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Two macro-scale models of high-energy, condensed-phase explosives are considered. The first, called ig-
nition and growth, treats the heterogeneous explosive as a homogeneous mixture of reacting and product
species. The second model treats the explosive as two distinct, but interacting, phases. Both models are
hyperbolic systems of nonlinear partial differential equations involving balance laws of mass, momentum
and energy, and involving assumed constitutive input and reaction kinetics. The two-phase model also
involves stiff relaxation terms and nozzling terms that prevent the equations from being cast in conserva-
tion form. A high-resolution shock-capturing scheme on overlapping grids, with parallel adaptive mesh
refinement, is used to solve the governing equations accurately. The purpose of the paper is to compare
solutions of the two models for macro-scale problems involving detonation initiation and diffraction. This
is done to illustrate strengths and weaknesses of the models, and to suggest modifications and extensions
of the models for further study.
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1 Introduction

High-energy, condensed-phase explosives are heterogeneous materials with a complex microstructure
consisting of crystalline grains of the energetic material held together by an inert plastic binder. In
addition, the microstructure typically contains voids, gaseous pores, metallic particles and other impu-
rities. When an explosive is subjected to a shock of sufficient strength, a detonation (a shock supported
by chemical energy) is initiated. Although the crystalline homogeneous explosive has a high ignition
threshold, relatively weaker stimuli are known to be sufficient to initiate the heterogeneous explosive.
This propensity is attributed to a nonuniform temperature field that occurs when the granular material is
exposed to the initiating shock. Discrete sites, where the local temperature is much higher than the bulk
average, are generated as a result of mechanical processes including friction, pore collapse, shear band-
ing and local plastic deformation. These sites, or hot spots, act as preferred locations of ignition, where
burning commences and then spreads to consume the entire bulk. When averaged over a sufficiently
large scale, this heterogeneous behavior produces an average heat release rate that is a combination of
chemical kinetics at the molecular scale and mechanics at the grain scale. A rational description of
this multi-scale behavior would require an understanding of the underlying processes at each relevant
scale, followed by a procedure of porting this information across the scales to produce a mathemati-
cal model appropriate for the scale of observation. Such a multi-scale description is not available at the
present time, and instead various phenomenological continuum models have been developed to simulate
detonation behavior at the macro (lab) scale.
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Mathematical models of macro-scale behavior of condensed-phase explosives are more or less com-
plex depending on the level of homogenization assumed (either explicitly or implicitly) in their contin-
uum descriptions. One class of models considers the explosive to be a homogeneous mixture of reacting
and product species in local mechanical and thermal equilibrium. A single reaction progress variable
(the mass fraction of product species) is introduced to measure the composition of the mixture at any
point in space and time. The state variables for the mixture are assumed to satisfy balance laws of
mass, momentum and energy, together with an assumed rate equation for the reaction progress variable.
An example of this type of homogeneous mixture model is the well-studied ignition-and-growth (IG)
model, which was proposed originally by Lee & Tarver (1980) and later refined and utilized by Tarver
and colleagues (see Tarver (2005) and the references cited therein). A second class of models assumes
that the reacting and product species retain their constitutive identities so that the explosive is treated
as a two-phase continuum. Balance laws are assumed for each phase separately, and these equations
include source terms representing the exchange of mass, momentum and energy across the interfacial
boundaries between phases. Both phases are taken to be compressible due to the very high pressure
in the system behind the detonating shock. An assumed compaction law and a saturation constraint
complete the set of equations for the model. An example of this latter continuum description is the
well-known two-phase model discussed by Baer & Nunziato (1986).

The equations governing the IG and two-phase models are hyperbolic systems of nonlinear partial
differential equations which may or may not possess a conservation form. These equations require nu-
merical methods to obtain solutions for various initial conditions and flow configurations. In addition
to the usual difficulties associated with discontinuities in the flow (at shocks and contacts), solutions of
interest have thin zones in space and time in which the state variables change rapidly due to chemical
reaction and/or interphase relaxation. Experience has shown that these thin zones must be adequately
resolved in order to obtain solutions accurately. Adaptive mesh refinement (AMR) is essential to com-
pute well-resolved solutions efficiently, and parallel computing is necessary to obtain accurate fine-grid
results for simulations in two and three space dimensions. Various numerical methods have been de-
veloped for macro-scale models with these considerations in mind. The approach used here employs
a high-resolution Godunov-type shock-capturing method on overlapping grids. The basic method with
AMR for the reactive Euler equations is described in Henshaw & Schwendeman (2003), and an exten-
sion for parallel computing is given in Henshaw & Schwendeman (2008). An application of the basic
approach for the IG model is discussed in Kapila et al. (2007) for rigid confinement and in Banks et
al. (2007, 2008) for compliant confinement. An extension of the approach for the equations governing
two-phase flow is described in Schwendeman et al. (2006, 2007) for one-dimensional problems and in
Schwendeman et al. (2010) for two-dimensional problems. Other numerical methods are available for
macro-scale models of the types considered here, and a discussion of these methods may be found in
the references provided in the aforementioned papers.

Assuming that a numerical approach is available to compute solutions accurately, a critical assess-
ment of a macro-scale model can be made by exploring solution behaviors for a range of problem
configurations and by comparing solutions with available experimental data. Of particular interest is the
ability of the model to accurately simulate dynamic phenomenon at the macro scale. Such phenomenon
include detonation initiation, detonation propagation and diffraction, and detonation failure. For the
case of detonation diffraction at a 90◦ corner, for example, it is known that pockets of unburnt explosive
can appear behind the leading shock due to a failure of the detonation in the post-diffracted region. This
macro-scale behavior, resulting in so-called dead zones, has received attention in the literature (see, for
example, the work in Ferm et al. (2001), Souers et al. (2002) and Tarver (2005)), and has been the focus
of our recent work in Kapila et al. (2007) and Banks et al. (2008) for the IG model and in Schwende-
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man et al. (2010) for the two-phase model. The purpose of this paper is to briefly describe this recent
work and to make a critical comparison of the behavior of solutions given by the two models for one-
dimensional detonation initiation and two-dimensional detonation diffraction. Such a comparison sheds
light on the strengths and weaknesses of the two models, and gives an indication of how the models
might be modified or extended to better simulate detonation behavior at the macro scale.

The remaining sections of the paper are organized as follows. In Section 2, we describe the modeling
assumptions and governing equations for the IG and two-phase models. This discussion is followed in
Section 3 by a brief discussion of the adaptive numerical approach used to compute accurate solutions
of the models on overlapping grids. A comparison of numerical simulations of detonation initiation and
diffraction is discussed in Section 4, and concluding remarks are made in Section 5.

2 Mathematical models

In this section, we provide a brief description of the two macro-scale models starting with the IG model
in Section 2.1 followed by the two-phase model in Section 2.2.

2.1 Ignition and growth

The IG model, originally derived by Lee & Tarver (1980) and later refined by Tarver and colleagues,
treats the heterogeneous explosive as a homogeneous mixture of two constituents, the unreacted explo-
sive and the reaction products. The consequences of microstructural heterogeneity, not reflected in the
thermo-mechanical description, are accounted for in an impressionistic way in the formulation of the
reaction rate. Separate Jones-Wilkins-Lee (JWL) equations of state are prescribed for each constituent
(see Fickett & Davis (1979)). These equations have the following mechanical and thermal forms:

ei = ei(pi,ρi), pi = pi(Ti,ρi), i = s or g, (2.1)

where ei is the specific internal energy, pi is the pressure, ρi is the density and Ti is the temperature of
constituent i, either the unreacted solid explosive s or the gaseous products of reaction g. The following
mixture rules define the specific energy e and specific volume 1/ρ of the mixture in terms of the cor-
responding quantities for the constituents and the reaction progress variable λ (the mass fraction of the
product):

e = (1−λ )es +λeg, 1/ρ = (1−λ )/ρs +λ/ρg. (2.2)

It is assumed that both constituents move with the same velocity and that they are in pressure and
temperature equilibrium, i.e. ps = pg = p and Ts = Tg = T . An equation of state for the mixture of
the form e = e(ρ, p,λ ) can be constructed using the equations of state in (2.1) and the mixture rules in
(2.2) together with the assumption of pressure and temperature equilibrium (see Kapila et al. (2007) for
further details).

It is further assumed that the mixture variables satisfy the reactive Euler equations. In two dimen-
sions these equations are

∂

∂ t
u+

∂

∂x1
f1(u)+

∂

∂x2
f2(u) = g(u), (2.3)
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where

u =


ρ

ρv1
ρv2
ρE
ρλ

 , f1 =


ρv1

ρv2
1 + p

ρv1v2
v1(ρE + p)

ρv1λ

 , f2 =


ρv2

ρv1v2
ρv2

2 + p
v2(ρE + p)

ρv2λ

 , g =


0
0
0
0

ρR

 .

Here, (v1,v2) is the velocity, R is the reaction rate and E = e + 1
2 (v2

1 + v2
2) is the total energy per unit

mass.
The chemical reaction rate equation R in the IG model is a pressure-driven rule of the form

R = I(1−λ )b(ρ/ρ0 −1−a)xH(λig,max −λ )

+G1(1−λ )c
λ

d pyH(λG1,max −λ )+G2(1−λ )e
λ

g pzH(λ −λG2,min),
(2.4)

where ρ0 is the ambient density of the solid explosive, H is the Heaviside function, and I, G1, G2, a, b,
c, d, e, g, x, y and z are constants. Three switching constants, λig,max, λG1,max and λG2,min also appear,
and limit the contributions of the three terms to, respectively, a maximum reacted fraction λig,max for
the ignition term, a maximum reacted fraction λG1,max for the first growth term, and a minimum reacted
fraction λG2,min for the second growth term. The constant a in the first term defines a compression
threshold that must be exceeded before ignition will occur. The exponents b, c, d, e and g are topological
constants that mimic the grain-burning configuration. The pressure exponents y and z are measures of
the rate sensitivity of the reaction rate. The three terms are designed to model the three stages of reaction
that are believed to occur in shock initiation and propagation of detonations in heterogeneous explosives.

The IG model involves a large set of parameters whose values are chosen based on calibrations with
experiments. For example, the equation of state for the reactant is fitted to available shock-Hugoniot
data and the product equation of state is fitted to data from cylinder tests and other metal acceleration
experiments. The parameters for the reaction rate are fitted to experimental measurements involving
detonation initiation and propagation (see Tarver (2005) and Kapila et al. (2007)).

2.2 Two phase

We now consider a model that treats the solid reactant and the gaseous product as distinct phases.
The equations for this model consist of balance laws of mass, momentum and energy for each phase
separately, plus an equation that allows compaction of the solid phase driven by the pressure difference
between the phases. Terms representing interfacial exchange of mass, momentum and energy appear,
corresponding to the nonequilibrium processes of reaction, drag and heat transfer. Several models of this
kind have been proposed in the literature. The pioneering work is that due to Baer & Nunziato (1986),
who formulated the first two-phase continuum description of high-energy explosive materials. Also
noteworthy are the contemporaneous study by Butler & Krier (1986), and the later work by Powers
et al. (1990a,b). A critical examination of the model and a study of various reduced sub-models is
discussed by Bdzil et al. (1999), Kapila et al. (1997) and Kapila et al. (2001). Also, similar models
have been proposed by Saurel and collaborators; see Saurel & Abgrall (1999) and Saurel & Lemetayer
(2001), and the extensive bibliographies therein.

For the present discussion, we consider the two-phase Baer-Nunziato model as modified in Bdzil et
al. (1999). In two dimensions the governing equations for this model may be written in the form

∂

∂ t
u+

∂

∂x1
f1(u)+

∂

∂x2
f2(u) = h1(u)

∂ ᾱ

∂x1
+h2(u)

∂ ᾱ

∂x2
+k(u), (2.5)
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where

u =



ᾱ

ᾱρ̄

ᾱρ̄ v̄1
ᾱρ̄ v̄2
ᾱρ̄Ē
αρ

αρv1
αρv2
αρE


, f1 =



0
ᾱρ̄ v̄1

ᾱ(ρ̄ v̄2
1 + p̄)

ᾱρ̄ v̄1v̄2
ᾱ v̄1(ρ̄Ē + p̄)

αρv1
α(ρv2

1 + p)
αρv1v2

αv1(ρE + p)


, f2 =



0
ᾱρ̄ v̄2

ᾱρ̄ v̄1v̄2
ᾱ(ρ̄ v̄2

2 + p̄)
ᾱ v̄2(ρ̄Ē + p̄)

αρv1
αρv1v2

α(ρv2
2 + p)

αv2(ρE + p)


,

h1 =



−v̄1
0
p
0

v̄1 p
0
−p
0

−v̄1 p


, h2 =



−v̄2
0
0
p

v̄2 p
0
0
−p
−v̄2 p


, k =



F +C /ρ̄

C
M1
M2

E − pF
−C
−M1
−M2

−E + pF


.

Here, α , ρ , (v1,v2), p and E denote the volume fraction, density, velocity, pressure and the total energy,
respectively. Overbars are used to indicate solid phase variables while gas phase variables have no
overbars. The total energies are given by

E = e+
1
2

(
v2

1 + v2
2
)
, Ē = ē+

1
2

(
v̄2

1 + v̄2
2
)
,

where e and ē are specific internal energies. The latter quantities are specified by equations of state for
each phase. For example,

e =
p

(γ −1)ρ(1+bρ)
, ē =

p̄+ γ̄π

(γ̄ −1)ρ̄
+ B̄(ᾱ)+ q̄, (2.6)

where γ and γ̄ are ratios of specific heats, b is a virial gas coefficient, π̄ is a constant stiffening pressure
for the solid phase, q̄ is the heat release associated with the conversion of solid explosive to gaseous
product, and B̄(ᾱ) is the compaction potential. The compaction potential accounts for the configuration-
dependent energy of the solid (see Bdzil et al. (1999)), and the specific choice used here follows that in
Schwendeman et al. (2007, 2010). The system is closed by including the saturation constraint α +ᾱ = 1.

Source terms representing interactions between the phases appear on the right-hand side of the gov-
erning equations. The terms given in hi(u)ᾱxi , i = 1 and 2, are the so-called nozzling terms. They arise
naturally in the model and describe momentum and energy exchange between the phases as the result
of an effective change in the cross-sectional area of a virtual stream tube in the gas phase. The terms
in k(u) represent compaction, F , compaction work, pF , and an exchange of mass, momentum and
energy between phases given by C , (M1,M2) and E , respectively. A number of choices for C can be
made depending on the assumed kinetics of the chemical reactions. Following Baer & Nunziato (1986),
one possible choice is

C = −σᾱρ̄(p− pign)z, (2.7)
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where σ > 0 is a rate constant, pign is an ignition pressure and z is a constant pressure exponent. The
other quantities in k(u) are assumed to have the form

F = αᾱ(p̄− p− β̄ )/µc, Mi = v̄iC +
(
δ + 1

2C
)
(vi − v̄i),

E = (Ē +β/ρ̄)C +
(
δ + 1

2C
)(

(v1 − v̄1)v̄1 +(v2 − v̄2)v̄2
)
+H (T − T̄ ),

(2.8)

where β̄ = ᾱρ̄B̄′(ᾱ) is the configuration pressure, µc is the compaction viscosity, δ is the drag co-
efficient, H is the heat-transfer coefficient, and T and T̄ are the temperatures of the gas and solid,
respectively.

The two-phase model also requires values for several parameters. These include parameters for the
equations of state in (2.6), which are taken to be extensions of ideal equations of state unlike the more
complicated JWL forms for the IG model. In addition, a choice of parameter values is needed for the
pressure-dependent reaction rate in (2.7) and for the exchange source terms in (2.8). The two-phase
model has not been subjected to the same level of calibration as compared to the IG model, and so less
information is available in the literature regarding choices for the parameters. Following the approach
used in Schwendeman et al. (2007), values for the parameters in the equations of state are chosen
to match sound speeds and steady detonation velocities for a typical PBX-type explosive. Values for
the parameters in the exchange source terms are chosen based on the available estimates found in the
literature (see Schwendeman et al. (2007) and the references cited therein).

3 Adaptive numerical approach

The equations governing the IG and two-phase models are hyperbolic systems of nonlinear partial dif-
ferential equations. These two systems can be written in the general form

∂

∂ t
u+

∂

∂xi
fi(u) = Ai(u)

∂

∂xi
u+b(u), (3.1)

with Einstein summation convention used. Here, u denotes the state variables, fi the conserved fluxes,
Aiuxi the non-conservative nozzling terms (for the two-phase model), and b the non-differentiated source
terms. Our numerical approach for (3.1) is a high-resolution shock-capturing method on overlapping
grids. The basic approach with AMR is described in Henshaw & Schwendeman (2003) for the reactive
Euler equations, and its extension to parallel computing is discussed in Henshaw & Schwendeman
(2008). Application of the numerical approach is described in Kapila et al. (2007) and Banks et al.
(2007, 2008) for the IG model and in Schwendeman et al. (2006, 2007, 2010) for the two-phase model.
Since the numerical method is discussed in detail elsewhere, we provide only a brief summary of the
approach here.

An overlapping grid consists of a set of structured curvilinear component grids that together cover
the domain of interest and overlap where they meet. Each component grid is defined by a mapping
from physical space to computational space, the unit square for two-dimensional problems, and an
exact transformation of (3.1) is made to this unit computation domain. The numerical solution of the
mapped equations is advanced on each component grid using a second-order slope-limited extension
of Godunov’s method. For the two-phase model, solutions of the associated Riemann problems for
Godunov’s method are used to evaluate the non-conservative nozzling terms. The non-differentiated
source terms are integrated numerically using a second-order Runge-Kutta error-control scheme. The
numerical solution on the boundaries of each component grid is obtained either by interpolation at grid
overlaps or by boundary conditions at physical boundaries.
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FIG. 1. Geometric configuration of the corner-turning problem.

The overlapping grid covering the domain of interest (such as that shown in Figure 1) forms the base
grid for AMR. Refinement grids are built on top of the base grid in a hierarchical fashion according to
an estimate of the error. The solution in the vicinity of shocks and contact discontinuities is represented
on the finest grid level, and refinement grids are also generated near sharp layers of reaction and/or
interphase relaxation, so that a well-resolved numerical solution on the grid is obtained economically.
In addition, each grid in the AMR system may be partitioned and computed in parallel. The partitioning
of the grids and their distribution amongst a set of processors is done using a load-balancing algorithm.
The parallel, AMR approach provides good speed up of the calculations, so that well-resolved solutions
are obtained for the results discussed below.

4 Corner-turning simulations

In this section we describe numerical simulations of detonation initiation and diffraction. The geometry
of the problem is shown in Figure 1. The explosive consists of two sections, a donor charge to the
left and an acceptor charge to the right, which are connected at x = 0. A plane of symmetry for this
two-dimensional configuration exists at y = 0. The explosive is bounded by an inert confining material,
which for the present discussion is taken to be rigid. (The case of compliant confinement is discussed
in Section 5.) A detonation is initiated in the donor charge at the far left and it propagates to the right
towards the acceptor charge. Upon entering the acceptor charge, the detonation wave diffracts as it
turns the 90◦ corner. The leading shock of the diffracted wave weakens in the acceptor charge due to
geometric expansion. The rate of reaction behind the weakened shock slows, and the detonation may
fail if the rate of reaction becomes too slow so that the reaction zone separates from the leading shock.
Our primary focus here is on the evolution to detonation and on the behavior of the diffracted detonation
as determined by the two models.

Experimental and numerical studies of detonation diffraction and corner turning exist already in the
literature. Experimental investigations of corner turning have been carried out by Ferm et al. (2001),
Souers et al. (2002) and Tarver (2005), among others, for various explosives and geometric configu-
rations. (The configuration shown in Figure 1 follows the work in Ferm et al. (2001).) These studies
indicate that detonation failure and dead zones can occur in the post-diffracted region for PBX-type ex-
plosives. Numerical studies of detonation diffraction for rigidly confined corner-turning configurations
appear in Kapila et al. (2007) for the IG model and in Schwendeman et al. (2010) for the two-phase
model. For the IG model, it was found that while the detonation may fail temporarily in the post-
diffracted region, the unreacted material reignites either by a process of self-ignition or by the passage
of a laterally propagating detonation. In contrast to this behavior, it was found that a sustained dead zone
can form for certain choices of the rate parameters of the two-phase model. While detailed discussions
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of the behavior of the detonation for various corner-turning configurations may be found in Kapila et
al. (2007) and Schwendeman et al. (2010), a head-to-head comparison of the behaviors determined by
the IG and two-phase models has not been made, and this is the main objective of the discussion in this
section. Before embarking on such a comparison, it should be noted that the aim here is not to attempt
to match parameters of the models so that the solution behaviors are as close as possible, but rather to
compare the behaviors for representative parameter sets used in the literature. The idea is to highlight
and compare various basic features of the solutions so that strengths and weaknesses of the models can
be identified. This exercise may then lead to suggestions for modifications or extensions of the models,
which in turn may prompt further investigations.

4.1 Evolution to steady planar detonation

The corner-turning problem described above can be considered in two stages. The first stage involves
the formation of a steady Chapman-Jouguet detonation wave in the donor charge, while the second stage
involves the diffraction of the detonation wave in the acceptor charge. We begin here with a comparison
of numerical simulations for the first stage; a discussion of the second stage is given in Section 4.2
below.

Following our previous work, we consider the evolution to detonation due to the impact of a piston
with a given velocity Vp at the left end of the donor charge. For the IG case, we choose Vp = 1075.2 m/s
which corresponds to the low-speed case discussed in Section 7.1 of Kapila et al. (2007). The parameter
set used for the IG model is the “detonation propagation” set given in Tarver (2005) for the explosive
LX-17. The plots on the left of Figure 2 show the behavior of the pressure p for the homogeneous
mixture and the reaction progress variable λ . The latter quantity is zero for the unreacted solid and
one for the gaseous product of combustion. In these plots, x measures distance from the piston face
in the reference frame of the piston. The sudden impact of the piston at t = 0 generates a shock that
propagates to the right away from the piston face. The strength of the shock is sufficient to raise the
density ρ behind it so that the fractional change ρ/ρ0 − 1 is greater than the compression threshold
a = 0.22 of the ignition reaction in (2.4). As a result, the reaction turns on behind the shock. The
rate of reaction is slow at first as seen by the low values of λ at early times. As time increases, the
rate of reaction also increases to consume more of the explosive, especially near the piston face. The
pressure increases near the piston face as a result of the growing reaction there, and a pressure pulse is
generated which moves away from the piston face. The pressure pulse strengthens to form a detonation
behind the leading shock, which is well established by the final time t = 1.7 µs shown in the plots on
the left. Eventually, the detonation overtakes the leading shock, and a steady detonation is established.
Further details of this evolution and a discussion of a second case for a larger value for Vp may be found
in Kapila et al. (2007).

The plots on the right of Figure 2 show a representative simulation of the evolution to detonation
for the two-phase model. This calculation uses Vp = 1600 m/s and the parameter set given by Case II
in Schwendeman et al. (2010). For the two-phase model, the pressure p̄ of the solid phase and pressure p
of the gas phase are both computed as part of the solution. For purposes of comparison, these may be
combined to define a mixture pressure pm given by

pm = ᾱ p̄+(1− ᾱ)p,

where ᾱ is the volume fraction of the solid phase. This mixture pressure is shown in the upper-right
plot of Figure 2, and its behavior may be compared with that given by the single (mixture) pressure p
obtained from the solution of the IG model and shown in the plot next to it. For both calculations,



A Comparative Study of Two Macro-Scale Models of Condensed-Phase Explosives 9 of 17

0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

m
ix

tu
re

 p
re

ss
u

re

x

=1.7t

0 1 2 3 4 5 6 7

0

5

10

15

20

25

m
ix

tu
re

 p
re

ss
u
re

x

=1.5t

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

x

re
ac

ti
o
n
 p

ro
g
re

ss

=1.7t

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

x

s
o
li

d
 v

o
lu

m
e
 f

ra
c
ti

o
n

=1.5t

FIG. 2. Evolution to detonation for the IG model (left) and the two-phase model (right). Pressures are given in GPa and distance
is given in mm. The time interval between solution curves is 0.1 µs.

the impact generates a shock which travels to the right. For the two-phase case, a compaction layer
described by an increase in ᾱ can be identified behind the shock. This compaction of the solid grains,
whose leading edge moves with the shock, squeezes the gas and increases its pressure to a value above
the ignition-pressure pign of the two-phase reaction rate in (2.7). The reaction first turns on at the piston
face which causes ᾱ to decrease and pm to increase there. This increase in pressure is similar to that
observed for the IG case. The increasing rate of reaction leads to the formation of a pressure pulse
and the generation of a secondary shock in the compaction layer behind the leading shock. Although
it is not clear from the plot of pm, a closer inspection of p and p̄ individually (not shown) reveals that
the leading shock is a shock in the solid phase while the secondary shock behind it is a shock in the
gas phase. This is an example of the level of detail available in the solution of the two-phase model,
which provides a richer description of the evolution beyond that given by the simpler IG model. By the
final time t = 1.5 µs shown in the figure, the secondary shock is well established and is moving with a
velocity sufficient to overtake the leading shock. A steady detonation wave (shown below) is established
at a later time after the secondary shock with the reaction zone behind it has overtaken the leading shock
created by the piston impact.

Figure 3 shows the steady detonation profiles for the two models with their chosen parameter sets.
The plot in the upper left shows the pressure p and reaction progress λ for the detonation profile given
by the IG model, while the plot in the lower left shows the corresponding behavior of the three terms
in the IG reaction rate in (2.4). For these plots, distance is measured from the leading shock of the
detonation and pressure is scaled by pmax (equal to 35.0 GPa for the IG case). The left edge of the
steady profile is taken to be the position where λ = 0.99. The profiles for p and λ in the reaction zone
behind the leading shock of the steady detonation consist of three parts corresponding to the three stages
of the IG reaction rate. The first part occurs immediately behind the leading shock where there is a very
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FIG. 3. Steady detonation profiles for the IG model (left) and the two-phase model (right). Pressures are scaled by pmax (equal
to 35.0 GPa for the IG case and 29.6 GPa for the two-phase case). Distance is measured in mm from the leading edge of the
detonation. Rates are given in (µ s)−1. (The IG ignition and first growth rates are scaled by 10 and the two-phase reaction rate is
scaled by 5 for illustrative purposes.)

narrow interval of x over which the ignition reaction is turned on. The rate of this reaction of very high
due to the very large value for the rate constant I, but it turns off quickly when λ = λig,max = 0.02 (for
the LX-17 parameter set). The majority of the solid explosive is consumed in the second part of the
profile where the first growth term is active for λ 6 λG1,max = 0.8. The consumption of explosive occurs
slowly over the third part of the profile for λ > λG2,min = 0.8 due to the relatively small value for G2 for
the second growth term. (See Tarver (2005) and Kapila et al. (2007) for a further interpretation of these
three terms.) Throughout the steady profile, the pressure decreases monotonically from its peak value
at the von Neumann state just behind the leading shock. The kinks in the profile of pressure occur at
the switches between terms in the IG reaction rate (most noticeable at the switch between the first and
second growth terms).

The behavior of the solid-phase pressure p̄, the gas-phase pressure p and the volume fraction of the
solid phase ᾱ for the steady detonation profile of the two-phase model is shown in the upper-right plot of
Figure 3. The leading shock of the steady profile is marked by a jump in the pressure of the solid phase.
This increase in pressure creates a layer of compaction behind the leading shock which serves to increase
the gas-phase pressure. The leading edge of the reaction zone occurs at the end of the compaction layer
and is marked by a shock in the gas phase as seen by the jump in the profile for p. Behind the shock in
the gas phase, the profile of ᾱ decreases due to the consumption of the solid explosive by the reaction.
The left edge of the steady structure shown in the plot is given by the position were ᾱ = 0.01. The plot
in the lower right of Figure 3 shows the behavior of the reaction rate C defined in (2.7), the compaction
rate F defined in (2.8), and the drag given by δ (v− v̄), where δ is the drag coefficient and v and v̄ are
the velocities of the gas and solid phases, respectively. The rate of compaction is large immediately
behind the leading shock due to the large difference in pressures of the two phases. A spike in the drag
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FIG. 4. Detonation diffraction for the IG model. Shaded contours of pressure in GPa (top row) and reaction progress (bottom row)
for t = 0.4, 0.8 and 1.0 µs (left to right).

occurs at the leading edge of the reaction zone. This is a result of a velocity disequilibrium caused by
the sudden increase in gas production due to chemical reaction behind the gas shock. The reaction rate,
strongest at the gas shock, tails off as the solid phase is converted to gas. It is worth noting that the
length of this steady “compaction-led” structure shown for the two-phase model is approximately three
times greater than that shown for the IG model. This, and other features of the steady structures, depend
on the choice of parameters for the two models. For example, other choices of the parameters for the
two-phase model result in a “reaction-led” profile in which a shock in the gas phase and the reaction
zone behind it lead the steady structure (see Schwendeman et al. (2007) for further details). Again, no
attempt has been made to choose parameters to best match the solution behaviors of the two models.
Instead, our focus is on the differences in the steady structures for representative sets of parameters,
and how the structure of the detonation as determined by the two models plays a role in the subsequent
diffraction and possible failure.

4.2 Detonation diffraction

We now turn our attention to the behavior of the detonation upon entering the acceptor charge in Fig-
ure 1. For this discussion, we take t = 0 to be the time when the steady detonation reaches the junction
between the donor and acceptor charges. Figure 4 displays shaded contours of pressure p and reaction
progress λ at three successive times for the IG model. The leading shock of the detonation appears in
the plots of p as a jump in color from deep blue for the ambient state to a warmer color depending on
the strength of the shock. The reaction zone behind the leading shock is best viewed in the plots of λ ,
and it appears as a transition layer in color from deep blue (solid explosive) to pink (gaseous product).
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FIG. 5. Detonation diffraction for the two-phase model. Shaded contours of gas-phase pressure in GPa (top row) and solid volume
fraction (bottom row) for t = 1.5, 2.5 and 3.5 µs (left to right).

At the earliest time, t = 0.4 µs, we observe that the leading shock has weakened along the vertical wall
and the reaction zone is lagging behind it. As a result, there is a small region of compressed explosive
in which the reaction there is weak or perhaps turned off altogether. At the next time shown, t = 0.8 µs,
we note that a ridge of increased pressure has formed behind the leading shock. This ridge suggests that
the reaction was not turned off, but rather was slowed and has now strengthened to create a pressure
pulse similar to that observed in the evolution to detonation shown in the upper-left plot of Figure 2.
The pressure pulse continues to strengthen with time and ultimately reaches the leading shock along the
vertical wall by the final time shown, t = 1.0 µs. This process of self-ignition consumes the temporary
pocket of unreacted explosive along the vertical wall, and ultimately leads to a diverging detonation in
the acceptor charge with no sustained dead zone observed.

An analogous corner-turning simulation for the two-phase model is shown in Figure 5. In this figure,
we show shaded contours of the gas-phase pressure p (top row) and the solid volume fraction ᾱ (bottom
row) for three successive times. The plots of pressure show a diverging shock in the gas phase, and
indicate regions behind the shock where p is greater than pign = 10.2 GPa so that the two-phase reaction
rate is turned on. The plots of the solid volume fraction show a (pink) compaction layer at the front
of the diverging detonation and a layer of decrease in ᾱ through the reaction zone. At the earliest
time shown, t = 1.5 µs, we observe that the compaction layer is thicker near the vertical wall and the
gas shock behind it triggers only a very brief reaction. As a result, a small triangular-shaped pocket
of partially-reacted explosive forms. As the detonation continues to diverge, this dead zone near the
vertical wall grows, and there is no indication of any mechanism that would lead to a re-ignition of the
partially-reacted material. The appearance of this sustained dead zone is qualitatively similar to that
observed experimentally in Ferm et al. (2001).
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FIG. 6. Flow behavior along the vertical wall for the IG model (left) and the two-phase model (right). Distance along the wall
is measured in mm from the 90◦ corner. Density is scaled by ρ0 = 1905 kg/m3 and pressure is scaled by pign = 10.2 GPa. The
dashed black lines indicate reaction thresholds. The time interval between solution curves is 0.1 µs for the IG case and 0.5 µs for
the two-phase case.

A closer look at the behavior of the flow along the vertical wall downstream of the corner provides a
better understanding of the mechanisms leading to the re-birth of the detonation for the IG case and the
sustained failure for the two-phase case. For the IG case, we show in Figure 6 the behavior of the scaled
density ρ/ρ0 and the reaction progress λ for t = 0.4,0.5, . . . ,1.0 µs. In the plot of density, we also
indicate the value of the ignition threshold 1+a = 1.22 for the IG reaction rate in (2.4). At the earliest
time shown, we see that while the leading shock is weak, it does provide a sufficient compression so that
the scaled density jumps to a value above the ignition threshold behind the shock. Thus, the reaction is
turned on behind the shock, but the rate is very slow as indicated by the near-zero values for λ in the
region immediately behind the shock. The gap between the leading shock and the fully reacted material
behind it corresponds to the small pocket of unreacted material behind the shock observed in the shaded
contour plots of Figure 4 for t = 0.4 µs. As time proceeds, we see that the scaled density begins to grow
behind the shock indicative of a growing reaction rate there. This growth is seen clearly in the increasing
values of λ and leads to the re-birth of the detonation behind the leading shock. This behavior is similar
to that discussed earlier for the impact problem and shown in Figure 2. The reborn detonation travels
faster than the leading shock, and ultimately overtakes it leading to a detonation propagating down the
vertical wall into the quiescent explosive. It is worth noting that for other corner-turning configurations,
the scaled density behind the leading shock can fall below the ignition threshold in the post-diffracted
region so that the reaction is turned off there, at least temporarily. In particular, for a 140◦ corner it is
found that re-ignition does not occur along the wall, but rather a detonation is born in a region away
from the wall and then it propagates laterally to consume the unreacted material behind the leading
shock near the wall. Again, the ultimate behavior is a diverging detonation in the acceptor charge with
no sustained dead zone behind it (see Kapila et al. (2007) for further details).
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For the two-phase case, we show the behavior of the gas pressure p (solid curves) and the solid
pressure p̄ (dashed curves) both scaled by pign along the vertical wall in the upper-right plot of Figure 6.
Solution curves are plotted for t = 1.0,1.5, . . . ,3.5 µs, and the ignition threshold p/pign = 1 for the
two-phase rate in (2.7) is also shown. The wave structure is led by a shock in the solid phase which is
followed by a compaction in which ᾱ increases from its ambient value to a value near one (as shown
in the lower-right plot of the figure). This part of the wave structure is similar to that for the steady
detonation structure shown in Figure 3, except that the jump in the solid pressure at the shock is much
smaller (by a factor of nearly 4). There is a shock in the gas phase at the end of the compaction layer
which has a peak value greater than the ignition threshold indicating that the reaction turns on. However,
the gas pressure decreases rapidly from its peak value near 1.7 to a value below the ignition threshold.
Thus, the reaction is on, but only for a very brief interval of time. The result is that the solid volume
faction decreases abruptly from its near-one value at the rear of the compaction layer to a value of
approximately 0.9 where the reaction turns off. This pocket of partially-reacted explosive along the wall
grows with time, and there is no sign of any further mechanism of re-birth so that this material can be
considered a sustained dead zone.

It is important to note that the behavior of the detonation in the post-diffracted region is very sensitive
to the choice of the rate parameters for the two-phase model. For example, if the ignition pressure
pign is decreased by approximately 5% (with the other parameters held fixed), then it is found that
the detonation is reborn in the region near the vertical wall and no sustained dead zones are observed
(see Schwendeman et al. (2010)). The reason for this sensitivity is that the ignition threshold for the
two-phase model is correlated to pressure, which tends to be a sensitive variable. The ignition threshold
for the IG model, on the other hand, is correlated to density which is generally a less sensitive variable.
Thus, the corner-turning behavior and absence of sustained dead zones is found to be robust feature of
the IG model, while a wider range of behaviors are observed for the two-phase model.

5 Concluding remarks

The IG and two-phase models are well known macro-scale models of condensed-phase explosives. The
IG model is representative of a homogeneous mixture model, while the more complicated two-phase
model is one in which the solid and gas phases retain their constitutive identities. Detailed investigations
of the behavior of solutions for a range of problems have been carried out for each model separately
and these appear in the literature. The present discussion has focussed on a comparative study of the
solutions for detonation initiation and diffraction. For detonation initiation it is found that while there
are some similarities in the evolution and steady structures, the detailed mechanisms are different. The
behavior determined for the IG model depends significantly on the assumed three-stage reaction law and
no specific information regarding the interaction between the phases is given. The two-phase model, on
the other hand, describes the interaction between the phases and this behavior plays a significant role
in the evolution and structure of the detonation. Once a steady detonation is established, subsequent
diffraction for the IG case shows weakening of the detonation and temporary failure, but no sustained
dead zones. In contrast, solutions of the two-phase model may or may not show a sustained dead zone
depending on the choice of parameters of the reaction rate law.

The results described here for the corner-turning geometry shown in Figure 1 assume rigid con-
finement. An investigation of detonation propagation and diffraction with compliant confinement is
discussed in Banks et al. (2008) for the IG model, and it is found that the absence of rigid confine-
ment does not affect the outcome of corner turning in a material way; sustained dead zones continued to
elude the IG model. An analogous study of corner turning with compliant confinement for the two-phase
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model has not yet been carried out (to our knowledge), but such a study is under current investigation.
Unlike the IG case, we believe that the behavior of the detonation in the post-diffracted region will be
strongly affected by the choice of confinement due to the sensitive behavior of the gas pressure for the
ignition-pressure rate law.

Dead zones observed in corner-turning experiments are believed to occur as a result of desensitiza-
tion due to compaction of the explosive grains upon passage of the weakened shock in the post-diffracted
region. The reaction rate in the standard IG model does not account for this desensitization, but an ex-
tension of the rate may be considered as is discussed, for example, in de Oliveira et al. (2006). In this
paper, it is shown that sustained dead zones are possible for the IG case with the extended rate law that
models shock desensitization explicitly. For the two-phase model, compaction of the solid is determined
as part of the solution. The compaction of the solid, in turn, plays a role in the behavior of the gas pres-
sure which is lied strongly to the rate of reaction. Thus, shock desensitization is incorporated implicitly
into the two-phase model, and consequently sustained dead zones are observed even for the relatively
simple ignition-pressure rate law assumed. In general, we believe that a higher fidelity in simulation
of macro-scale behavior is possible for the two-phase model upon further calibration with experiment
which may require additional tuning of the constitutive input and reaction rate law.
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