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Abstract

A multi-material two-phase hybrid model of heterogeneous explosives, with a re-
action rate that is proportional to the gas-phase pressure excess above an ignition
threshold, is examined computationally. The explosive is confined within a com-
pliant inert, and the focus is on the behavior of an established detonation as it
rounds a 90◦ corner and undergoes diffraction. The numerical approach, a vari-
ant of Godunov’s method, is designed to capture interfaces between materials that
can undergo phase change, and extends previous work of the authors on rigidly-
confined two-phase detonations. The dependence of the post-diffraction conduct on
the strength of the confinement is explored by holding the reaction-rate prefactor
and the ignition threshold fixed, and considering confiners of two different strengths.
The aim is to determine whether a detonation that turns the corner successfully
when rigidly confined can experience failure when the confinement is compliant.

Key words: Detonation; diffraction; dead zone; compliant confinement; multi-material
two-phase model; interface capturing

1 Introduction

A high-energy granular explosive is a complex material containing polycrys-
talline grains of the energetic component, held together by a polymer and
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possibly containing additives, impurities, voids, gas-filed pores, and the like.
When a detonation is initiated by a stimulus such as a shock, the strongly
heterogeneous material responds nonuniformly. Mechanical processes such as
friction and pore collapse generate hot spots where chemical reaction origi-
nates preferentially before spreading to the bulk. Despite this heterogeneity
at the grain scale, detonation fronts are remarkably smooth and reproducible
when observed at a scale representative of the device, and are thus indica-
tive of an intrinsic homogenization underlying the macro-scale response. Such
complaisant behavior on the part of the explosive, coupled with the impracti-
cability of routine computations that resolve the microstructure, has led to the
development of continuum engineering models at the macro scale. These mod-
els treat the explosive either as a single-phase or a two-phase homogeneous
mixture of reactant and product. Grain-scale processes are introduced as con-
stitutive input, phenomenological rather than founded on a rational, ab-initio
derivation that bridges the scales, and crucially dependent upon calibration
with experiments.

The single-phase approach assumes that the two constituents, the reactant
and the product, are in mechanical and thermal equilibrium and subject to a
single reaction at a rate that attempts to incorporate microstructural effects.
A well-studied example of this approach is the ignition-and-growth model
originally proposed by Lee and Tarver [1] and later refined by Tarver and
colleagues [2,3,4,5]. The two-phase approach recognizes explicitly the porous
nature of the explosive, treating it as a mixture of two distinct but coexist-
ing phases and allowing mutual exchange of mass, momentum and energy
across the interfacial boundaries. Constitutive expressions for the interfacial
exchange supplement the balance laws; they incorporate the micromechanical
submodels and their formulation is constrained by thermodynamic principles.
A prominent example of this approach is the two-phase model considered by
Baer and Nunziato [6].

Given the somewhat ad hoc nature of these models, it is important to assess
how well they perform in capturing and predicting observed phenomena in
complicated geometries. When suitably calibrated, both types of models have
well-replicated various aspects of planar, one-dimensional experiments; see, for
example, Tarver and colleagues cited above for the ignition-and-growth model,
and Baer and collaborators [6,7,8] for the two-phase model. Nonplanar geome-
tries, however, have been a greater challenge. Consider, in particular, the ap-
pearance of dead zones in corner-turning. Experiments have shown that when
a well-established detonation diffracts around a sharp corner, it leaves behind
a sustained pocket of unreacted material, or a dead zone, in the vicinity of the
corner [9,10,11]. In earlier studies we have demonstrated that the standard
ignition-and-growth model does not admit dead zones for either rigid [12] or
compliant [13] confinement. In a later study [14] we considered a modification
of the ignition-and-growth model to account for the effect of desensitization by
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weak shocks, and this enhanced model was shown to be capable of admitting
dead zones. An alternate approach to desensitization was outlined in [15].

In recent work we have focused on the two-phase model and proposed a new
numerical approach for it [16], which is a variant of the Godunov method and
includes a rational treatment of the non-conservative nozzling terms of the
model. We have employed it to examine in detail the initiation and propaga-
tion of a detonation following a weak planar impact in a one-dimensional con-
figuration [17] as well as its possible failure as it negotiates sharp corners and
undergoes diffraction [18]. These investigations assume a pressure-dependent
reaction rate. We find, in particular, that the pressure threshold for ignition
and the reaction-rate prefactor can indeed act in concert to produce dead
zones by themselves, without the introduction of additional mechanisms. The
diffraction study in [18] was restricted, however, to the explosive being con-
fined within rigid walls. In this paper we relax this restrictive assumption and
re-examine the post-diffraction behavior of an established detonation when
the confining walls are compliant. Specifically, we explore whether a detona-
tion that negotiates a sudden expansion successfully when confined rigidly can
fail to do so when confined compliantly.

The explosive geometry is taken to be a slab with a sudden expansion, i.e., a
narrow donor charge attached to a wider acceptor charge. The entire slab is
surrounded by an inert, deformable medium whose lateral dimensions are large
enough so that its outer boundary does not influence the computation over the
time of interest. This configuration, motivated by the experiments of Ferm et
al [9], is similar to that employed in [18]. The compliant confinement is chosen
to be strong enough so that a steady, curved detonation is established in the
donor charge by means of a high-pressure booster. As the detonation crosses
into the acceptor charge, experiments show that upon diffraction the reaction
zone peels away from the leading shock as the detonation goes around the
corner, leading to the appearance of a dead zone in the vicinity of the corner.
We demonstrate that while a rigid confinement tends to suppress dead zones,
a compliant confinement can indeed promote their development.

The presence of the compliant confiner requires that the aforementioned nu-
merical procedure designed for the two-phase reactive model be suitably ex-
tended to accommodate what is now a more complex system. The extension
must ensure, in particular, that the interface separating the explosive and
the confiner is computed accurately and robustly. This is done by treating
the explosive-confiner system as a two-phase, two-material, hybrid mixture,
so that the same set of equations apply everywhere in the domain. The two
materials are the explosive and the confiner, and the term hybrid signifies
that the explosive component is itself a two-phase mixture composed of the
energetic solid and the product gas. The composition of the system is specified
by a pair of material variables that advect with the solid-phase velocity. (A
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more general situation involving multiple materials that would arise, for ex-
ample, when there are inert inclusions embedded within the explosive, can be
treated in a similar fashion by introducing additional compositional variables.)
The interface between the explosive and the confiner is captured rather than
tracked, by allowing it to have a finite thickness extending to a few computa-
tional cells in which both constituents coexist simultaneously. In the bulk of
the computational domain outside the thin interfacial zones, a single material
is effectively the lone component. Given the equations of state of the individual
components, construction of the equation of state of the mixture, in general,
requires some closure conditions, i.e., assumptions about mutual interaction
between the constituents such as exchange of momentum and energy. Since the
mixture is introduced purely as a numerical construct designed to facilitate
the treatment of the interface, we are afforded a greater latitude in the selec-
tion of closure conditions. In particular, we base our choice on considerations
of computational convenience and robustness rather than on any preconceived
physics of the interface. Our mathematical formulation further assumes that
certain constitutive parameters advect with the mixture, which follows simi-
lar formulations used by others, see for example the work by Abgrall [19] and
Saurel and Abgrall [20]. The numerical approach used to compute solutions
of the governing equations is a high-resolution Godunov scheme which is an
amalgamation of that described in [18] for the equations modeling two-phase
reactive flow and in [21] for the equations modeling the collapse of a cavity.
The approach employs the exact solution of a Riemann problem to compute
numerical fluxes and to advance the constitutive parameters which determine
the state of the mixture and are governed by non-conservative advection equa-
tions.

The subsequent sections of the paper begin with a discussion of the governing
equations in Section 2. Section 3 describes the configuration, lists the param-
eter set and identifies the reference scales. The numerical method used to
compute solutions of the equations is described in Section 4, and the results
are given in Section 5. Conclusions from our numerical study are drawn in
Section 6.

2 Governing equations

The explosive/confiner system is treated as a multi-material mixture consist-
ing of the explosive and the inert confiner, of which the explosive component is
itself a two-phase mixture composed of the unreacted energetic material and
the detonation product. The detonation product is a gas, and even though we
shall continue to refer to the unreacted material as a solid, it is customary
to model it as a fluid because of the high pressures involved. Each phase of
the explosive obeys separate balance laws of mass, momentum and energy,
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plus an equation that allows compaction of the solid phase driven by the
pressure difference between phases. Terms representing interfacial exchange of
mass, momentum and energy appear, corresponding to the non-equilibrium
processes of reaction, drag and heat transfer.

2.1 Standard two-phase model

We begin by presenting the equations for the explosive component first, and
then consider an extension of the model to include the confiner. The equa-
tions are essentially those first proposed by Baer and Nunziato [6], with some
modifications suggested by Bdzil et al [22], and are the same as were used
in our earlier study [18]. Although the computational configuration is two-
dimensional, we write down the equations in one space dimension for ease of
presentation. Thus,

∂

∂t
u +

∂

∂x
f(u) = h(u)

∂ᾱ

∂x
+ k(u), (1)

with

u =



ᾱ

ᾱρ̄

ᾱρ̄v̄

ᾱρ̄Ē

αρ

αρv

αρE



, f(u) =



0

ᾱρ̄v̄

ᾱ(ρ̄v̄2 + p̄)

ᾱv̄(ρ̄Ē + p̄)

αρv

α(ρv2 + p)

αv(ρE + p)



, h(u) =



−v̄

0

+p

+v̄p

0

−p

−v̄p



, k(u) =



F + C/ρ̄

+C

+M

+E − pF

−C

−M

−E + pF



.

(2)
Here, α is the volume fraction, ρ the density, v the velocity, p the pressure and
E the total energy. The bar superscript denotes solid-phase variables while
gas-phase variables have no superscript. The total energy of each phase is
given by

E = e+
v2

2
, Ē = ē+

v̄2

2
,

where e is the specific internal energy of the gas and

ēs = ē+ B̄(ᾱ) + q̄

is the specific internal energy of the solid. The internal energy of the solid is
the sum of the internal energy of the pure solid ē, the compaction potential
energy B̄(ᾱ) and the heat release q̄. The compaction potential accounts for

5



the configuration-dependent energy of the solid. We take

B̄(ᾱ) =
(p0 − p̄0)(2− ᾱ0)2

ᾱ0ρ̄0 ln(1− ᾱ0)
ln

[(
2− ᾱ0

2− ᾱ

)
(1− ᾱ)(1−ᾱ)/(2−ᾱ)

(1− ᾱ0)(1−ᾱ0)/(2−ᾱ0)

]
,

where the zero subscript denotes quantities given by a reference ambient state.
In addition, we employ a virial equation of state for the gas phase and a
stiffened equation of state for the solid phase so that

e(ρ, p) =
p

(γ − 1)ρ(1 + bρ)
, ē(ρ̄, p̄) =

p̄+ γ̄π̄

(γ̄ − 1)ρ̄
, (3)

where γ and γ̄ are ratios of specific heats, b is a virial gas coefficient, and π̄ is
a solid stiffening pressure. Finally, the volume fractions satisfy the saturation
constraint,

α + ᾱ = 1.

Source terms representing interactions between the phases appear on the right-
hand side of the equations in (2). The terms proportional to ᾱx are the so-called
nozzling terms. They arise naturally in the model and describe momentum
and energy exchange between the phases as the result of an effective change
in the cross-sectional area of a virtual stream tube in the gas phase. The
undifferentiated sources terms on the right-side of (2) represent compaction,
F , compaction work, pF , and an exchange of mass, momentum and energy
between phases given by C, M and E , respectively. A number of choices for
C can be made depending on the assumed kinetics of the chemical reactions.
Following [18] we let

C =


0 if p < pign,

−σᾱρ̄(p− pign) if p ≥ pign,
(4)

where σ > 0 is a rate constant and pign is an ignition pressure. The other
quantities in the source terms are assumed to have the form

F = αᾱ(p̄− p− β̄)/µc, (5)

M = v̄C +
(
δ + 1

2
C
)

(v − v̄), (6)

E = (Ē + β/ρ̄)C +
(
δ + 1

2
C
)(

(v − v̄)v̄
)

+H(T − T̄ ), (7)

where µc is the compaction viscosity, δ is the drag coefficient, β = ᾱρ̄B̄′(ᾱ) is
the configuration pressure, H is the heat-transfer coefficient, and T and T̄ are
the temperatures of the gas and solid, respectively. These temperatures are
given by

CvT =
p

(γ − 1)ρ(1 + bρ)
, C̄vT̄ =

p̄+ γ̄π̄

(γ̄ − 1)ρ̄
,
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where Cv and C̄v are specific heats at constant volume. More details on the
interaction terms can be found in [18].

2.2 Hybrid two-phase mixture model

With the description of the explosive component in place, the equation set
can now be extended to apply to the hybrid mixture. The balance equations
remain the same as in (1) above, but now the solid phase is a multi-component
mixture. The major components are the explosive and the inert confiner. For
the problem at hand there is also a third component, a secondary explosive,
capable of being readily set off so that it acts as a booster charge to initiate
the primary explosive. The distribution of the three components in the mix-
ture is described by the identifier function µ̄0, defined initially over the entire
computational domain as

µ̄0 =


0 in the inert confiner,

1 in the primary explosive, and

2 in the secondary explosive booster.

Across a sharp interface µ̄0 would jump, but here the interfaces though thin
are smeared, and across each interface µ̄0 is prescribed to vary smoothly but
rapidly between the values on either side of the interface. It is also assumed
to advect with the solid-phase velocity, i.e.,

∂µ̄0

∂t
+ v̄

∂µ̄0

∂x
= 0. (8)

Like the primary explosive, the other two solid components, the inert confiner
and the secondary explosive, are also modeled as compressible fluids, each with
a stiffened-gas equation of state of the form (3b). We introduce constitutive
variables µ̄1 and µ̄2, defined by

µ̄1 =
1

γ̄ − 1
, µ̄2 =

γ̄π̄

γ̄ − 1
,

which are also assumed to advect with the solid phase, i.e.,

∂µ̄j
∂t

+ v̄
∂µ̄j
∂x

= 0, j = 1, 2. (9)

The mixture internal energy for the solid phase is determined by

ē =
1

ρ̄
(µ̄1p̄+ µ̄2) + q̄,
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where q̄ is specified by µ0. Initially, the triple (γ̄, π̄, q̄) is defined separately for
the three components as

(γ̄, π̄, q̄) =


(γ̄e, π̄e, Qe) in the primary explosive,

(γ̄b, π̄b, Qb) in the secondary explosive booster, and

(γ̄i, π̄i, 0) in the inert confiner.

3 Configuration, parameter set and reference scales

The configuration under study is illustrated in Figure 1. Only the lower half
below the plane of symmetry is shown. The explosive sample is L-shaped,
with the primary explosive forming the donor and the acceptor segments and
the secondary explosive comprising the booster segment. The inert confiner
encloses the sample. It is noted that in the initial state shown in Figure 1

donor charge

acceptor chargeinert confiner

plane of symmetrybooster charge

Figure 1. Initial configuration for corner turning. A detonation in the donor segment,
initiated by the booster, will propagate to the right and diffract into the acceptor
segment.

the interfaces are sharp and the components are separated, so that there is
no region where two or more solids coexist to form a mixture. In the exact
solution such a state would persist as the flow evolves, but in the numerical
approximation a mixture exists right at the outset as the interfaces are smeared
initially over two or three grid cells. The smeared regions are thin and purely
numerical, and we assign no particular physical significance to the state of the
flow within such regions.

For the computations a representative primary explosive is considered with
the following ambient state:

Gas phase: α0 = .27, ρ0 = 1 kg/m3, p0 = .25225 MPa, T0 = 300 K,

Solid phase: ᾱ0 = .73, ρ̄0 = 1900 kg/m3, p̄0 = 7.6 MPa, T̄0 = 300 K.
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The equation-of-state parameters for the explosive are chosen to be

Gas phase: γ = 1.35, b = 0.001 m3/kg, Cv = 2400 J/(kg K),

Solid phase: γ̄ = 5, π̄ = 3412.4 MPa, C̄v = 1500 J/(kg K),

and the heat release is

q̄ = Qe = 6.65× 106 J/kg.

Two possible types of inert confiner, weak and strong, will be considered.
In either case it is assumed that the confiner is essentially all solid and in
mechanical and thermal equilibrium with the explosive. The weak confiner is
modeled by air-like properties, and the strong confiner is taken to have the
same physical properties as the explosive (with reaction set to zero of course).
In the confiner ᾱ0 ≈ 1 and the equation-of-state parameters are

(γ̄, π̄) =

(5, 3412.4 MPa), strong confinement,

(1.4, 0), weak confinement.
(10)

The secondary explosive in the booster is also taken to be very nearly all solid,
with the same equation of state as the primary explosive but with a higher
heat of reaction, Qb = 2.5Qe, and a very low ignition pressure, pign = 0.

The initial state and the exothermicity of the primary explosive allow its
Chapman-Jouget state to be determined (see [17]). It is found that the CJ
detonation velocity is

DCJ = 7508.8 m/s,

and the corresponding density, velocity, pressure and temperature are

ρCJ = 1906.2 kg/m3, vCJ = 2044.3 m/s,

pCJ = 21.300 GPa, TCJ = 4577.1 K.

The CJ state, along with the choices

tref = 1 µ s, Cv,ref = 2400 J/(kg K), (11)

is chosen to provide the reference scales,

vref = DCJ = 7508.8 m/s, pref = pCJ = 21.300 GPa,

xref = vreftref = 7.5088× 10−3 m, ρref = pref/v
2
ref = 377.78 kg/m3,

Tref = v2
ref/Cv,ref = 23492 K, Eref = v2

ref = 5.6381× 107 J/kg.

(12)
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Param. Value Param. Value

ᾱ0 0.73 γ̄ 5

ρ̄0 5.0293 π̄ 0.16021

p̄0 3.5682e−4 C̄v 0.625

T̄0 1.2770e−2 q̄ 0.11795

ρ0 2.6470e−3 γ 1.35

p0 1.1843e−5 b 0.37778

T0 1.2770e−2 Cv 1

Table 1
Dimensionless upstream state and equation of state parameters.

Dimensionless quantities may now be defined in the usual way by dividing
each dimensional quantity by its corresponding reference scale given in (11)
or (12). The result leaves the governing equations in (1) unchanged. The cor-
responding dimensionless initial state and the equation of state parameters for
the entire configuration are listed in Table 1. In addition, we require dimen-
sionless parameters for the compaction viscosity in (5), the drag coefficient in
(6), and the heat transfer coefficient in (7). For the purposes of this paper,
we choose nominal values from the range of values considered in [17]. These
dimensionless values are

µc = 0.05, δ = 20.0, H = 0.2 .

The remaining parameters of the two-phase model, σ and pign, are needed for
the reaction rate in (4), and these will be chosen later in Section 5 for the
particular numerical experiments studied.

4 Numerical approach

The equations governing the hybrid two-phase mixture model in (1), (8) and
(9) form a hyperbolic system of nonlinear partial differential equations. This
system, extended to two dimensions, can be written in the general form

∂

∂t
U +

∂

∂xi
Fi(U) = Ai(U)

∂

∂xi
U + K(U), (13)

with Einstein summation convention used. Here, U denotes the state variables,
Fi the conserved fluxes, AiUxi the non-conservative nozzling and advection
terms, and K the non-differentiated source terms. Our numerical approach
for (13) is a high-resolution shock-capturing method. The basic approach is
discussed in [18] for the standard two-phase model, and its extension to han-
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dle the advection equations that describe the solid-phase mixture follows the
approach discussed in [21]. The numerical approach employs adaptive mesh
refinement (AMR) following the approach described in [23], and it uses an
extension to parallel computing following the work in [24]. Since the essential
components of the numerical method are discussed in detail elsewhere, we
provide only a brief summary of the approach here.

A Cartesian grid with equal mesh spacings covers the domain of interest and
forms the base grid for AMR. Refinement grids are built on top of the base grid
in a hierarchical fashion according to an estimate of the error. The solution
in the vicinity of shocks and contact discontinuities is represented on the
finest grid level, and refinement grids are also generated near sharp layers
of reaction and/or interphase relaxation, so that a well-resolved numerical
solution on the grid is obtained economically. In addition, each grid in the
AMR system may be partitioned and computed in parallel. The partitioning
of the grids and their distribution among a set of processors is done using a
load-balancing algorithm. The parallel, AMR approach provides good speed
up of the calculations, so that well-resolved solutions are obtained for the
results discussed below.

The numerical solution of the governing equations in (13) are advanced on
the base grid and on each refinement grid using a second-order slope-limited
extension of Godunov’s method. Solutions of the associated Riemann prob-
lems for Godunov’s method are used to evaluate the conservative fluxes and
the non-conservative nozzling and advective terms. We use exact solutions of
the Riemann problems for the numerical scheme as this was found to give
more accurate results than the corresponding ones using approximate Rie-
mann solvers, such as an HLLC solver. The non-differentiated source terms
are integrated numerically using a second-order Runge-Kutta error-control
scheme, and this is incorporated into the scheme using a second-order Strang
time-splitting approach. The essential components of the overall scheme were
shown to be second-order accurate for smooth flows in [18] and [21]. It was
shown further that well-resolved and accurate results were obtained for solu-
tions with shocks, detonations and contacts.

5 Numerical results

The primary goal of this study is to explore the influence of a compliant
confiner on the post-diffraction behavior of the detonation. Accordingly, we
have elected to consider confiners of two different strengths: a strong confiner
whose physical properties are the same as those of the unreacted explosive and
a weak confiner whose properties are those of ambient air. Each is assumed
to have a stiffened-gas equation of state, and the relevant parameters are
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specified in (10). The post-diffraction behavior is also crucially influenced by
the reaction rate, i.e., by the choices of the prefactor σ and the gas-pressure
threshold for ignition pign appearing in expression (4) for the reaction rate.
In [18], four different cases corresponding to different values of the reaction-
rate parameters, listed in Table 2, were considered for investigating the post-
diffraction scenario under rigid confinement.

Case σ pign

I 10 0.45

II 10 0.48

III 25 0.48

IV 25 0.53

Table 2
Reaction pre-factor σ and ignition threshold pign for Cases I, II, III and IV in [18].

It was found that in all cases, diffraction past the corner created a region of
extinguished reaction in the vicinity of the corner, owing to an expansion-
caused drop in the gas-phase pressure below pign at that location. The loss of
reactive support weakened the gas-phase shock even more than the diffraction-
induced expansion alone. Away from the corner the drop in the gas-phase
pressure was less severe and the reaction continued, albeit at a reduced rate.
The reduction in rate caused the gas-phase shock to lose speed, but to a
much lesser extent than in the region away from the corner. A gradient of
shock speed, and an associated gradient of post-shock gas-phase pressure,
setup along the gas-phase shock, drove the reaction-supported segment of this
shock towards the wall, allowing it to overtake the unsupported segment of
the shock there and thereby raising the local gas-phase pressure and reviving
the reaction. The extent of revival depended upon a delicate balance between
the reaction-rate prefactor σ and the ignition threshold pign. For cases I and
III the revival was strong enough to overcome the temporary extinction and
regenerate a detonation, while cases II and IV exhibited sustained regions of
extinguished reaction.

In this paper we undertake an investigation of Case III as an example of a
representative situation that did not exhibit a dead zone under rigid confine-
ment, to determine whether this behavior changes when the confinement is
compliant.

5.1 Rate stick

The corner-turning study assumes that a steady detonation has been estab-
lished in the narrow donor section of the test configuration, otherwise known
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Figure 2. Steady, one-dimensional structure of the rigidly-confined detonation.

as a rate stick, upstream of the corner. A brief description of the structure
of this detonation is given below for case III, σ = 25 and pign = 0.48. It was
shown in [18] that for rigid confinement the steady, planar detonation for this
case has a one-dimensional structure that is compaction-led. In other words,
a lead shock in the solid is followed by a shock in the gas, and between the
two shocks lies a compaction layer in which the solid volume fraction rises
from the ambient value at the solid shock to a maximum at the gas shock, the
peak value being below the full-compaction value of unity. The gas pressure
rises to a level above pign at the gas shock, which then serves as the leading
edge of a reaction zone that extends behind the gas shock and in which the
solid volume fraction declines as the reactant is consumed. The structure is
displayed in Figure 2 where profiles of solid volume fraction, solid pressure
and gas pressure are plotted.

We now turn to the compliantly-confined rate stick. In it the detonation is
initiated, computationally, by the attached booster charge supplying a high-
pressure stimulus (1). The case of strong confinement is considered first, for
which Figure 3 displays shaded contour plots of solid volume fraction and
gas pressure at two different times. These plots show that the initially square
booster region expands rapidly due to the high pressure generated within it,
deflecting the explosive-confiner interface outwards and sending a detonation
traveling in the explosive. As a result of the pressure release at the interface
the detonation front is curved, and the detonation approaches a steady state
as it propagates down the rate stick. The structure of the steady detonation
along the plane of symmetry of the configuration is shown in Figure 4. We note
that the structure is qualitatively similar to the rigidly-confined case shown in
Figure 2, but the detonation speed is slower, the reaction zone wider and the
peak pressures lower in both the solid and the gas. The expanded plots in Fig-
ure 5 show that along the curved detonation front the gas pressure drops from
the plane of symmetry towards the explosive-confiner interface, thereby pro-
gressively weakening the reaction and broadening the reaction zone. Although

13



solid volume fraction0 1 gas pressure0 1.2

Figure 3. Strong confinement: shaded contour plots of solid volume fraction and gas
pressure for t = 1.5 (top) and t = 4.0 (bottom).
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Figure 4. Structure of the strongly-confined detonation at the symmetry plane.

solid volume fraction0 1 gas pressure0 1.2

Figure 5. Expanded views of the wavefront of the strongly-confined detonation at
t = 4.0: shaded contour plots of solid volume fraction (left) and gas pressure (right).

diminished, the gas pressure does not fall below pign and the reaction zone
remains intact.
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The weakly-confined detonation is considered next. Shaded contour plots of
solid volume fraction and gas pressure at two different times are displayed
in Figure 6 and the structure of the steady detonation along the plane of
symmetry of the configuration is shown in Figure 7. Again, the structure is

solid volume fraction0 1 gas pressure0 1.2

Figure 6. Weak confinement: shaded contour plots of solid volume fraction and gas
pressure for t = 1.5 (top) and t = 4.0 (bottom).

qualitatively similar to those for rigid and strong confinements, but the reac-
tion zone is wider still and the gas pressure and solid pressure peaks are yet
smaller. Expanded views of the detonation front in Figure 8 show, as before,
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Figure 7. Structure of the weakly-confined detonation at the symmetry plane.

that as the detonation front curves away from the plane of symmetry the gas
pressure along it drops and the reaction zone widens. For the weak confiner the
gas pressure drops below pign before the confiner-explosive interface is reached,
thereby extinguishing the reaction and leaving a thin layer of unreacted ex-
plosive trapped between the products of reaction and the confiner. In other
words, a thin dead zone at the interface is a part of the steady detonation
structure in the rate stick under weak confinement.
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solid volume fraction0 1 gas pressure0 1.2

Figure 8. Expanded views of the wavefront of the weakly-confined detonation:
shaded contour plots of solid volume fraction (left) and gas pressure (right).

5.2 Corner turning

We now present the results of diffraction as the detonation propagates from
the donor into the acceptor section.

5.2.1 Strong confinement

solid pressure0 1.2 gas pressure0 1.2 solid volume fraction0 1

Figure 9. Strong confinement: solid pressure (left), gas pressure (middle) and solid
volume fraction (right) at t = 2.6 (top frames) and t = 3.0 (bottom frames).

The numerical results for strong confinement are shown in Figures 9, 10 and
11. Figure 9 displays shaded contours of solid pressure, gas pressure and solid
volume fraction at two times, just before and after the detonation front has
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solid pressure0 1.2 gas pressure0 1.2 solid volume fraction0 1

Figure 10. Strong confinement: solid pressure (left), gas pressure (middle) and solid
volume fraction (right) at t = 3.4 (top frames), t = 3.6 (middle frames) and t = 3.8
(bottom frames).

passed the corner. At t = 2.6 the plots show a steady, curved front and a
deflected interface separating the reaction products and the confiner, as was
seen earlier for the rate stick. The solid shock leads the detonation, followed
by the gas shock and then the reaction zone. Sandwiched between the two
shocks is the compaction zone, nearly uniform in width across the detonation
and most clearly seen in the solid volume fraction plot. An important feature
visible in the solid pressure plot is the shock in the confiner which, being
the result of pressure release across the hitherto horizontal interface but not
directly supported by a reaction zone, is noticeably weaker than the solid
shock that leads the detonation. At t = 3.0 the wave has gone past the corner.
The portion of the front near the plane of symmetry is relatively unscathed by
the passage into the acceptor region the but that in the vicinity of the corner
is significantly affected. Two distinct segments now comprise the wavehead.
Starting at the plane of symmetry and proceeding along the front, a bulk of
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solid pressure0 1.2 gas pressure0 1.2 solid volume fraction0 1

Figure 11. Strong confinement: solid pressure (left), gas pressure (middle) and solid
volume fraction (right) at t = 4.0 (top frames) and t = 5.0 (bottom frames).

the wavehead forms a part of the detonation, i.e., the leading solid shock is
supported by the reaction zone. However, the segment of the lead shock close
to the corner and traveling down the left boundary of the acceptor charge is
not a part of the detonation; it is simply a shock transmitted from the inert
into the explosive across the aforementioned boundary. This segment is the
weaker of the two, but is still capable of compacting the explosive. The bulk of
the gas shock is also unaffected by passage across the corner, except for a small
portion near the corner which has undergone diffraction and hence acquired
additional curvature and suffered a loss in strength. Thus, corner turning leads
to the following consequences: an increased separation between the solid and
gas shocks near the corner and hence a wider compaction zone, as well as a
reduced reaction rate behind the gas shock and hence a wider reaction zone.
These features are again best viewed in the solid volume fraction plot.

The frames in Figure 10 display the behavior at three later times. One notes
that at t = 3.4 the gas pressure around the corner has fallen just below the
ignition threshold, leading to extinction of the reaction there. This extinction
is confined to a narrow region and is quite local. Otherwise, on a broad segment
of the inert-explosive interface at the left boundary of the acceptor charge for
example, the gas pressure is high enough so that the reaction, although weak,
is not shut off. In fact, the gas pressure at the gas shock and hence the reaction
rate at that location are showing hints of strengthening. Further evidence of
the revival can be seen in the plot of solid pressure, where an internal high
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pressure ridge has begun to develop behind the wavehead. This revival is
seen to gain vigor at t = 3.6 and at t = 3.8 one clearly sees a secondary
detonation traveling down the explosive-inert interface. This trend continues
in Figure 11, where plots for t = 4.0 and 5.0 are displayed. The secondary
detonation has now overtaken the solid shock near the interface, and a nearly
circular detonation is now advancing into the acceptor charge. Only a vestige
of the partially-reacted explosive, or dead zone, can be seen in the vicinity
of the corner in the solid volume fraction plot, where, as observed above,
the reaction had suffered extinction. Otherwise the detonation has turned the
corner successfully, as was the case for rigid confinement considered in [18].

5.2.2 Weak confinement

The numerical results for weak confinement are shown in Figures 12, 13 and
14. As above, shaded contours of solid pressure, gas pressure and solid volume
fraction are displayed. Figure 12 shows plots for two times, just before and
after the detonation front has passed the corner. At t = 2.6 the front is yet to
reach the corner and the structure is that for the weakly-confined rate stick
discussed above; the detonation has a curved structure similar to that for the
strongly-confined case, with the exception that a thin dead zone of unreacted
explosive is trapped between the detonation products and the confining inert.
At t = 3.2 the detonation has passed into the acceptor charge, and diffraction-
induced weakening has lowered the pressures at the front and expanded the
size of the dead zone near the corner. Unlike the strongly-confined case, no
precursor transmitted shock has passed from the inert into the acceptor charge.
The plots of Figures 13 and 14 at later times show that the size of the dead
zone expands, and that the detonation fails to turn the corner. This behavior
is remarkably similar to the dead-zone observations seen in [9].

6 Conclusions

This paper presents a computational study of diffracting detonations in a
compliantly-confined heterogeneous explosive, modeled as a two-phase reac-
tive material consisting of the unreacted explosive (solid) and the product
of reaction (gas). It complements our earlier study of detonation diffraction
under rigid confinement [18]. The intent has been to determine whether a det-
onation that turns a right-angled corner successfully under rigid confinement
can suffer failure and produce dead zones (pockets of extinguished reaction,
observed experimentally in [9]) when confined by a compliant inert. Two dif-
ferent strengths of confinement are examined for a given explosive, whose
reaction rate is taken to be proportional to gas-phase pressure excess above
an ignition threshold.
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solid pressure0 1.2 gas pressure0 1.2 solid volume fraction0 1

Figure 12. Weak confinement: solid pressure (left), gas pressure (middle) and solid
volume fraction (right) at t = 2.6 (top frames) and t = 3.2 (bottom frames).

solid pressure0 1.2 gas pressure0 1.2 solid volume fraction0 1

Figure 13. Weak confinement: solid pressure (left), gas pressure (middle) and solid
volume fraction (right) at t = 3.4 (top frames) and t = 3.8 (bottom frames).

The explosive configuration consist of a narrow slab of reactive material, the
donor section, suddenly expanding into a broader slab, the acceptor section.
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solid pressure0 1.2 gas pressure0 1.2 solid volume fraction0 1

Figure 14. Weak confinement: solid pressure (left), gas pressure (middle) and solid
volume fraction (right) at t = 4.0 (top frames) and t = 5.0 (bottom frames).

An inert, deformable confiner surrounds the explosive. Detonation in the donor
section is initiated by means of an explosive booster. As the detonation travels
down the donor section the confiner behind the detonation front is deflected by
the high-pressure products of reaction, and the front itself acquires a curved
shape. Pressure at the front is highest along the plane of symmetry and low-
est at the interface with the inert. If the confiner is strong, then the lowest
gas-phase pressure at the front remains above the ignition threshold, and the
detonation proceeds without any sign of failure. If the confiner is sufficiently
weak, then the gas pressure near the interface can fall below the ignition
threshold and a thin layer of explosive near the interface remains unburned.
In either case, passage of the detonation past the sharp corner lowers the gas-
phase pressure further due to diffraction-induced expansion, and local regions
of extinguished reaction can occur. Whether these regions persist, leading to
sustained dead zones, or are consumed by a reaction-rate recovery, depends
delicately upon the ignition threshold, the reaction-rate prefactor and the de-
gree of compliance of the confiner. The detailed discussion of the previous
section considers the possibililties and identifies the mechanisms that deter-
mine whether failure is transitory or sustained.
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