation of a shock diffracting from a quarter-
sphere. The overlapping base grids and refinement grids are also shown. Notice
that by using overlapping grids, there are no small cells near the poles of the
sphere. On parallel distributed memory computers, each grid (base grid or AMR
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grid) can be distributed over one or more processors. A modified bin-packing
algorithm is used to load-balance and distribute the grids over the processors.
The approach was carefully validated using the method of analytic solutions and
by estimating the L1- and L2-norm self-convergence rates by solving a given
problem on a sequence of increasingly finer grids.

5. Conclusions

We have given a brief overview of our work on solving PDEs on overlapping
grids. We have shown some of the advantages of this approach for the solution
of problems with complex geometry and for problems with moving boundaries.
Smooth boundary fitted curvilinear grids and Cartesian background grids en-
able accurate and efficient finite-difference and finite volume approximations.
We have described the solution of the incompressible Navier-Stokes equations
using a pressure-velocity formulation. An example solving an incompressible flow
problem with moving valves was shown. The overlapping grid approach has also
been applied to the solution of Maxwell’s equations. We solve the time-domain
equations in second-order form using an efficient fourth-order accurate method.
We use some new high-order accurate and symmetric finite-volume approxima-
tions as well as high-order accurate centered approximations at boundaries and
material interfaces. We have solved high-speed reactive flow problems using
adaptive mesh refinement and moving grids. A high-order accurate extension
of Godunov’s method is used to discretize the reactive Euler equations. An ex-
ample of a shock hitting a collection of rigid moving cylinders was shown. The
AMR approach runs in parallel on distributed memory computers.

In extensions of this work we are developing new approaches for treating
multi-domain, multi-physics applications, such as conjugate-heat-transfer and
fluid-structure problems, where different PDEs are solved in different domains.
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