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Abstract

High-order accurate upwind approximations for the wave equation in second-order form on overlapping
grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was
only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order
form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell’s
equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear
grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is
incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-
order and fourth-order accurate schemes are implemented for problems in two and three space dimensions,
and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability
analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability
analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including
the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The
accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both
perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown
to be robust and provide high-order accuracy.
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1. Introduction

Partial differential equations governing wave propagation problems are typically formulated in either
first-order form as a first-order hyperbolic system, or in second-order form (e.g. the classical wave equation
utt = c2∆u). As discussed in [1], treating the second-order form directly can often have a number of
advantages. For example, there may be fewer dependent variables (e.g. going from six to three dependent
variables for Maxwell’s equations) and in some cases fewer constraint equations (e.g. the Saint-Venant
compatibility conditions for linear elasticity written in first-order form). An additional advantage of the
second-order form is that it is straight-forward to develop compact, high-order accurate, and discretely self-
adjoint approximations to the Laplace operator [2]. In contrast, the first-order form often requires the use
of staggered grids for finite difference methods [3], or special edge elements for finite-element methods [4]
to avoid nontrivial null-spaces, which can lead to numerical difficulties in the form of undamped or growing
highly oscillatory modes.

Until recently, one significant advantage of using the first-order system form of the equations has been
the availability of robust and accurate numerical schemes based on upwinding, or more generally schemes
which incorporate the characteristic structure of the PDE into the discrete operators. The first instance
of such a scheme is the one developed by Courant, Isaacson, and Rees [5], which was built around the
idea of characteristics but did not directly invoke the idea of “upwind”. It was the landmark 1959 paper
of Godunov [6] which spoke of directly incorporating upwinding by embedding the exact solution of the
Riemann problem into the numerical technique. The core idea in this approach is that the solution to the
Riemann problem correctly accounts for the directional transport, the so-called wind, of characteristic quan-
tities. Based on these fundamental ideas there have been many powerful extensions including for example,
the flux-corrected transport method [7], semi-Lagrangian methods [8–10], the piecewise-parabolic-method
(PPM) [11], essentially-non-oscillatory (ENO) schemes [12, 13], discontinuous Galerkin (DG) methods [14],
and weighted-essentially-non-oscillatory (WENO) methods [15]. In fact, as discussed in [16], there exists a
direct relationship between upwind numerical methods and schemes that directly incorporate an artificial
dissipation; such artificial dissipation schemes are still in wide-spread use and trace their origins to the ar-
tificial viscosity scheme of Richtmeyer and von Neumann [17–19]. However, there are significant advantages
of directly using ideas of upwinding, as opposed to ad-hoc addition of an artificial dissipation, in that the
form and scaling of the dissipation in upwind schemes is a natural by-product of the method and as a result
it is not necessary to tune artificial parameters or the form of the dissipation operators.

Despite their success for the first-order system, upwind methods directly applicable to wave equations
posed in second-order form were not discussed until recently in [1]. The key idea introduced in [1], which
was essentially similar to the original approach of Godunov [6], was based on embedding the well-known
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d’Alembert solution into the discretization. This d’Alembert solution plays a similar role to the Riemann
problem for the first-order system and provides a mechanism to account for the wave nature of the solution.
Following the established procedure for upwind treatments for the first-order form, a localized expression
of the upwind flux was derived that enables easy application to a wide class of problems including those in
multiple space dimensions and those with variable coefficients. In [1], schemes with order-of-accuracy ranging
from 1 to 6 were developed and the numerical approximations were found to be quite well behaved even
for very difficult problems involving weak solutions with jumps; a particularly difficult case for the second-
order form of the equations. Subsequently in [20], a preliminary extension of the scheme to overlapping
grids was performed. Similar to the experience with upwind methods for the first-order system, the second-
order system upwind methods were found to be stabilizing even for difficult cases involving overlapping
grids where dissipation-free schemes for wave equations are known to exhibit instabilities [21]. Recently, a
similar construction was followed to develop discontinuous Galerkin methods for the second-order form of
the equations in [22].

Maxwell’s equations in the time-domain are usually solved in first-order form and there are a wide class
of methods that have been developed for their solution, including those based on finite difference, spectral,
pseudo-spectral, finite-element, and discontinuous Galerkin, amongst others. The literature is very broad;
for a good introduction see, for example, the review by Hestaven [23] or the references in the books by
Taflove [24] and Cohen [25]. Note also that overlapping grids have previously been used for the solution of
Maxwell’s equations in first order form by Driscoll and Fornberg [26] using a hybrid pseudo-spectral finite-
difference scheme. Despite the many excellent schemes that have been developed, there still remains a need
in some applications for more efficient schemes on complex geometries that are both robust and high-order
accurate. Toward this end, a scheme based on upwind schemes (for robustness) and overlapping grids (for
efficiency) may prove to be useful. Therefore, in the current work we extend the ideas for high-order upwind
methods outlined in [1, 20] to discretize Maxwell’s equations in second-order form on overlapping grids. In
this framework, geometric complexity introduced by both physical boundaries (e.g. perfectly conducting
boundaries) and interfaces between dielectric materials will be treated using composite overlapping grids.
A simple motivating example, which involves the interaction of an impinging electromagnetic wave on one
perfectly conducting disk and one dielectric disk, is illustrated in Fig. 1. As in [2], the governing equations

PEC

∂ΩE

dielectric

Ω2

∂ΩI

EM wave

dielectric

Ω1

∂ΩF

schematic diagram y-component of field composite grid

Figure 1: Motivating example illustrating electromagnetic diffraction of a plane wave from a dielectric disk and
a perfectly conducting disk. The left figure provides a schematic of the problem, the middle figure shows the y-
component of the electric field from an actual computation, and the right figure shows a coarse version of a composite
grid suitable for computation with the second-order accurate scheme.

are written as a system of scalar wave equations for the components of the electric field which are coupled at
domain boundaries and material interfaces. In contrast to [2] which relies on a simple artificial dissipation, we
achieve stabilization against overlapping grid instabilities through the use of upwind discretizations. As will
be demonstrated, these upwind discretizations are stable for all overlapping grid configurations investigated
without any adjustable artificial viscosity. This is true even for the difficult case where the boundary fitted
grids use a fixed number of grid points as the composite grid is refined. For such a refinement process the
overlapping grid interpolation boundary approaches the physical boundary with the result that overlapping
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grid instabilities become more pronounced [21]. This situation is theoretically investigated here in one
dimension using the normal mode stability theory of Gustafsson, Kreiss, and Sundström [27, 28], and the
upwind dissipation is found to be stabilizing. Indeed the upwind discretizations are evidently stable and
accurate in higher dimensions even for refinements that yield thin boundary grids. On the other hand the
artificial dissipation approach in [2] requires an increasingly large artificial viscosity parameter which results
in a reduction in observed accuracy.

As discussed above, our motivation is the study of the propagation of electromagnetic waves in domains
consisting of one or more distinct materials. Such a scenario is depicted in Fig. 1, which illustrates the
interaction of an incident electromagnetic wave propagating through a background dielectric material (blue
in the schematic and labeled Ω1) with two cylindrical inclusions; the first cylinder being comprised of a
material with different dielectric properties than the background (red in the schematic and labeled Ω2),
and the second cylinder being a perfect electrical conductor (PEC) (white in the schematic). The entire
domain of interest is the union of the subdomains associated with each material, Ω = Ω1 ∪ Ω2 in this case.
Boundaries are then identified by type with ∂ΩE indicating an external PEC boundary, ∂ΩI a material
interface separating dielectrics, and ∂ΩF a far-field truncation. As in [2], each material is assumed to have a
constant electrical permittivity, ε, and constant magnetic permeability, µ, and it is assumed that there are
no external charges or currents. In this setting, Maxwell’s equations can be formulated as the second-order
system for the electric field vector E(x, t) ∈ Rd in d space dimensions,

∂2
tE = c2∆E, x ∈ Ω, (1a)

n×E = 0, ∇ ·E = 0, x ∈ ∂ΩE , (PEC BC’s) (1b)

[n×E]I = 0, [εn ·E]I = 0, x ∈ ∂ΩI , (interface conditions) (1c)

BF (E) = 0, ∇ ·E = 0, x ∈ ∂ΩF , (far field BC’s) (1d)

E(x, 0) = E(0)(x), Et(x, 0) = E
(0)
t (x). (initial conditions) (1e)

Here c = 1/
√
εµ is the wave speed which is constant for each dielectric material, n is the normal vector to the

boundary or interface, and [·]I represents the jump across the interface ΩI . Where the domain is truncated,
the far field boundary condition is denoted by BF (E) = 0. Further details concerning the derivation of
(1a)-(1e) from the more common first-order formulation can be found in [2].

The remainder of this manuscript is arranged as follows. Section 2 introduces our formulation on overlap-
ping grids, and Section 3 briefly describes the derivation of the upwind flux for curvilinear grids. Section 4
then describes the overall upwind discretizations used for overlapping grids. The stability of the upwind
scheme on overlapping grids for the difficult case of thin boundary grids is considered in Section 5. A normal
mode analysis is performed on a one-dimensional overlapping grid and the resulting stability conditions are
checked through a numerical parameter search. Numerical results are presented in Section 6 which include
classical scattering problems from a conducting cylinder, dielectric cylinder, conducting sphere, and dielec-
tric sphere. A final result showing scattering from a buried conducting object using an incident field with
time-dependent frequency is also included. Concluding remarks are given in Section 7, while Appendix A
gives precise descriptions of all the overlapping grids used in the computations.

2. Overlapping grids

As discussed in Section 1, the governing Maxwell’s equations are cast as a system of scalar wave equations
whose components are coupled only along physical boundaries or interfaces between disparate materials. On
domain interiors then, the components of the fields satisfy the classical wave equation

∂2u

∂t2
= Lu, x ∈ Ω, (2a)

L
def
= c2∆ = c2

d∑
µ=1

∂2

∂x2
µ

, (2b)

where x ∈ Rd, u = u(x, t) is a component of the electric or magnetic field, d is the physical dimension of the
problem, and ∆ is the Laplacian operator in d dimensions. The focus of the current work is to discretize (2a)
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using an overlapping grid approach where the overall domain is covered by an overlapping grid G consisting
of a set of component grids Gk on which the discrete solutions are coupled through interpolation. Such a
scenario is depicted in Fig. 2 which shows a domain consisting of an annular grid (green) and a rectangular
grid (blue). In the region where these two grids overlap the solution is communicated from one grid to the
other using interpolation. For further details on overlapping grids refer to [29] and the references therein.
Also note that boundary and interface conditions are applied using ghost points following the discussion
in [2] with one slight modification. For a scheme with order of accuracy p = 2, 4, 6, . . . , the discretizations
described in this work have a stencil width of p + 3 instead of the stencil width p + 1 used in [2], and as
a result one additional ghost point is needed at boundaries and interpolation interfaces. For the results
presented here, values at these additional ghost points are obtained by p+ 1 order extrapolation.

G1

G2

G1

interpolation
ghost

unused

G2

Figure 2: Left: an overlapping grid consisting of two structured curvilinear component grids, x = G1(r) and x =
G2(r). Middle and right: component grids for the square and annular grids in the unit square parameter space r.
Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to
apply boundary conditions.

Each component grid of the overlapping grid is defined by a smooth invertible mapping x = G(r)
where r ∈ [0, 1]d denotes the unit parameter-space coordinate-vector in d space dimensions. The governing
equations will be transformed from physical space, x = [x1, x2, x3]T , to parameter space, r = [r1, r2, r3]T .
Note that a dependent variable such as u can be regarded as a function of either x or r. To differentiate
between the two we will use lower case for dependence on x, as in u(x, t), and upper case for r, as in U(r, t),
with U(r, t) = u(G(r), t). Following [2], the operator L = c2∆ can be written in conservation form for a
general curvilinear mapping as

Lu =
1

J

d∑
l=1

∂Fl
∂rl

, (3a)

where Fl = Fl(r, t) is the flux function in the parameter-space coordinate direction rl given by

Fl
def
=

d∑
m=1

J Rlm ∂U

∂rm
, (3b)

Rlm def
= c2

d∑
µ=1

∂rl
∂xµ

∂rm
∂xµ

, (3c)

and where J is the determinant of the Jacobian matrix ∂x/∂r = [∂xi/∂rj ]. Note that in (3a), the conserved
quantity is Ju, and the metrics of the mapping enter the equation as variable coefficients. Each component
grid is represented discretely using a logically rectangular grid, so that in the computational space coordinates
r the grid will be rectangular with grid spacing hl in the rl direction. Grid functions will be denoted by
wi where i = [i1, i2, i3] is a multi-index. Note that we use D+l, D−l, and D0l to denote the usual forward,
backward and central divided-difference operators in coordinate direction rl, defined by

D+lwi
def
=

wi+el
− wi

hl
, D−lwi

def
=

wi − wi−el

hl
, D0lwi

def
=

wi+el
− wi−el

2hl
,
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where el is the unit vector in coordinate direction l, for example e2 = [0, 1, 0]T . These operators are also for
continuous functions by

D+lU(r)
def
=

U(r + hl)− U(r)

hl
, D−lU(r)

def
=

U(r)− U(r− hl)

hl
, D0lU(r)

def
=

U(r + hl)− U(r− hl)

2hl
.

3. Upwind flux on a curvilinear grid

In this section we first review the original derivation of upwinding for the second-order wave equation
as discussed in [1], and then subsequently extend that work to derive the form of the upwinding terms
on curvilinear grids. In [1], the upwind contribution for use with Cartesian grids was derived from the
d’Alembert solution to a generalized Riemann problem with left state (ux,L, vL) for x < 0 and right state
(ux,R, vR) for x > 0 where v denotes the velocity v = ut. For positive times, the d’Alembert solution reveals
that the spatial derivative ux is constant at x = 0, and this value is taken as the “upwind” state

∗
ux given by

∗
ux =

1

2
(ux,L + ux,R) +

1

2c
(vR − vL).

It was shown in [1] that the second term involving the jump in the velocity provides the upwinding, and
ultimately the dissipation in the scheme. As a result, ux was taken to be continuous and the upwind state
was ultimately given as

∗
ux = ux +

1

2c
(vR − vL). (4)

As we subsequently realized, not surprisingly the same upwind state can alternatively be derived from the
solution to a classical Riemann problem for the first-order system formulation of the equations. This latter
approach is now followed in deriving the upwind flux for curvilinear grids.

In order to more clearly understand the general derivation of the upwind state for the wave equation,
the first-order system in one dimension is expressed using the classical formulation based on velocity v = ut
and stress σ = ρc2 ux as

ρvt = σx, (5a)

σt = ρc2 vx. (5b)

The density ρ, as appears for example in solid mechanics, has been included in this description since it is
useful in the coming discussion and helps to clarify the physical interpretation5. Based on a characteristic
analysis, the upwind state for the flux σ arising from the solution to a Riemann problem in the first-order
system is

∗
σ =

1

2
(σL + σR) +

z

2
(vR − vL) ,

where (vm, σm), m = L,R are the left and right states, and z = ρc is the impedance. As before, the stress
is assumed continuous and the upwind flux reduces to

∗
σ = σ +

ρc

2
(vR − vL). (6)

Note that equation (6) is essentially the same as (4), but importantly differs in that the upwind state is
expressed in terms of the stress rather than simply the spatial derivative ux.

On a curvilinear grid, the wave equation is written in a mapped space as given in equations (3a)-(3c).
The relevant terms in the corresponding first-order system formulation for waves traveling in the rl direction
are then given by

(ρJ) vt = σrl , (7a)

σt = (ρJ)Rll vrl , (7b)

5For electromagnetics in the second-order form, the correspondence is ρ→ µ, v → ∂tE, σ → µc2∂xE, ρc→
√
µ/ε.
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where σ = (ρJ)Rll url . The terms appearing in (7a)-(7b) are those that will contribute to the solution of the
Riemann problem with a initial jump in the rl-direction. Comparing (7a)-(7b) to (5a)-(5b) we see that ρJ
takes the place of the density in (5a)-(5b) and Rll = c2‖∇xrl‖2 takes the place of the sound-speed squared.
It follows that the upwind flux on a curvilinear grid for waves propagating in direction rl takes the form
(corresponding to equation (6))

∗
σ = σ +

1

2

ρJ
√
Rll

2
(vR − vL),

= (ρJ)Rllurl +
ρJ
√
Rll

2
(vR − vL). (8)

Note that a mapped impedance could be identified as Z l = ρJ
√
Rll. Equation (8) is the key condition that

will be used to incorporate upwinding into the approximations defined in Section 4. It is important to point
out that the form (8) remains valid whether J > 0 or J < 0, and therefore the upwind scheme remains
robust to right-handed vs. left-handed grid transformations.

4. Upwind approximations on curvilinear and overlapping grids

In this section, we will develop high-order accurate upwind discretizations for the wave equation (2b)
on general curvilinear grids. These schemes will subsequently be applied to solving Maxwell’s equations on
overlapping grids and it will be demonstrated that the schemes remain stable on overlapping grids even in
the difficult case when the boundary fitted grids have a fixed number of grid points in the normal direction
as the grid is refined.

To develop approximations of different orders of accuracy we follow the procedure in [1] and express the
governing equations in curvilinear coordinates in an exact discrete conservation form

∂2U

∂t2
= LU(r, t)

def
=

1

J

d∑
l=1

D−l fl(r + hl/2, t)

=
1

J

d∑
l=1

fl(r + hl/2, t)− fl(r− hl/2, t)

hl
. (9)

Here the conserved quantity is Ju since the local area element scales with J , and the flux functions fl at
grid faces r±hl/2 are defined in terms of the fluxes Fl, defined in (3b), and a linear operator Shl

defined by

fl(r, t)
def
= Shl

[Fl(r, t)] . (10)

Importantly the functions fl and operator Shl
will be defined so that (9) is identical to the original wave

equation with L defined from (3a). The operator Shl
depends on hl and satisfies the identity

∂Fl
∂rl

(r, t)
def
= D−lfl(r + hl/2, t) = D−lShl

Fl(r + hl/2, t), (11)

for any sufficiently smooth function Fl. Therefore, Shl
is given by the expansion

Shl
=

∞∑
j=0

αj h
2j
l

∂2j

∂r2j
l

= I − h2
l

24

∂2

∂r2
l

+
7h4

l

5760

∂4

∂r4
l

− 31h6
l

967680

∂6

∂r6
l

+ . . . . (12)

The coefficients αj in (12) can be computed from the identity ζ/2 = sinh(ζ/2)
∑∞
j=0 αjζ

2j by equating
coefficients of ζ in the Taylor series expansion, following the approach described in [30, 31]. As in [1], the
time derivative of the field quantity U is introduced, indicated using a dot as in U̇ ≡ ∂U

∂t , and the governing
equations are expressed as

∂

∂t

[
U

U̇

]
=

1

J

[
U̇∑d

l=1 ∂rFl

]
. (13)
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Equations (13) are integrated over a time step ∆t, to produce the formally exact differential-difference
equations

U̇(r, tn+1) = U̇(r, tn) +
∆t

J

d∑
l=1

D−l F u̇l (r +
hl
2
, tn), (14a)

U(r, tn+1) = U(r, tn) + ∆t U̇(r, tn) +
∆t2

J

d∑
l=1

D−l Ful (r +
hl
2
, tn), (14b)

where tn = n∆t denotes the time at step n while F u̇l and Ful in (14a)-(14b) are defined as time-averages of
the face-centered flux fl,

F u̇l (r +
hl
2
, tn)

def
=

1

∆t

∫ ∆t

0

fl(r +
hl
2
, tn + τ) dτ, (15a)

Ful (r +
hl
2
, tn)

def
=

1

∆t2

∫ ∆t

0

∫ τ

0

fl(r +
hl
2
, tn + τ ′) dτ ′ dτ. (15b)

Upwind dissipation is incorporated into the discretization through an appropriate choice of numerical flux

function
∗
f l as an approximation to fl. Let

Vl(r +
hl
2
, tn + τ)

def
= Shl

[
U̇
]tn+τ

r+
hl
2

, (16)

denote the quantity, proportional to the velocity U̇ , that appears in the jump term of equation (8). Note that
square brackets, with associated subscript and superscript, have been used to indicate spatial and temporal
dependence as in, for example, [U ]tr = U(r, t). This notation will henceforth be adopted to simplify many of
the subsequent formulae. The upwind flux on a curvilinear grid is then defined as

∗
f l(r +

hl
2
, tn + τ)

def
=

[
fl +

J
√
Rll

2

(
V Rl − V Ll

)]tn+τ

r+
hl
2

(17)

where V Ll is a left biased, V Rl is a right-biased approximation to Vl. Notice that the jump term in (17) is
zero at the continuous level for smooth solutions and so (14a) and (14b) remain exact when fl is replaced

with
∗
f l. However at a discrete level the jump terms will be nonzero (the states V Ll and V Rl on either side of

the face being predicted using different data) and the effect of this term will be to add numerical dissipation
to the scheme, similar to dissipation that results from upwind discretizations of the equations in first-order
form.

4.1. The space-time upwind scheme

In this work, the discrete scheme is a single-step space-time scheme based on expanding the flux in a
Taylor series in time and then using the governing equation to eliminate even time-derivatives of U or U̇
with spatial derivatives (e.g. Utt = LU , U̇tt = LU̇ , Utttt = L2U , etc.). To describe the single step scheme,
suppose that Uni and U̇ni are given at grid points xi at time tn. The goal is then to determine Un+1

i and

U̇n+1
i at the new time based on a p-th order accurate approximation. Further, assume that J(r) and Rlm(r)

are known functions evaluated at the grid points in parameter space ri.
From the the definition (12) for Shl

, the flux fl and velocity Vl are written as series in powers of hl,

fl(r +
hl
2
, t+ τ) =

∞∑
j=0

αjh
2j
l

∂2j

∂r2j
l

d∑
m=1

[
JRlm ∂U

∂rm

]t+τ
r+

hl
2

, (18a)

Vl(r +
hl
2
, tn + τ) =

∞∑
j=0

αjh
2j
l

∂2j

∂r2j
l

[
U̇
]tn+τ

r+
hl
2

. (18b)
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Also for future reference define the operator L, and its powers, acting in a curvilinear coordinate system by

Lν =

(
1

J

∑
l

∂

∂rl

d∑
m=1

JRlm ∂

∂rm

)ν
.

Note that (18a) involves terms with an odd-number of rl-derivatives while (18b) involves terms with an even
number of rl-derivatives. As in [1] the terms in (18a) will use difference approximations which are centered
on cell faces, ri + hl

2 . On the other hand, the terms in (18b) will use difference approximations which are
centered on cell centers ri, and this will result in left-biased and right-biased approximations for (18b) that
are used in the upwind flux (17).

Using Taylor series in time to expand equation (18a) about the cell face ri + hl

2 and time t = tn gives

fl(ri +
hl
2
, tn + τ) =

∞∑
j=0

αjh
2j
l

∂2j

∂r2j
l

d∑
m=1

[
JRlm ∂

∂rm

∞∑
µ=0

τµ

µ!

∂µU

∂tµ

]tn
ri+

hl
2

,

=

∞∑
j=0

αjh
2j
l

∂2j

∂r2j
l

d∑
m=1

[
JRlm ∂

∂rm

∞∑
ν=0

(
τ2ν

(2ν)!
LνU +

τ2ν+1

(2ν + 1)!
LνU̇

)]tn
ri+

hl
2

, (19)

where the governing equation has been used to replace even time derivatives of U or U̇ with spatial derivatives
involving powers of L. A discrete approximation to (19) at the cell faces is then defined as

[fl]
tn+τ
i+ 1

2el
≈ fl(ri +

1

2
el, t

n + τ)

based on the known values for Uni and U̇ni at point i and a stencil of near-by points. For a pth-order accurate
scheme, where p is an even integer, equation (19) is approximated to order p in space and time. However,
this p-th order accurate scheme is not unique and different choices lead to minor differences in the final
scheme and in the maximum stable time-step. For the scheme presented here the following rules are used:

1. The series in (19) is truncated and only those terms of of size O((τ + hl)
p) are retained.

2. Derivatives are approximated to an accuracy of at most p.

3. When there is a choice of stencils, the most accurate centered approximation is used.

Fig. 3 shows the form of the stencils involved in the second-order accurate upwind scheme. More details on
this discretization procedure for a fourth-order accurate scheme are provided in Section 4.2.

x

t

Un
i Un

i+1

U̇n
i U̇n

i+1

fi+ 1
2

x

t

Un
i−1 Un

i Un
i+1

U̇n
i−1 U̇n

i U̇n
i+1

V L
i+ 1

2

x

t

Un
i Ui+1 Un

i+2

U̇n
i U̇i+1 U̇n

i+2

V R
i+ 1

2

Figure 3: Geometry of the sub-stencils for the space-time upwind scheme in one dimension (second-order accuracy).
Left: the stencil for the centered flux at the face, denoted by fi+ 1

2
, is two points wide and involves values of the

solution Uni and and its time derivative U̇ni . Middle and right: left-biased and right-biased contributions to the
upwind flux. The overall stencil to update Uni and U̇ni for will be five-points wide after applying the D− operator to
the total flux.
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The upwind term (18b) can also be expanded as a Taylor series in time to give

Vl(r±
hl
2
, tn + τ) =

∞∑
j=0

αjh
2j
l

∂2j

∂r2j
l

∞∑
µ=0

τµ

µ!

[
∂µ+1U

∂tµ+1

]tn
r±hl

2

,

=

∞∑
j=0

αjh
2j
l

∂2j

∂r2j
l

∞∑
ν=0

τ2ν

(2ν)!

[
LνU̇ +

τ2ν+1

(2ν + 1)!
Lν+1U

]tn
r±hl

2

. (20)

Following a common approach for generating upwind schemes, the series (20) will be further expanded as a
Taylor series in space to define Vl at the cell faces ri± hl

2 in terms of the solution and it’s derivatives defined
at cell centers, ri,

Vl(ri ±
hl
2
, tn + τ) =

∞∑
j=0

∞∑
ν=0

∞∑
k=0

αjh
2j
l

(±hl)k

k!

[
∂2j+k

∂r2j+k
l

(
τ2ν

(2ν)!
LνU̇ +

τ2ν+1

(2ν + 1)!
Lν+1U

)]tn
ri

. (21)

The expansion (21) defines a left-biased approximation at the cell face ri + hl

2 and a right-biased approxi-

mation at the cell face ri − hl

2 . Correspondingly, the left-biased and right-biased approximations in (17) at

the cell face ri + hl

2 are given by

[V Ll ]t
n+τ
i+ 1

2el
= Vl(ri +

hl
2
, tn + τ),

[V Rl ]t
n+τ
i+ 1

2el
= Vl(ri+el

− hl
2
, tn + τ).

Note that the left-biased and right-biased approximations will in general be unequal. Given these approxi-
mations, the upwind flux (discrete in space but still continuous in τ) is defined as

[
∗
f l]

tn+τ
i+ 1

2el

def
= [fl]

tn+τ
i+ 1

2el
+

[
J
√
Rll

2

(
V Rl − V Ll

)]tn+τ

i+ 1
2el

. (22)

From (22), the upwind approximation to the time-averaged fluxes are

[
∗
F
u̇

l ]ni+ 1
2el

def
=

1

∆t

∫ ∆t

0

[
∗
f l]

tn+τ
i+ 1

2el
dτ, (23a)

[
∗
F
u

l ]ni+ 1
2el

def
=

1

∆t2

∫ ∆t

0

∫ τ

0

[
∗
f l]

tn+τ ′

i+ 1
2el

dτ ′ dτ. (23b)

The time-integrals in (23a)-(23b) can be computed exactly (since the integrands are polynomials τ or τ ′).
An alternative approach, the one used for the results in this paper, is to approximate the integrand by
a polynomial of degree p/2 − 1 that interpolates the integrand at the Gauss points over the time interval
[tn, tn+1]. This polynomial can then be integrated exactly in time. The full space-time scheme is summarized
as follows.

Algorithm 1 (Space-time upwind algorithm for the wave equation on a curvilinear grid). The
updates to the discrete solution and it’s time derivative are given by

U̇n+1
i = U̇ni +

∆t

Ji

d∑
l=1

D+l

[ ∗
F
u̇

l

]n
i− 1

2el
, (24a)

Un+1
i = Uni + ∆t U̇ni +

∆t2

Ji

d∑
l=1

D+l

[ ∗
F
u

l

]n
i− 1

2el
. (24b)

where the time-averaged fluxes
[ ∗
F
u̇

l

]n
i− 1

2el
and

[ ∗
F
u

l

]n
i− 1

2el
are defined by (23a)-(23b) which in turn use the up-

wind fluxes defined by (22) and appropriate numerical approximations to (21) (left and right-biased) and (19).
More details on the numerical approximations are described in Section 4.2.
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4.2. Discrete approximation formula for some flux terms
This section provides some details of the discrete approximations used for the fourth-order accurate

scheme, p = 4, which uses a seven point stencil. To be concrete, consider representative terms in Equa-
tion (19) for fl, and Equation (20) for the upwind term. Approximations of face-centered values at i + 1

2el
will use at most a four point stencil in the rl direction, i.e. the stencil involves the points [i−el, i, i+el, i+2el].
Approximations to cell-centered values at i (used for the upwind term) will use at most a five-point stencil
in the rl direction involving a subset of the points [i − 2el, i − el, . . . , i + 2el]. The final scheme will use a
forward difference of these face centered values and thus increase the final stencil width to seven. Additional
details of the full approximation for the case of a Cartesian grids appears in [1].

The fourth-order accurate approximations will make use of both fourth- and second-order accurate

difference and interpolation operators. Let A
(q)
+l denote the discrete operator that interpolates a grid-function

defined at points i to the face at index location i + 1
2el, to an accuracy of O(hql ). For example,

A
(2)
+lwi

def
= A+lwi

def
=

1

2
(wi+el

+ wi), (25a)

A
(4)
+lwi

def
= A+l

(
I − h2

l

8
D+lD−l

)
wi =

9

16
(wi+el

+ wi)−
1

16
(wi+2el

+ wi−el
). (25b)

Similarly let D
(q)
+l denote the q-th order-accurate approximate to the first derivative at the face location

ri + 1
2hl, for example,

D
(2)
+l wi

def
= D+lwi, (26a)

D
(4)
+l wi

def
= D+l

(
I − h2

l

24
D+lD−l

)
wi. (26b)

Note that the first derivative at the cell face can be computed with a compact approximation (e.g. a two-

point stencil gives second-order accuracy). Finally let D
(q)
0m denote the standard p-th order accurate centered

divided difference approximation to the first derivative at point i , for example,

D
(2)
0mwi

def
= D0mwi, (27a)

D
(4)
0mwi

def
= D0m(I − h2

m

6
D+mD−m)wi. (27b)

Note that these latter approximations are not compact. In terms of these difference operators, a fourth order
accurate approximation to JRll ∂u∂rl on the face ri + 1

2hl using a four-point stencil is[
JRll ∂u

∂rl

]n
i+ 1

2el

≈ A(4)
+l

(
JiRlli

)
D

(4)
+l U

n
i . (28)

Terms in (19) with coefficient τ2 need only be approximated to second-order accuracy in space,[
JRll τ

2

2

∂L

∂rl
U

]n
i+ 1

2el

≈ A(2)
+l

(
JiRlli

) τ2

2
D

(2)
+l

(
L(2)Uni

)
, (29)

where L(2)Ui denotes a second-order accurate difference approximation to Lu at ri. Terms involving mixed
derivatives use centered approximations in the transverse directions and these approximations are interpo-
lated to the face at i + 1

2el. For example, if m 6= l,[
JRlm ∂u

∂rm

]n
i+ 1

2el

≈A(4)
+l

(
JiRlli

)
A

(4)
+rl

D
(4)
0mu

n
i . (30)

The terms in the upwind expansion defined by (21) are approximated using difference operators that are

defined at cell centers, ri. For example, a fourth-order accurate approximation to ∂2
rl

(
J
√
RllU̇

)
is given by

∂2

∂r2
l

[
J
√
Rll U̇

]n
i
≈ D+lD−l

(
I − h2

l

12
D+lD−l

)(
Ji

√
Rlli U̇

n
i

)
, (31)

which is the most accurate centered approximation that fits within the desired stencil.
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4.3. Choosing the time-step

Following [1], the stability regions for the upwind scheme are approximated by a generalized ellipse of
the form

λσx + λσy + λσz = Λσ,

where λx ≈ c∆t/∆x, λy ≈ c∆t/∆y, etc., and the stability region parameters σ and Λ are chosen to provide
a good fit to the actual stability region. For a curvilinear grid, the time-step for the upwind-schemes is then
chosen using the formula

∆t = Ccfl min
grid-points

Λ[(
c

∆xi

)σ
+
(

c
∆yi

)σ
+
(

c
∆zi

)σ]1/σ , (32)

where ∆xi, ∆yi, and ∆zi are approximations to the local grid spacings, and where Ccfl is a safety factor
usually taken as 0.9. In two-dimensions the term involving c/∆zi should be removed from the formula (32).
The stability region parameters σ and Λ for the upwind scheme are taken as

Order D σ Λ

2 2D 1.35 .605
4 2D 2.175 1.075
2 3D 1.35 .605
4 3D 2.175 .806

For comparison, the non-dissipative space-time scheme uses σ = 2 and Λ = 1 for any dimension and any
order of accuracy.

5. Stability for wave equations on overlapping grids

As discussed in [2], self-adjoint discretizations of (3a)–(3c) for a single component grid can be developed
to arbitrary order. These high-order accurate discretizations have a compact stencil, are dissipation free,
and are provably stable on a single curvilinear grid. However, when overlapping grids are used, the per-
turbations introduced by the interpolation between component grids can disrupt the self-adjoint nature of
the discretization over the physical domain, which can lead to numerical instabilities. For example in [21],
a proof was presented which shows the presence of such unstable modes for wave equations on overlapping
grids. These instabilities can be suppressed by adding artificial dissipation [2, 21], and the analysis in [21]
indicated a form and scaling of a dissipation operator that would stabilize the schemes against instabilities
related to overlapping grid interpolation. To be concrete, the fourth-order accurate scheme for the wave
equation in one dimension with artificial dissipation6 takes the form

un+1
i − 2uni + un−1

i

∆t2
= c2

(
D+D− −

h2

12
(D+D−)2

)
uni − cd h4

(
D+D−

)2(uni − un−1
i

∆t

)
, (33)

where cd is the coefficient of the dissipation. For weak instabilities, cd can be taken O(1) as h→ 0 and the
scheme remains fourth-order accurate since the last term is O(h4). However, for stronger instabilities, such
as those that may occur with narrow boundary grids that keep a fixed number of points when the mesh
is refined, the analysis in [21] indicates that it is necessary to take cd = O(1/∆t), which would cause the
scheme to degrade to third-order accuracy.

It was also shown in [21] that skew-symmetric (centered) discretizations of the wave equation in first-
order form can exhibit similar unstable behavior when used with overlapping grids. However, the dissipation
inherent in standard upwind-style discretizations of the first-order system was shown to have a form and
scaling that would stabilize the scheme against even strong instabilities, such as those occurring with over-
lapping grids and narrow boundary grid refinement. Indeed, upwind discretizations of the first-order system

6The dissipation is an approximation to cd h
4 ∂4

x∂tu.
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on overlapping grids have been found to be stable and robust for wave problems including those from solid
mechanics [21] and high-speed flow [32]. A similar form of dissipation has since been shown to be naturally
present in “upwind” discretizations of the wave equation in second-order form, as described in [1], and the
purpose of this section is to study the stability of these second-order system upwind schemes on overlapping
grids.

The remainder of this section is organized as follows. In section 5.1 we present a computational ex-
periment of computing the eigenfunctions of a disk with perfectly conducting boundaries, meshed with
overlapping grids, using both the upwind scheme and the traditional centered scheme with artificial dissipa-
tion of form indicated in (33). By using a fixed number of grid points in the narrow boundary grid as the
mesh is refined, this example demonstrates the need for a strong dissipation with cd ∝ 1/∆t in (33). The
accuracy of the scheme is therefore degraded to third-order. The upwind scheme, however, remains stable
and maintains the expected fourth-order convergence. After discussing the overlapping grid instability in
Section 5.1, we present details of a normal mode (GKS) stability analysis7 for the first-order upwind scheme
used to solve the second-order wave equation on a one-dimensional overlapping grid pictured in Fig. 7. A
parameter γ is introduced into the scheme so that γ = 0 gives the centered scheme while γ = 1 gives the
upwind scheme. The analysis leads to a constrained polynomial system of three equations in three complex
variables. By studying the solutions to this system we illuminate why the upwind scheme is found to be so
robustly stable. At present a purely analytic proof of stability is beyond our reach, and instead a careful and
thorough numerical search of the parameter space is performed in Section 5.3. It is shown that, as expected,
there are many unstable modes for the centered scheme with γ = 0. However, as the upwind parameter
γ is increased, the number of unstable solutions decreases to zero, and for γ ' 1/4 no unstable modes are
found. Subsequent computations presented in Section 6 give further strong evidence as to the stability of
the upwind schemes.

5.1. Stability and convergence for thin boundary grids

Figure 4: Three levels of grid refinement for a disk with an rectangular background grid and an thin annular boundary
fitted grid. For a fixed number of radial grid points, the interpolation interface between the two grids approaches the
physical boundary and an O(h3) dissipation is needed to stabilize the traditional centered scheme. See Figure 5 for
a plot of a typical instability arising in this case.

To illustrate the instabilities that can occur with non-dissipative schemes on typical overlapping
grids, we consider computing the eigenfunctions of Maxwell’s equations (TEz mode) on a unit disk
D =

{
(x, y) | x2 + y2 ≤ 1

}
, with a perfectly conducting boundary. As shown in Fig. 4, a mesh for D is

constructed from two component grids: a Cartesian (rectangular) background grid and an annular grid fit-
ted to the domain boundary. Details of the composite grid are described in Appendix A. As the grid is
refined, the number of radial grid points on the boundary grid remains fixed, which is a natural choice for
computational efficiency since the Cartesian grid implementation can be an order of magnitude faster than
curvilinear grid versions. As a consequence, as the grids are refined the boundary grid becomes narrower
in physical space, and so the Cartesian grid contains an increasing fraction of the total grid points. As

7See, for example, [27, 28, 33] for more details of the GKS approach.
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a result, the overall computational cost will approach that of a Cartesian grid. The encroachment of the
interpolation boundary near to the physical boundary allows spurious waves to become trapped. This can
lead to the appearance of unstable high-frequency modes in the dissipation free scheme, as shown in Fig. 5
for a two-dimensional simulation and in Fig. 11 for a one-dimensional case.

Figure 5: Example of a high-frequency unstable mode in the dissipation-free centered scheme. The instability is
excited by interpolation points being located near the physical boundary. The zoomed image of the computed
solution is pitched slightly away from the reader to make the surface more visible. At right is the computational grid
used for this case.

To suppress the instability, dissipation is added to the fourth-order accurate centered scheme following
the form given in (33) with coefficient cd. To prevent instabilities in this difficult case of a thin boundary
grid, it is necessary to scale cd ∝ 1/h; thus cd is doubled when the mesh spacing is reduced by a factor of
two. Using this approach, results of a grid convergence study for the traditional centered scheme with added
dissipation (FD44) are given in Fig. 6. The value of cd was determined experimentally on the coarsest grid
and then doubled as the mesh spacing was halved. Also in Fig. 6 are the results of a similar convergence
study using the upwind scheme (SOSUP44). To make the problem more illustrative, the number of points
in the radial direction on the annular grid was taken as small as possible, Nr = 3 (in practical computations,
the number of radial points is generally a larger value such as 9). As expected, the maximum norm errors
given in the table clearly indicate that SOSUP44 is converging with fourth-order accuracy while FD44 is
only converging with third order accuracy; the degradation in the convergence rate for FD44 being due to
the increasing dissipation coefficient cd which makes the dissipation term O(h3).

SOSUP44 FD44

hj Ex r Ex r cd
1/40 2.15e-01 1.31e-01 0.2
1/80 1.15e-02 18.7 2.00e-02 6.6 0.4
1/160 6.95e-04 16.5 2.58e-03 7.8 0.8
1/320 4.11e-05 16.9 3.22e-04 8.0 1.6

rate 4.12 2.9

10−2.4 10−2.2 10−2 10−1.8 10−1.6

10−4

10−3

10−2

10−1

h

SOSUP44

FD44

h4 ref

h3 ref

Figure 6: Convergence study for upwind (SOSUP44) and centered scheme with added dissipation (FD44) for
computing the eigenmodes of a disk with think boundary grids. For each scheme and mesh resolution, the maximum
error in x-component, Ex, at t = 100 is shown. Columns labeled r show the ratio of the errors between successive
grid refinements. The final column is the coefficient cd of the dissipation operator for FD44. The accuracy of the
FD44 scheme is degraded to third-order since it is necessary to take cd ∝ 1/h for stability.
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5.2. Normal mode analysis for overlapping grids

To study the stability of the schemes on overlapping grids, consider a model problem consisting of the
second-order wave equation utt = uxx for x ∈ (−∞, b), a Dirichlet boundary condition on the right at
x = b, and on the left the solution is restricted to remain bounded as x → −∞. The overlapping grid
used to discretize this problem is shown in Fig. 7 and consists of two grids. The grid points on the right

boundary grid are given by x
(1)
j = x

(1)
0 + jh1, j = 0, 1, 2, . . . , N , and those on the left semi-infinite grid by

x
(2)
j = x

(2)
0 + jh2, j = q, q − 1, q − 2, . . .. The solution approximations are denoted u

(m)
j (t) ≈ u(x

(m)
j , t) for

m = 1, 2. Consider now a semi-discretization for each component grid given by,

x
(2)
q

u
(2)
q

x
(2)
−1

u
(2)
−1

x
(2)
0

u
(2)
0

x
(2)
1

u
(2)
1

x
(2)
2

u
(2)
2

. . .

x
(1)
0

u
(1)
0

x
(1)
p

u
(1)
p

x
(1)
p+1

u
(1)
p+1

x
(1)
p+2

u
(1)
p+2

. . . . . . x
(1)
N = b

u
(1)
N

Figure 7: One-dimensional overlapping grid for the semi-infinite problem.

d2u
(m)
i

dt2
= D+D−u

(m)
i + γ

hm
2
D+D−u̇

(m)
i , m = 1, 2, (34)

where the time derivative of ui(t) is denoted u̇i, and we have introduced the upwinding parameter γ ∈ [0, 1]
as a convenient way to vary the scheme from upwind to centered. Setting γ = 0 yields the traditional
second-order centered scheme with no dissipation, and γ = 1 gives the first-order upwind scheme. Boundary
and interpolation conditions for the overlapping grid model problem are then given as

u
(1)
N = 0, ‖u(2)‖ <∞, (35a)

u
(1)
0 =

r∑
k=0

aku
(2)
k , u(2)

q =

r∑
k=0

bku
(2)
p+k. (35b)

Here ak and bk are interpolation coefficients for degree r polynomial interpolation from r + 1 grid points.
For quadratic (r = 2) interpolation for example,

a0 =
1

2
(1− α)(2− α), a1 = α(2− α), a2 =

1

2
α(α− 1), (36a)

where α = (x
(1)
0 − x

(2)
0 )/h2, with α ∈ [

1

2
(r − 1),

1

2
(r + 1)]. (36b)

The coefficients bk are defined similarly as

b0 =
1

2
(1− β)(2− β), b1 = β(2− β), b2 =

1

2
β(β − 1), (36c)

where β = (x(2)
q − x(1)

p )/h1, with β ∈ [
1

2
(r − 1),

1

2
(r + 1)]. (36d)

The restrictions that α and β lie in [ 1
2 (r−1), 1

2 (r+1)] are a consequence of a restriction that the interpolation
stencil is centered, i.e. the interpolation is performed from the nearest set of r + 1 donor points.

To study stability of the discrete system we consider homogeneous initial conditions and take the Laplace
transform in t, with dual variable s, to give

s2ũ
(m)
i =

1

h2
m

(
ũ

(m)
i+1 − 2ũ

(m)
i + ũ

(m)
i−1

)
+ γ

s

2hm

(
ũ

(m)
i+1 − 2ũ

(m)
i + ũ

(m)
i−1

)
, m = 1, 2, (37)
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|κ(sh)|, centered scheme, γ = 0 |κ(sh)|, upwind scheme,γ = 1

Figure 8: Surface and contour plots of |κ(sh)| defined by equation (40) for the non-dissipative centered-scheme with
γ = 0 (left) and the upwind scheme with γ = 1 (right). For γ = 0, there are branch points at sh = ±2i, while for the
upwind scheme the branch cuts have been pushed into the negative Re(sh)-plane.

with transformed boundary and interpolation conditions

ũ
(1)
N = 0, ‖ũ(2)‖ <∞, (38a)

ũ
(1)
0 =

r∑
k=0

akũ
(2)
k , ũ(2)

q =

r∑
k=0

bkũ
(2)
p+k. (38b)

Here the tilde notation indicates the Laplace transformed variables. These difference equations are solved

exactly by seeking solutions of the form ũ
(m)
j = κjm. Substitution into (37) then gives the resolvent equation(

1 + γ
zm
2

)
κ2
m −

(
z2
m + γzm + 2

)
κm +

(
1 + γ

zm
2

)
= 0, (39)

where zm = shm. Writing zm = ξm + iηm, the solutions to this resolvent equation are written

κm =

{
κ−m for η2

m ≤
ξm(2ξ2m+3γξm+4)

2ξm+γ ,

κ+
m for η2

m >
ξm(2ξ2m+3γξm+4)

2ξm+γ ,
(40)

where κ±m indicates using the ± sign in the usual quadratic formula and the principle branch of the square
root function is used. Note that with these definitions, |κm| < 1 for Re(zm) > 0. Fig. 8 shows surface plots

of |κm| for γ = 0 and γ = 1 for Re(zm) > 0. Note that the branch points are located at zm = −γ± i
√

4− γ2,
and so the branch points are on the imaginary axis for zero upwinding and in the left-half plane for γ > 0.

At this point in the analysis the standard GKS assumption is taken, i.e. that of seeking unstable

solutions, and so Re(s) > 0. As a result, |κm| < 1. Thus by enforcing the boundary conditions, ũ
(1)
N = 0,

and ‖ũ(2)‖ <∞, the difference equations have solutions

ũ
(1)
j = A(s)(κj1 − κ

2N−j
1 ) j = 0, 1, . . . , N − 1, N

ũ
(2)
j = B(s)κq−j2 j = . . . , q − 1, q.

Now applying the interpolation conditions yields a homogeneous linear system for A and B,[
κ2N

1 − 1
∑2
k=0 akκ

q−k
2∑2

k=0 bk

(
κp+k1 − κ2N−(p+k)

1

)
−1

] [
A
B

]
=

[
0
0

]
. (41)

Nontrivial solutions to (41) exist when the determinant of the matrix in (41) vanishes, which yields the
determinant condition

G(s, κ1, κ2)
def
= 1− κ2N

1 −

(
r∑

k=0

akκ
r−k
2

)(
r∑

k=0

bk

(
κk1 − κ

2N−2p−k
1

))
κp1κ

q−r
2 = 0.

The stability of the discrete system is therefore encapsulated in the following theorem.
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Theorem 5.1. Discrete solutions to the one-dimensional overlapping grid problem defined by discretiza-
tions (34), boundary conditions (35a), and interpolation equations (35b) are stable (no exponential growth
in time) provided there are no solutions (s, κ1(s), κ2(s)) to the system of polynomial equations

G(s, κ1, κ2)
def
= 1− κ2N

1 −

(
r∑

k=0

akκ
r−k
2

)(
r∑

k=0

bk

(
κk1 − κ

2N−2p−k
1

))
κp1κ

q−r
2 = 0, (42a)

P1(s, κ1)
def
=
(

1 + γ
z1

2

)
κ2

1 −
(
z2

1 + γz1 + 2
)
κ1 +

(
1 + γ

z1

2

)
= 0, (42b)

P2(s, κ1)
def
=
(

1 + γ
z2

2

)
κ2

2 −
(
z2

2 + γz2 + 2
)
κ2 +

(
1 + γ

z2

2

)
= 0, (42c)

that satisfy |κm| < 1 for m = 1, 2, and Re(s) > 0, where zm = shm.

The polynomial system (42a)-(42c), with its associated constraints, encapsulates the notion of stability for
the IBVP on overlapping grids. The quadratic equations for κ1 and κ2 determine solutions to the Cauchy
problem, and G(s, κ1, κ2) incorporates the boundary conditions and the interpolation between grids. Since
G(s, κ1, κ2) depends on many parameters, including boundary grid points, interpolation points, and grid
spacings, and since the solution to the quadratic equations for κm is somewhat unwieldy for nonzero γ, it is
for the moment beyond our capacity to determine a-priori if there exist unstable solutions to (42a)-(42c). On
the other hand, as shown previously in [21], for the dissipation-free case of γ = 0, one can readily find grid
configurations by direct computation so that (42a)-(42c) are satisfied with Re(s) > 0. However, a detailed
and comprehensive numerical search for the upwind case with γ = 1, as discussed in Section 5.3, reveals that
there appear to be no unstable solutions for the upwind scheme. We will now give some indications why this
is the case without giving a formal proof, before proceeding to the discussion of the numerical search itself.

One key observation is that unstable modes will occur only when |κm| are close to one and when (p, q,N),
parameters indicating the relative placement of the interpolation and physical boundaries, are not too large.
This observation is quantified in the following lemma.

Lemma 5.2. There are no unstable solutions to the one-dimensional overlapping grid problem defined by
discretizations (34), boundary conditions (35a), and interpolation equations (35b) when

|κ1|2N + C2
r (1 + |κ1|2N−2p−r) |κ1|p |κ2|q−r < 1 (43)

where

Cr = max

{
r∑

k=0

|ak|,
r∑

k=0

|bk|

}
.

Proof From (42a) and the triangle inequality it follows that

|G(s, κ1, κ2)| ≥ 1−
∣∣∣κ2N

1

∣∣∣− ∣∣∣∣∣
r∑

k=0

akκ
r−k
2

∣∣∣∣∣
∣∣∣∣∣
r∑

k=0

bk

(
κk1 − κ

2N−2p−k
1

)∣∣∣∣∣ |κ1|p|κ2|q−r.

Using |κm| < 1, r > 0, p ≥ 0, q − r ≥ 0 N > 0 and 2N − 2p− r ≥ 0 gives∣∣∣∣∣
r∑

k=0

akκ
r−k
2

∣∣∣∣∣ ≤
r∑

k=0

|ak| ≤ Cr,

and ∣∣∣∣∣
r∑

k=0

bk

(
κk1 − κ

2N−2p−k
1

)∣∣∣∣∣ ≤
∣∣∣∣∣
r∑

k=0

bkκ
k
1

∣∣∣∣∣+

∣∣∣∣∣
r∑

k=0

bkκ
2N−2p−k
1

∣∣∣∣∣ ≤
∣∣∣∣∣
r∑

k=0

bk

∣∣∣∣∣+

∣∣∣∣∣
r∑

k=0

bk

∣∣∣∣∣ |κ1|2N−2p−r

≤ Cr(1 + |κ1|2N−2p−r)

Thus |G(s, κ1, κ2)| > 0 when

|κ1|2N + C2
r (1 + |κ1|2N−2p−r) |κ1|p |κ2|q−r < 1,

and this completes the proof.
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Figure 9: Absolute value of the determinant condition |G(s)| for γ = 0 and γ = 1 on the left and right respectively.
Beneath the surface plots are contours of the real and imaginary parts in red and blue. Intersections of these contours
of indicate an unstable mode, which occur here at sh1 ≈ 0.01747− 1.251i.

Note that under our assumptions for valid interpolation formulae, for r = 1 (linear interpolation) Cr ≤ 1
while for r = 2, Cr ≤ 5/4. Thus from (43) it follows that for given (p, q,N) there will be no unstable roots
for κm small enough. For example if |κm| < δ < 1 then there will be no unstable roots when

δ2N + C2
r (1 + δ2N−2p−r)δp+q−r < 1. (44)

For example consider the case N = 10, p = 1, q = 4, and r = 3, for which condition (44) implies there are
no unstable modes when |κm| < δ ≈ 0.8. The surface plots of |κm| in Fig. 8 shows that for the dissipation-
free case |κm| is close to one for Re(shm) small and Im(shm) between approximately −2 and 2. On the
other hand, for the upwind scheme |κm| is only close to 1 when both Re(shm) and Im(shm) are small.
In addition, for small shm the discrete solutions is an accurate approximation to the continuous solutions
and thus unstable modes in this region are unlikely. Therefore, the damping added by the upwind scheme
has reduced the possibility for unstable modes, and in particular has decreased the likelihood of unstable
high-frequency spatial modes quite dramatically. High-frequency modes that are not well represented on the
grid are typical of the unstable modes observed in overlapping grid computation.

Fig. 9 illustrates these observations by showing |G(sh1)| for an overlapping grid configuration yielding
instability for the centered scheme with Im(sh1) ≈ 1.5, while the same grid configuration for the upwind
scheme has no unstable roots8. In addition, notice that the location of the unstable mode in the sh1-plane
indicates that this mode is highly oscillatory on the grid, consistent with the observed unstable modes in two
dimensions in Fig. 5 and in one-dimension in Fig. 11. The surface plot of |G(sh1)| for the non-dissipative
scheme shows an oscillatory behavior near the imaginary axis where the surface almost reaches zero at a
number of points; these are points where there is almost an unstable high-frequency mode. By contrast the
surface plot of |G(sh1)| for the upwind scheme is smooth and close to one in the same regions indicating
there are no nearby unstable roots at high frequencies. The only place where |G(sh1)| is close to zero for
the upwind scheme is near the origin, s = 0, but this expected behavior for consistent schemes.

To further understand the role of dissipation, it is instructive to consider the spectra of the spatial
discretization operator for the dissipation-free and upwind cases. In order to facilitate this, the semi-infinite

domain is truncated at a finite but suitable large size using x ∈ (x
(2)
0 −Mh2, x

(1)
0 + Nh1), for some large

integer M , and Dirichlet conditions are applied at both the left and right ends. Such a procedure was also
used in [21] which showed the discrete spectra for finite domains converges to the spectra for the semi-infinite
domain as M increases. This finite domain wave equation is now approximated using second-order centered
(γ = 0) or first-order upwind (γ = 1) using either a single grid, or an overlapping grid with near boundary
geometry similar to that shown in Fig. 7. The eigenvalue decomposition for the resulting discretization

8Note that the factor h1 has been included as a measure of grid spacing to scale the dual variable s for convenience,
but h2 could have been chosen as well.
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Figure 10: Location of the eigenvalues, in the complex sh-plane, of the discretization matrix for a Dirichlet problem
on a large finite domain. On the left is the result for a single grid, and on the right for an overlapping grid with a
near-boundary grid as shown in Fig. 7. For the first-order accurate upwind scheme with γ = 1 the roots lie along the
curve in the left-half plane, and all modes except the one at sh1 = 0 decay in time. For the dissipation-free scheme
there are two unstable modes with Re(sh1) > 0 which are complex conjugates. The unstable mode detailed in the
inset figure at right is is an approximation to the unstable mode in Fig. 9. Note that the number of roots differ on
the left and right since an adequate number of points is needed to observe the unstable mode.

matrices are then computed, and the location of the eigenvalues in the complex plane are plotted in Fig. 109.
For the non-dissipative scheme (γ = 0) on a single grid, the roots in the sh plane lie on the imaginary axis on
the interval I = { iξ | ξ ∈ [−2, 2]}, where ξ = Im(sh) and η = Re(sh). These roots have Re(sh) = 0 and thus
correspond to oscillatory modes in time that neither grow nor decay. For the upwind scheme (γ = 1), all
roots except the root κ = 1 at sh = 0 are shifted onto a curve in the left half plane. These roots in the left-
half sh plane correspond to modes that decay in time, and modes with higher spatial frequency (increasing
Im(sh)) have increased temporal damping. For the case of the overlapping grid, the inter-grid interpolation
introduces perturbations to the location of the eigenvalues of the discretization matrix. Given the spectra
for the single grid case, it is obvious that such small perturbations could easily push the dissipation-free
scheme into instability, while it is less likely that the upwind scheme would become unstable for similar sized
perturbations because the eigenvalues have large negative real part. This supposition is indeed born out in
the spectra for the overlapping grid case in Fig. 10 which shows that for the non-dissipative case an instability
is induced, while the upwind scheme remains stable. The example we have just described has been chosen
closely correspond to the unstable root shown in Fig. 9, with the lone difference being the large finite domain
approximation of the semi-infinite domain discussed in Fig. 9. To illustrate the closeness of the two results,
Fig. 11 shows the real part of the spatial eigenfunction for the two cases, the semi-infinite grid and the
truncated approximation. Clearly the two modes are indeed very similar. In addition, both eigenfunctions
illustrate the oscillatory nature of the unstable modes for dissipation-free schemes on overlapping grids.

5.3. Grid parameter space search for unstable modes

Because a closed-form proof of stability is, at present, intractable, a careful numerical search is instead
performed for a range of valid overlapping grids. We therefore seek unstable roots (s, κ1, κ2) to the con-
strained polynomial system (42a)-(42c). For a given overlapping grid configuration (e.g. the grid overlap,
ratio of grid spacings and order of interpolation), the polynomial system (42a)-(42c) is completely specified,
and the roots may be computed. In particular, this work uses the Gröbner Basis method [34], and homotopy

9Note that there appear to be two sets of modes on the overlapping grid case for both γ = 0 and γ = 1. This is
due to the axes being scaled by h1 so that modes corresponding to the near-boundary grid match the modes in the
left plot while modes corresponding to the large domain grid seem out of place. The choice is arbitrary and if the
axes were scaled by h2, the situation would be the opposite.
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Figure 11: Real part of an eigenfunction corresponding to an unstable mode for the truncated domain and semi-
infinite domain on the left and right respectively. The corresponding unstable mode is the same mode pictured in
Figures 9 and 10. It’s clear that the truncated domain problem gives good agreement to results obstained for the
semi-infinite problem. For the approximation shown here, the bounded domain is approximately x ∈ (−300, 7).

continuation [35]. The Gröbner Basis method is guaranteed to find all roots of the polynomial system, but
we have found it to be somewhat expensive. On the other hand, homotopy continuation is quite fast, but
is not guaranteed to find all roots (although we have yet to encounter a case where roots were missed). We
therefore use the homotopy continuation for the majority of the results presented, and rely on the Gröbner
Basis method as a check of the completeness of the results.

Solutions to the unconstrained polynomial system (42a)-(42c) are computed using the polynomial system
solver PHCpack [36], which uses a homotopy continuation method as discussed in [35]. This resulting roots
may contain some that do not satisfy |κm| < 1 and Re(s) > 0, as required in Theorem 5.1, and so these
invalid roots are eliminated from further consideration. Any remaining roots would represent instability
of the overlapping grid discretization on the semi-infinite domain with thin boundary fitted grid. Note
however, that these roots are nearly identical to nearby unstable roots found for a large finite domain
after appropriate reformulation of the discretization in equations (34)–(35). The eigenvalues of the finite-
dimensional discretization matrix are easily computed, and any unstable roots, i.e. those with Re(s) > 0,
can be compared to the unstable roots for the semi-infinite domain from the constrained polynomial system.
Any unstable roots for the finite domain problem are found to converged to the unstable roots for the semi-
finite domain as the length of the finite domain became larger. This check is a further confirmation that the
unstable solutions obtained via the polynomial system do indeed correspond to instability in the original
semi-discrete equations (34)–(35).

A numerical search for unstable solutions as discussed in Theorem 5.1 is now performed. The space of
valid grid configurations as shown in Fig. 7, as well as the upwind parameter γ, is discretized and all unstable
roots are reported. A full list of input data to the generic parameter space search is given in the table below

Parameters for Search Algorithm

γ : upwind parameter, γ ∈ [0, 1]
r : Order of interpolation (e.g. 1 or 2)
N : Number of grid cells on thin grid (e.g. 5)
h1 : Grid spacing on thin boundary grid

δ
def
= h2

h1
= δmin + j∆δ, j = 0, . . . ,Mδ, : Grid spacing ratio

Mδ : number of intervals to use in the δ search space
[δmin, δmax] : minium and maximum grid spacing ratio

x
(1)
0 = 0 : Left point of thin grid,

Mx : number of intervals to use in the x
(2)
0 search space

x
(2)
0 = − r+1

2
+ j∆x2, j = 0, . . . ,Mx, : Left donor point on semi-infinite grid,

x
(1)
p = ph1, p = 1, 2, . . . N − r : Left donor point of thin grid,

x
(1)
q = x

(2)
0 + qh2, q = qmin, . . . , qmax : Interpolation point on semi-infinite grid

where

∆δ
def
=

δmax − δmin

Mδ
, ∆x2 =

x
(2)
0,max − x

(2)
0,min

Mx
. (45)
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However, a number of these parameters are not independent and the search space can be reduced in size
somewhat. In particular, without loss of generality the grid spacing on the boundary grid can be normalized

so that h1 = 1, and the left end of the thin boundary grid can be fixed at x
(1)
0 = 0. Also note that p in the

formula x
(1)
p = ph1 is limited between 1 and N−r since there must be enough donor points for interpolation.

Thus for a given ratio δ, bounds on x
(2)
0 and q can be determined by substituting x

(2)
q = x

(2)
0 + qh2 and

x
(1)
p = x

(1)
0 +ph1 into the interpolation formula (36d) for β and enforcing the condition that the interpolation

is centered so that α and β ∈
[

1
2 (r − 1) , 1

2 (r + 1)
]
. For practical computation, the two grids should not be of

dramatically different resolutions, and so the ratio of the grid spacings, δ, can be restricted to a reasonable
interval around 1, here δ ∈ [1/4, 4]. Also since the case of γ = 0 is the standard second-order accurate
centered discretization of the wave equation, we take the interpolation order to be r = 2 as required for
second-order accuracy. Finally, because the primary interest is in the thin boundary grid case, we present
results for a boundary grid with N = 5 points which is much smaller than typically used in practice. The
parameter space is therefore defined by the following choices

r x
(1)
0 h1 N δmin δmax Mx Mδ

2 0 1 5 1/4 4 40 40

for which results are now presented.
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Figure 12: Scatter plots of the computed unstable roots (s, κ1, κ2) for the nondissipative scheme (γ = 0) for N = 5
points on the thin boundary grid. Left: Values of κ1 and κ2 (unstable roots have |κm| < 1). Right: Values of s
(unstable roots have Re(s) > 0). The coloring indicates the ratio of grid spacings δ = h2/h1.

Fig. 12 shows all the unstable roots (s, κ1, κ2) for the non-dissipative scheme with γ = 0. The plots on

on the left side of Fig. 12 show κ
(i)
1 and κ

(i)
2 , while the plot on the right shows s(i) where i = 1, 2, . . . , Ns

denotes the different unstable roots. The colors in the figure correspond to the ratio of the grid spacings for
that particular root. Recall that the growth rate in time of a particular unstable modes is given by eRe(s)t.
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Figure 13: At left is a semi-log plot of the number of unstable modes found in the parameter space search versus the
value for the upwinding parameter γ. At right is the maximum growth rate given by Re(s) taken over all unstable
modes for a given value of γ, where the points are colored by the magnitude of Im(s).

Therefore if there is an an unstable mode with Re(sh1) = σ0 > 0, then the growth rate in time is e(σ0/h1)t and
the growth becomes unbounded as the mesh is refined and h1 → 0. For γ = 0, many thousands of unstable
roots were found in the parameter space considered. From the plot of s(i)h1 it is seen that the most unstable
roots, i.e. those with larger values of Re(s(i)h1), tend to appear in bands near where the grid ratio δ is either
an integer or the inverse of an integer. It can also be seen that there are no unstable roots for well resolved
solutions when sh1 is small. In particular there are no unstable roots for |sh1| < Cs ≈ π/5 ≈ 0.628. Thus,
only those modes with a high frequency with respect to the grid spacing appear to be unstable. For those
high frequency modes the dissipation in the upwind scheme is found to have the most significant stabilizing
effect as discussed previously in Section 5.2.

To understand how the upwinding parameter γ affects the stability, we conduct a series of parameter
space searches for different values of γ between zero and one,

γ =
j

100
, j = 0, 1, ..., 100.

Fig. 13 shows both the number of unstable modes versus γ, as well as the largest growth rate for the unstable
modes versus γ. Both quantities are monotonically decreasing with respect to the upwinding parameter, and
there are no unstable modes for γ ' .25. The plot on the right of Fig. 13 also uses color to encode the

size of η
def
= Im(sh1) for the roots with largest growth factor. The value of η indicates how rapidly the

eigenmode oscillates in both time and space. For small γ the most unstable roots correspond to a high
frequency of η ≈ 1.5. However, the upwind scheme introduces the most dissipation for high-frequencies
and as γ increases these modes become stabilized which reveals lower values of η. By γ ≈ .25 the most
unstable mode has η ≈ 0.7, still a moderately high frequency the grid. For γ ' .25 no unstable modes are
found, giving strong evidence that the first-order upwind scheme is indeed stable for γ = 1. Furthermore,
in practical two-dimensional and three-dimension simulations of the wave equation and Maxwell’s equations
we have never observed any numerical instabilities with the upwind scheme.

6. Numerical Results

In this section, numerical results are presented to verify the implementation, numerical convergence, and
stability of the upwind scheme for Maxwell’s equations in second-order form on overlapping grids. A variety
of different configurations are considered, and grid refinement studies are performed to assess the accuracy
of the solution as the mesh is refined. Problems are selected to demonstrate both the properties of the
numerical scheme, as well as how overlapping grids can be used to accommodate curvilinear geometries and
varying material parameters. The first problem considered is the scattering of an electromagnetic plane wave
from a perfectly conducting cylinder in two dimensions in order to demonstrate the accuracy and stability
of the upwind scheme for a simple two-dimensional geometry. The next problem deals with scattering of
a plane wave from a dielectric cylinder and is used to evaluate the scheme for a problem with material
interfaces. Analogous problems of scattering from perfectly conducting and dielectric spheres are then used
to demonstrate the extension to three space dimensions. The first four problems are classical scattering and
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all have known exact solutions [37–39] which permits the errors to be determined. A final, more complicated
example, considers a chirped frequency plane wave impinging on a rectangular-shaped conducting body em-
bedded in a dielectric slab. In this case, where the exact solution is not known, Richardson extrapolation is
used to estimate the errors and convergence rates. In all cases, detailed descriptions of the composite grids
used in the computations are presented in Appendix A. All numerical studies are performed with the Over-
ture10 based CgMx solver. Overture provides tools to generate high quality composite grids for high-order
methods along with a suite of PDE solvers for various problems in computational physics (compressible and
incompressible flows, solid mechanics, conjugate heat transfer, electrodynamics, etc). Overture’s overlapping
structured grid generator Ogen is used to create all of the composite grids and the CgMx solver is used to
compute all the solutions.

6.1. Scattering from a perfectly conducting cylinder

EM wave

-1.0 +1.0
−2 +2

Physical problem Computational grid Computed Ex field

Figure 14: Left: Diagram illustrating the physical setup for the scattering of a TEz plane-wave incident on a
conducting cylinder. Middle: Overlapping grid for the domain (coarse grid). Right: Computed solution showing Ex
at t = 1 (on a fine grid with h ≈ 1

160
) for an incident wave-number kx = 5.

Consider the classical problem of scattering of a uniform electromagnetic plane wave propagating in
the positive x-direction impinging normally on a perfectly conducting cylinder of a given radius R. Such
a problem is illustrated in Fig. 14, which also shows a representative computational grid, and a computed
scattered field as discussed below. The incident wave is polarized as a TEz mode (i.e. with non-zero
components Ex, Ey and Hz) and propagates in the positive x−direction,

EIx = 0, EIy = −Z ei(kx(x−ct)), HI
z = ei(kx(x−ct)), (46)

where Z =
√
µ/ε is the electrical impedance, and kx is a given wave number. The exact solution to this

classical problem is presented in many texts, for example [37–39], and the reader is referred to those works
for a description of the exact solution and its derivation.

For the computations presented here, the infinite space is truncated to the square [−2, 2]× [−2, 2], and
the radius of the cylinder is taken to be R = 0.5. The resulting two-dimensional domain is meshed with two
component grids, a green boundary fitted grid near the cylinder and a blue background Cartesian grid, as
shown in Fig. 14. This composite grid is described in more detail in Appendix A.2. The annular grid has a
perfectly conducting boundary condition (1b) on the inner radius while the background rectangular grid has
outer boundary conditions set using the known exact solution. The initial data is also given by the known
solution. The second- and fourth-order accurate upwind schemes described in Section 4 are used to compute
approximate solutions with ε = 1, µ = 1, kx = 5 and c = 1, and the results are then compared to the exact
solution.

10http://www.overtureframework.org/
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2nd Order Max-norm Convergence

hj Ex r Ey r Hz r ∂tEx r ∂tEy r ∂tHz r

1/40 5.7e-1 1.3e0 1.3e0 17.6e0 49.4e0 49.8e0
1/80 1.7e-1 3.3 6.9e-1 1.9 6.9e-1 1.9 5.7e0 3.1 15.3e0 3.2 15.5e0 3.2

1/160 4.9e-2 3.6 2.1e-1 3.2 2.2e-1 3.2 1.5e0 3.7 3.9e0 3.9 4.0e0 3.9
1/320 1.3e-2 3.9 5.5e-2 3.9 5.5e-2 3.9 4.0e-1 3.8 9.7e-1 4.0 9.8e-1 4.0

rate 1.83 1.54 1.55 1.83 1.90 1.89

4th Order Max-norm Convergence

hj Ex r Ey r Hz r ∂tEx r ∂tEy r ∂tHz r

1/40 2.4e-1 7.7e-1 7.8e-1 7.3e0 20.8e0 21.0e0
1/80 2.4e-2 10.1 1.0e-1 7.5 1.0e-1 7.5 6.7e-1 10.8 1.9e0 11.2 1.9e0 11.1

1/160 1.7e-3 14.0 7.4e-3 13.9 7.5e-3 13.9 5.0e-2 13.4 1.3e-1 14.2 1.3e-1 14.2
1/320 1.1e-4 15.4 4.8e-4 15.4 4.8e-4 15.4 3.5e-3 14.5 8.6e-3 15.3 8.7e-3 15.3

rate 3.71 3.57 3.57 3.69 3.76 3.75

Table 1: Max-norm error convergence study computing the scattered field from a conducting cylinder at t = .25
using the second-order and fourth-order accurate upwind schemes. The left-most column is the target grid spacing
hj . Columns labeled by field components contain the computed errors, and columns labeled r denote the ratio of
errors for successive refinements. The two rows labeled rate show the computed average rate of convergence.
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Figure 15: Max-norm error convergence plots for the second-order and fourth-order accurate upwind schemes applied
to the computation of the scattered field from a conducting cylinder. The corresponding data is presented in Table 1.
Dashed lines are drawn for reference showing the expected convergence rate.

Table 1 shows the maximum-norm errors for numerical convergence studies of the second- and fourth-
order accurate upwind schemes for the problem of scattering from a PEC cylinder. The convergence rate is
computed by a least squares fit to the log of the errors. The data shows that for both schemes the ratio of
errors from one grid to the previous coarser grid are near to the expected values of 4 and 16 for the second-
and fourth-order accurate schemes respectively, and the convergence rates are in excellent agreement with
the theoretical prediction. The same data is depicted graphically using a log-log plot in Fig. 6.1, and again
the expected convergence rates are clearly demonstrated. Note that for the given value of kx = 5, the
time derivatives are large compared to the field values, but the convergence rates still verify the expected
theoretical value. A separate indication of the quality of the computed solution is the smoothness of the
error near both the physical and the interpolation boundaries. To that end, Fig. 16 shows a computed
solution for Ex, its error, and a zoomed wire frame plot of the error near the interpolation boundary at
t = 1. Note that the error is smooth throughout the domain, and in particular the error is smooth across
the interpolation interface. This can be clearly seen in the rightmost panel of the figure, where the error is
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-1.0 +1.0 -4.0e-4 +4.0e-4 -1.0e-4 +1.0e-4

Computed x-component Error Error near interpolation interface

Figure 16: Left: Computed solution component Ex at t = 1 for kx = 5 using a grid with h ≈ 1
160

. Middle: Error in
computed solution on the same grid. Note the smoothness of the numerical error which shows the effect of dissipation
in the upwind scheme. Right: Zoomed wireframe plot of the error near the surface of the interpolation boundary.
Black contours are drawn for each component grid and are a further indication of the smoothness of the error, even
near the interpolation boundary.

plotted as a wireframe and black contour lines are included. Note that the contour lines are independently
plotted on each component grid and will line up in the overlap region only if the errors agree sufficiently
well. Such contour lines are thus a sensitive indicator of the smoothness of the quantity being plotted, in
this case the error, and this shows the strong smoothing effect of the upwind dissipation near interpolation
boundaries. The other field components are qualitatively similar and so are not plotted.

6.2. Scattering from a dielectric cylinder

EM wave

ε2 µ2

ε1 µ1

-1.0 +1.0
−1 +1

Physical problem Computational grid Computed Ex field

Figure 17: Left: Illustration of the physical problem of a polarized uniform plane wave scattering from a dielectric
cylinder radius R in an infinite domain. Middle: A coarse overlapping grid construction for scattering from a dielectric
cylinder. Right: Computed field component Ex on a fine grid with h ≈ 1

160
at time t = 0.25.

Having illustrated the performance of the upwind schemes for electromagnetic wave propagation in a
single material where the geometry is treated using composite overlapping grids, we move on to the case of
multiple dielectric materials. The physical scenario is similar that described in Section 6.1, but where now
the interior of the cylinder is filled with a separate dielectric material, as illustrated in Figure 17. This is
again a classical scattering problem, and the exact solution can be found in many texts, for example [37–39].

For the numerical results presented here, the cylinder is taken to have radius R = .4, and the permittivity
and permeability are taken as ε1 = 0.25 and µ1 = 1 for the exterior domain and ε2 = 1 and µ2 = 1 for the
interior region. The physical domain is truncated to the square [−1, 1]× [−1, 1]. The computations presented
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2nd Order Max-norm Convergence

hj Ex r Ey r Hz r ∂tEx r ∂tEy r ∂tHz r

1/40 3.2e-1 6.1e-1 6.3e-1 9.7e0 1.7e1 1.8e1
1/80 8.9e-2 3.6 1.7e-1 3.5 1.8e-1 3.6 3.0e0 3.2 3.6e0 4.8 4.2e0 4.2

1/160 2.1e-2 4.2 4.3e-2 4.0 4.5e-2 4.0 7.8e-1 3.9 8.2e-1 4.4 1.1e0 4.0
1/320 4.9e-3 4.3 1.1e-2 4.1 1.1e-2 4.0 2.2e-1 3.6 2.1e-1 4.0 2.7e-1 4.0

rate 2.01 1.95 1.95 1.84 2.13 2.01

4th Order Max-norm Convergence

hj Ex r Ey r Hz r ∂tEx r ∂tEy r ∂tHz r

1/40 2.4e-2 1.1e-1 1.2e-1 7.7e-1 3.6e0 3.8e0
1/80 1.9e-3 12.5 5.2e-3 21.2 5.4e-3 22.2 5.9e-2 13.1 1.1e-1 34.2 1.2e-1 30.6

1/160 1.3e-4 14.6 3.5e-4 15.1 3.5e-4 15.2 3.9e-3 14.9 6.6e-3 16.0 8.4e-3 14.9
1/320 9.6e-6 13.6 2.2e-5 15.7 2.3e-5 15.7 3.0e-4 13.2 4.5e-4 14.5 5.4e-4 15.5

rate 3.77 4.08 4.10 3.79 4.29 4.23

Table 2: Max-norm error convergence study for the scattered field from a dielectric cylinder using the second-order
and fourth-order accurate upwind schemes. The left-most column is the target grid spacing hj , columns labeled by
field components contain errors at t = .25, and columns labeled r denote the ratio of errors for successive refinements.
The two rows labeled rate show the computed average rate of convergence. Excellent agreement with the theoretical
convergence rates is observed.
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Figure 18: Max-norm error convergence plots for the second-order and fourth-order accurate upwind schemes applied
to the computation of the the scattered field from a dielectric cylinder. Dashed lines are drawn for reference showing
the expected convergence rates. These results correspond to those in Table 2, and demonstrate excellent agreement
with the expected convergence rates.

here describe the physical system using two composite grids, one for the interior material and one for the
exterior materials, and each of these is composed of two component grids. In the center panel of Figure 17,
the exterior composite grid has a green boundary fitted grid and a blue background Cartesian grid, while the
interior material has a maroon boundary fitted grid and a red Cartesian background. See Appendix A.3 for
additional details of the two composite grids. The incident plane wave is again given by (46) with kx = 5,
and the initial state of the field is given by the known time-harmonic solution which is also used for the
numerical boundary data for the artificially truncated exterior. Figure 17 shows a representative computed
solution component Ex at time t = 0.25. Note that the fields may jump at the material interface.

A convergence study for the problem of scattering from a dielectric cylinder is performed using both the
second- and fourth-order accurate upwind schemes. Table 2 and Figure 6.2 show the result of this study
where the max-norm errors in the solution components and time derivatives are shown to converge at close
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to the expected rates. The fact that high-order accuracy in the max-norm is demonstrated, despite the
fact that the fields may jump across the material interface, is due to the use of interface fitted grids which
represent the geometry exactly, and the use of the compatibility interface conditions. See [2] for additional
details of the numerical treatment of such interfaces.

6.3. Scattering from a perfectly conducting sphere

x

y

z

-1.0 +1.0
−3 +3

Physical problem Computational grid Computed Ey field

Figure 19: Left: Illustration of physical problem showing planes of constant phase impinging on the conducting sphere
in an infinite domain. Middle: A coarse version of the overlapping grid for the sphere in a truncated domain. Right:
Computed solution Ey with kx = 1 using a mesh with grid spacing approximately equal to h ≈ 1

40
. The overlapping

grid on the sphere surface is coarsened for easier viewing.

The examples considered in Sections 6.1 and 6.2 illustrate the performance of the upwind schemes for
electromagnetic wave propagation using composite grids for classical scattering problems in two space di-
mensions. An analogous set of results in three space dimensions is now presented. Consider the diffraction
of a plane wave incident on a perfectly conducting sphere of radius R = 1 embedded in an infinite dielec-
tric media as illustrated in Figure 19. The incident field, denoted by EI(x, t), propagates in the positive
x−direction and is taken to be

EIx = 0, EIy = ei(kx(x−ct)), EIz = 0. (47)

For the computations, the infinite domain is truncated to a finite box with dimensions [−3, 3]× [−3, 3]×
[−3, 3]. The composite grid used for this geometry consists of a background Cartesian grid together with
three curvilinear patches which are used to represent the sphere as shown in Fig. 19 and also Fig. A.24
in Appendix A.4. This three-patch sphere is a high-quality grid and is chosen to avoid the polar singularities
while providing near uniform grid spacing on the sphere surface. This can be seen in the center and right
panels of Fig. 19. These images also indicate one of the primary differences between the 2D computations
from Sections 6.1 and 6.2 and the current 3D studies in that grid interpolation on the geometry surface
is encountered. This type of interpolation on physical boundaries is essentially ubiquitous in practical 3D
computations using overlapping grids, and the ability of the upwind discretization to stabilize computations
where interpolation points are near physical boundaries is therefore quite important. For more details on the
grids see Appendix A.4. The exact time-harmonic solution is used for the initial conditions and to specify
the field values on the exterior boundary of the box. The boundary conditions on the surface of the sphere
are taken as those of a perfect electrical conductor (1b). Physical parameters for the computation are taken
as ε = 1, µ = 1 and kx = 1. As before, max-norm convergence studies for the second- and fourth-order
accurate upwind schemes are performed, and the results reported in Table 3. The errors are observed to
converge at close to the expected second- and fourth-order rates.

6.4. Scattering from a dielectric sphere

The final classical scattering problem considered is that of an incident plane wave (47) with wave number
kx = 1 impinging on a dielectric sphere of radius R = 1. A schematic of the problem is illustrated in Fig. 20.
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2nd Order Max-norm Convergence

hj Ex r Ey r Ez r ∂tEx r ∂tEy r ∂tEz r

1/20 8.0e-2 1.0e-1 4.1e-2 4.9e-1 6.6e-1 2.8e-1
1/40 1.4e-2 5.9 2.1e-2 4.8 8.7e-3 4.7 1.0e-1 4.7 1.5e-1 4.2 6.6e-2 4.2
1/80 2.4e-3 5.7 4.2e-3 5.0 2.0e-3 4.4 2.0e-2 5.2 3.4e-2 4.6 1.6e-2 4.3

rate 2.54 2.30 2.19 2.31 2.14 2.08

4th Order Max-norm Convergence

hj Ex r Ey r Ez r ∂tEx r ∂tEy r ∂tEz r

1/20 2.6e-2 4.2e-2 1.1e-2 2.8e-1 3.1e-1 9.0e-2
1/40 1.5e-3 17.4 2.7e-3 15.2 7.3e-4 15.5 1.6e-2 18.2 2.1e-2 14.8 5.8e-3 15.7
1/80 7.3e-5 20.1 1.6e-4 17.5 4.2e-5 17.4 7.0e-4 22.2 1.2e-3 17.8 3.2e-4 17.8

rate 4.23 4.02 4.04 4.33 4.02 4.06

Table 3: Max-norm convergence study computing the scattered field from a conducting sphere using the second-
and fourth-order-accurate schemes. The left-most column is the target grid spacing hj . Columns labeled by field
components contain errors computed at t = .1, and columns labeled r denote the ratio of errors for successive
refinements. The two rows labelled rate show the computed average rate of convergence. Again the results show
excellent agreement with the theoretically predicted convergence rates.
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Figure 20: Left: Illustration of the scattering problem of a polarized plane wave impinging on dielectric sphere with
ε = 0.25. Middle: Overlapping grid construction for sphere, sphere interior, and truncated computational domain.
Right: Computed Ey component and grid with approximate grid spacing hj ≈ 1

80
and kx = 1 at time t = 0.25. The

overlapping solid sphere grid is coarsened for easier viewing.

Material properties for the interior of the sphere are taken as ε = 0.25 and µ = 1, while the properties
for the region exterior to the sphere are ε = 1 and µ = 1. For the purposes of computation, the infinite
computational domain is truncated to a box with dimensions [−2, 2]× [−2, 2]× [−2, 2]. The composite grids
used for this two domain problem then consist of the composite grid previously discussed for scattering from
a PEC sphere, together with a second composite grid for the interior problem. Each of the two composite
grid structures is itself made of four component grids; three boundary fitted grids for the sphere along with
and a background Cartesian grid. The surfaces of some of these grid patches are shown in Fig. 20. Additional
details of the grid structure are provided in Appendix A.5. The interface conditions along the surface of
the sphere are given by (1c), while initial conditions and boundary conditions on the outer boundary of
the box are taken from the known exact solution. The results of convergence studies for this problem are
presented in Table 4. There the max-norm errors for the second-order and fourth-order accurate upwind
schemes are seen to converge at close to the expected second- and fourth-order rate. In addition, Fig. 21
shows plots of the three field components of the electric field E, as well as the errors in these components at
time t = 0.25. Here the solution is seen to be very smooth in the domain interiors, while the fields may jump
at the material interface. Similarly, the errors show jumps at the material interfaces and a large degree of
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2nd Order Max-norm Convergence

hj Ex r Ey r Ez r ∂tEx r ∂tEy r ∂tEz r

1/20 1.7e-2 2.8e-2 6.9e-3 2.0e-1 3.1e-1 9.0e-2
1/40 3.9e-3 4.4 6.3e-3 4.4 1.7e-3 4.1 5.5e-2 3.5 8.5e-2 3.6 2.5e-2 3.7
1/80 9.4e-4 4.1 1.4e-3 4.4 4.0e-4 4.2 1.5e-2 3.6 2.1e-2 4.1 6.7e-3 3.7

rate 2.09 2.14 2.05 1.84 1.95 1.87

4th Order Max-norm Convergence

hj Ex r Ey r Ez r ∂tEx r ∂tEy r ∂tEz r

1/20 1.5e-3 5.8e-3 5.6e-4 2.2e-2 5.1e-2 8.8e-3
1/40 9.4e-5 16.3 1.9e-4 29.6 3.6e-5 15.7 2.1e-3 10.9 3.1e-3 16.6 7.0e-4 12.5
1/80 6.1e-6 15.3 1.2e-5 15.6 2.2e-6 16.0 1.2e-4 16.8 1.8e-4 16.7 4.2e-5 16.8

rate 3.98 4.43 3.98 3.79 4.07 3.86

Table 4: Max-norm error convergence study from the computation of the scattered field from a dielectric sphere
using the second-order and fourth-order accurate upwind schemes. The left-most column is the target grid spacing
hj . Columns labeled by field components contain errors computed at t = .1 and columns labeled r denote the ratio
of errors for successive refinements. The two rows labeled rate show the computed average rate of convergence which
show that the expected second- and fourth-order rates of convergence are convincingly demonstrated for all quantities.
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-1.0e-0 +1.0e-0
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-1.0e-4 +1.0e-4
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Figure 21: The solutions and errors for the scattering of a plane wave from a dielectric sphere at t = 0.25, with kx = 1
computed using the fourth-order-accurate upwind scheme. Top row: Electric field components. Bottom row: Errors
in the field components. The approximate grid spacing is h ≈ 1

80
. The grid is coarsened for plotting.

smoothness on the domain interiors. However, in contrast to the 2D computations shown in Section 6.1, the
interpolation boundaries are apparent in the error plots here due to the relative coarseness of the grids for
these computations. Even still, the dominant errors are not associated with the interpolation boundaries.
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Instead, the errors appear to be largest near the material interface and then decay toward the domain
interior.

6.5. Scattering of a chirped plane wave from a conducting body embedded in a dielectric slab

A final more complex computational example relates to the challenging problem of using electromagnetic
waves to detect a metal object buried just below the surface of the earth. The physical problem is illustrated
in Fig. 22. In this setup, a chirped plane wave with linearly varying frequency is beamed from the upper
air region toward the ground at some incident angle, and the resulting reflected wave is to be determined.
The problem is formulated in two space dimensions with a rectangular shaped body buried below a planar
material interface. The material properties for the upper air region are taken as ε1 = 1 and µ1 = 1, while
those for the lower ground region are taken as ε2 = 3 and µ2 = 1.

W

H

D

ε1 = µ1 = 1

ε2 = 3, µ2 = 1

Grid interface

Figure 22: Scattering of a chirped plane wave from a buried conducting body. Top left: physical configuration with
plane wave incident from the upper right in a region with material parameters ε1 and µ1. The conducting body is
embedded in a material with parameters ε2 and µ2. Bottom left: the body, of width W and height H, lies a distance
D below the interface. Right: composite grid for the configuration with a zoom of the grids near where the interface
meets the far field boundary.

If the material surface of the dielectric is the plane y = 0, and the angle of incidence from the y-axis is
θ then the incident field is of the form

EI(x, t) = â P

(
t− ξ0 −

k̂

c
· x

)
= â P (ξ) ,

where P defines the wave-form with

ξ = t− ξ0 −
k̂

c
· x, â = (− cos θ, sin θ) , k̂ = (− sin(θ), − cos(θ)) , ξ0 =

1

2
(ta + tb),

and where [ta, tb] represents the time interval when the wave source is radiating, and c = 1/
√
ε1µ1 is the

speed of light in the upper air region. Note that â · k̂ = ∇ · EI = 0. A linear chirp of unit amplitude and
duration τ = tb − ta defines the waveform as

P (ξ) = χτ (ξ)e−iφ(ξ), φ(ξ) = ω0ξ + αξ2,
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t = 3 t = 5 t = 7

-1 +1

Figure 23: Scattering of a chirped plane wave from a conducting body embedded in a dielectric slab. The scattered
Ex field is shown at the three times indicated in the plots. For clarity, the material interface is marked with a dashed
line.

with a given carrier frequency ω0, chirp rate α = B
2τ , bandwidth B, and where χτ (t) is an indicator function

used to turn the incident field on and off, defined here by the smoothed top-hat function,

χτ (ξ) =
1

2

(
tanh(β(ξ + τ/2))− tanh(β(ξ − τ/2))

)
.

The “sharpness” of the indicator is determined by β > 0. Note that for large β, χτ (ξ) approaches a top-hat
function,

χτ (ξ) ≈

{
1 for ξ ∈ (−τ/2, τ/2),

0 otherwise.

Note also that the instantaneous frequency of the chirped incident field when χτ (ξ) ≈ 1, is given by

φ′(ξ) = ω0 + 2αξ = ω0 +
B

τ
ξ,

and varies linearly over time. For this reason φ is said to define a linear chirp.
For reasons of efficiency, the scattered field is computed directly. This is accomplished by subtracting

the solution to the related scattering problem with two regions but no embedded body. The solution for
a regular plane wave impinging on a dielectric slab is well known [37], and the solution for the modulated
chirped wave is of a similar form. For this case, the transmitted wave in the lower dielectric material is given
by

ET = T âP

(
t− ξ0 +

x

c2
sin(θ2) +

y

c2
cos(θ2)

)
,

where c2 = 1/
√
ε2µ2 is the wave speed in the lower dielectric slab, θ2 is given by Snell’s Law, and T is the

transmission coefficient,

T =
2η1 cos θ

η2 cos θ + η1 cos θ2
, ηi =

√
µi
εi

which is the same as for a non-chirped waveform. In directly solving for the scattered field, ES , the conducting
boundary condition on the embedded body becomes inhomogeneous,

n×ES = −n×ET ,

which is easily incorporated into the numerical formulation.
The composite grid for the computational domain, which consists of five component grids, is shown in

Fig. 22 (see also Fig. A.25 and the more detailed description of the grid construction in Appendix A.6).
The embedded body is taken to have width W = 1 and height H = 0.5. The distance of the top of the
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body to the interface at y = 0 is D = 1/3. Cartesian grids are used for the background of the upper and
lower domains. Semi-circular annular grids cut the background domain into a circle and provide a far-field
artificial boundary. Finally, a smoothed polygon is used to describe the boundary of the embedded body and

a boundary-fitted grid is made by extending the normals from the body’s boundary curve. Let G(j)
eb denote

the composite grid for this configuration with resolution factor j which has a grid spacing of approximately
hj = 1/(10j). Initial conditions for E and its time-derivative are set to zero, and the far field boundary
conditions are taken to be a second-order Engquist Majda condition [40]. Fig. 6.5 shows the x-component
of a scattered field at various times computed using the fourth-order accurate upwind scheme. The chirped
wave boundary forcing turns on near t0 = 1, and by time t = 3 the scattered field is seen to be propagating
outward from the body. The wave fronts are seen to travel more quickly in the upper domain as expected.

The accuracy of the computed solution is assessed using a self-convergence grid refinement study. Simula-
tions are performed with a sequence of composite grids of increasing resolution, and Richardson extrapolation
is used to estimate the convergence rates and errors using the procedure described in [41, 42]. We have found
that some care is required in performing this self-convergence study in order to demonstrate higher order
accuracy. In particular, to avoid singularities associated with startup (e.g. turning the boundary forcing
on impulsively leads to a discontinuous first derivative in the solution), the wave-form is chosen to turn on
smoothly at t0 = 1 and the parameter β in the indicator function is taken large enough so that the boundary
forcing is below machine precision at t = 0, but not so large that its time variation is unresolved by the
time-stepping scheme. Furthermore, to avoid pollution from reflections off the far-field boundary, the exte-
rior boundaries are placed far from the embedded body, and the simulation is halted before large reflections
from those boundaries could be observed. The following parameters are used for the grid refinement study:

ω0 ta tb β B θ
c|k| 1 15 18 2 π/3

Using these choices, Table 6.5 shows the max-norm convergence results of this grid refinement study using the

fourth-order accurate upwind scheme. The grids are G(j)
eb , j = 16, 32 and 64 corresponding to approximate

grid spacings of 1/160, 1/320 and 1/640, respectively. The estimate max-norm error convergence rates for
E show some variation, and the average value of approximately 3.5 is considered to be in reasonably good
agreement to the theoretically predicted rate, particularly for this fairly complex configuration.

hj Ex r Ey r Hz r ∂tEx r ∂tEy r ∂tHz r

1/160 1.4e-2 1.6e-2 3.6e-4 5.4e-1 6.1e-1 3.0e-2
1/320 1.4e-3 10.6 1.5e-3 11.1 2.6e-5 13.8 6.3e-2 8.7 6.5e-2 9.5 1.9e-3 16.0
1/640 1.3e-4 10.6 1.3e-4 11.1 1.9e-6 13.8 7.3e-3 8.7 6.9e-3 9.5 1.2e-4 16.0

rate 3.41 3.47 3.78 3.11 3.24 4.00

Table 5: Max-norm self convergence results for computing the scattered field from a conducting body in a dielectric
slab using the fourth-order accurate upwind scheme. Errors estimated using Richardson extrapolation. The left-most
column shows the target grid spacing hj . Columns labeled by field components contain estimated errors computed
at t = 2, and columns labeled r denote the ratio of estimated errors for successive refinements. The row labeled rate
shows the computed average rate of convergence which is close to the expected rate.

7. Conclusions

We have presented a class of upwind scheme for the solution of time-dependent Maxwell’s equations in
their second-order form. The derivation of the schemes is performed in general curvilinear geometry using a
conservative finite-difference approach. Formally exact, explicit, single-step formulae for field displacements
and their time derivatives are presented. These differential difference formulae are expressed as an infinite
expansion, and truncation to a finite number of terms yields discrete schemes of any desired order-of-accuracy.
Upwinding is incorporated using an appropriate choice of the numerical flux function which embeds the exact
solution to a generalized local Riemann problem.

The curvilinear formulation enables the use of overlapping composite grids to discretize the equations
on complex domains, including multiple abutting materials. However, the schemes for general curvilinear
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grids can be extremely costly in comparison to their optimized versions on Cartesian grids (more than an
order of magnitude has been observed for 3D). Therefore for reasons of efficiency it is advantageous to fix
the number of grid points in the normal direction to the boundary on any boundary fitted grids. Then as
the computation is refined, the computational cost approaches the cost of solving only on the background
Cartesian grids. It was shown in [21], and discussed again here, that this choice of thin boundary grids often
excites strong instabilities for non-dissipative schemes. Also in [21] it was also shown that to recover stability,
it suffices to add an artificial dissipation that scales proportional to the grid spacing, which ultimately costs
an order of accuracy for a given stencil width. We have shown here that the upwind scheme effectively adds
such a dissipation without any tunable parameters, and the schemes remain stable and fully accurate even
when using thin boundary grids.

To understand this result theoretically, we have also presented a systematic stability analysis for the
initial-boundary-value-problem on overlapping grids with a fixed number of grid points on the boundary
grid. Normal mode analysis for the semi-discretization of the wave equation utt = uxx on a one-dimensional
overlapping grid with a near boundary grid indicates that the upwind scheme is robust against perturbations
typically introduced by grid interpolation. On the other hand, the analysis shows that instability is common
for the non-dissipative scheme using the same grid configuration.

Finally, detailed numerical studies for electromagnetic scattering problems from perfect conductors and
dielectrics using the full overlapping grid implementations for second- and fourth-order accuracy are pre-
sented. The computations illustrate the stability of the scheme on overlapping grids in two and three space
dimensions, and the design accuracy of the codes is observed even when using thin boundary grids and
measuring error in the difficult maximum-norm. A final more complex problem of scattering from a body
embedded in a layered dielectric shows the robust nature of the scheme, and Richardson-style self-convergence
again illustrates high-order accuracy.

There are many potential avenues for future work. For example, one could pursue a closed-form stability
proof, and subsequently extend the stability analysis to higher orders of accuracy. From a computational
perspective there are a number of optimizations that might be applied to improve the performance of the
upwind scheme on curvilinear grids, which, due to it’s larger stencil, is not as fast as the centered scheme.
Finally, derivation of upwind-style discretizations for other wave equations in second-order form, such as
linear or nonlinear elasticity, or Einstein’s equations of general relativity, could be pursed.
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Appendix A. Computational grids

This appendix contains additional details of the component grids and composite overlapping grids used
for the computations appearing in Section 5.1 and Section 6. This information is included for the purposes
of aiding in the reproducibility of the results. In addition, input scripts which can be used with ogen grid
generator are also available with Overture software releases, and can be used to generate all grids and
subsequent numerical computations discussed in this manuscript.

Appendix A.1. Composite grid for a disk

The composite grid used in the computations of the eigenmodes of a disk in Section 5.1, as illustrated in
Fig. 4, consists of a thin annular boundary fitted grid together with an interior Cartesian background grid.
The annular grid with a fixed number of radial grid cells is defined by

A([ra, rb], Nr, Nθ(j)) =
{

(ri2 cos(θi1), ri2 sin(θi1))
∣∣ ri2 = ra + i2(rb − ra)/Nr, θi1 = 2πi1/Nθ, (A.1)

i1 = 0, 1 . . . Nθ(j), i2 = 0, 1, . . . , Nr

}
,

33



and the interior background grid (rectangle) by

R([xa, xb]× [ya, yb], N1, N2) =
{

(xa + i1∆x1, ya + i2∆x2)
∣∣ ∆xk =

(xb − xa)

Nk
, (A.2)

ik = 0, 1, . . . , Nk, k = 1, 2
}
.

The composite grid is then comprised of the union of these two component grids

G(j) = R([−xa, xa]2, Nx(j), Nx(j)) ∪ A([ra, rb], Nr, Nθ(j)),

where j denotes a grid resolution factor with grid spacing approximately given by hj = 1
10j . The grid

parameters for a discrete upwind scheme of order m, with stencil width 2bm2 c+3, requiring Nghost = bm2 c+1
ghost cells are taken as

ra = 1, rb = ra − (Nr − 1)hj , xa = rb + (Nghost − 1)hj ,

Nx(j) =

⌊
2xa
hj

+
3

2

⌋
, Nθ(j) =

⌊
π(ra + rb)

hj
+

3

2

⌋
,

where the integer floor function bxc denotes the largest integer less than x.

Appendix A.2. Composite grid for the exterior of a two-dimensional cylinder

The composite grid for the region exterior to a circular cylinder in two dimensions used in the compu-
tations of Section 6.1 for scattering from a PEC cylinder, and illustrated in Fig. 14, consists of an exterior
Cartesian background grid along with an annular boundary fitted grid. The composite grid is defined as

G(j)
c = R([−xa, xa]2, Nx(j), Nx(j)) ∪ A([ra, rb], Nr, Nθ(j)), (A.3)

where the square grid, R, is defined by (A.2) and the annular grid, A, is defined by (A.1). The grid
parameters are

xa = 2, ra = 0.5, rb = ra + (Nr − 1)hj ,

Nx(j) =

⌊
4

hj
+

3

2

⌋
, Nr = 5 +Nghost + 2(m− 2), Nθ(j) =

⌊
π(ra + rb)

hj
+

3

2

⌋
,

and Nghost is the number of ghost cells needed for a scheme of order m, given in Appendix A.1.

Appendix A.3. Composite grid for a dielectric disk embedded in a square domain

The composite grid for the two-dimensional regions interior and exterior to a circle used in the com-
putations of Section 6.2 for scattering from a dielectric cylinder, and illustrated in Fig. 17, consists of four
component grids. The exterior region is comprised of a square Cartesian grid and annular grid exterior to
the disk surface. The interior region has an annular grid inside the disk surface and a Cartesian background
grid to cover the disk interior. The composite grid, with target grid spacing hj = 1

20j , is constructed in
terms of the previously defined component grids R and A as

G(j)
c =R([−Xa, Xa]2, NX(j), NX(j)) ∪ A([Rinner, Router], NR, Nθ(j)) ∪

R([−xa, xa]2, Nx(j), Nx(j)) ∪ A([rinner, router, Nr, Nθ(j)).

The grid parameters are given by

Xa = 1, xa = rinner + hj , NX(j) =

⌊
2

hj
+

3

2

⌋
, Nx =

⌊
2xa
hj

+
3

2

⌋
,

Rinner = 0.4, Router = Rinner + ∆r, router = Router, rinner = router −∆r,

∆r = (NR(j)− 1)hj , NR = 3 +Nghost + 2(m− 2), Nθ(j) =

⌊
2πrouter
hj

+
3

2

⌋
, Nr = NR.
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Figure A.24: Component grids for the sphere. The spherical polar patch S covers the main part of the sphere while
the orthographic patches O±1 cover the polar regions. The orthographic patches have been shifted outward for
illustration purposes.

Appendix A.4. Composite grid for the region exterior to a sphere
The composite grid for the region exterior to a sphere, used in Section 6.3 for the scattering from a PEC

sphere, and as illustrated in Fig. 19 consists of a Cartesian background grid together with three boundary-
fitted curvilinear-patches for the sphere. The Cartesian box grid is defined by

B([xa, xb]× [ya, yb]× [za, zb], N1, N2, N3) =
{

(xa + i1∆x1, ya + i2∆x2), za + i3∆x3)
∣∣ ∆xk =

(xb − xa)

Nk
,

(A.4)

ik = 0, 1, . . . , Nk, k = 1, 2, 3
}
.

The sphere is covered with a spherical-polar grid with the singular poles truncated, and two orthographic
patches to cover the polar regions (the “three-patch” sphere grid) as shown in Fig. A.24. The polar grids
are defined with the an orthographic transform,

x = Op(r; [ρa, ρb], ŝ2, ŝ3) ≡
(
p

(1− σ2)ρ

1 + σ2
,

2ρs2

1 + σ2
, p

2ρs3

1 + σ2

)
(A.5)

where ρ, s2, s3 and σ are given in terms of the paramter space coordinates r = (r1, r2, r3) ∈ [0, 1]3 by

ρ = ρa + r1(ρb − ρa), s2 =

(
r2 −

1

2

)
ŝ2, s3 =

(
r3 −

1

2

)
ŝ3, σ2 = s2

2 + s2
3

with p = 1 for the north pole and p = −1 for the south pole. Note that [ρa, ρb] determine the radial extent
while ŝ2 and ŝ3 determine the lateral extent. Finally, define the orthographic grid about pole p as,

Op([%a, %b], ŝ2, ŝ3, N1, N2, N3) = {xi | xi = Op(ri; [ρa, ρb], ŝ2, ŝ3), iα = 0, 1, . . . , Nα, α = 1, 2, 3} . (A.6)

The spherical-polar grid, truncated at its poles, is defined by,

S([%a, %b]× [θa, θb]× [φa, φb], N1, N2, N3) = {(%i1 cos θi2 sinφi3 , %i1 sin θi2 sinφi3 , %i1 cosφi3) |
%i1 = %a + i1(%b − %a)/N1, θi2 = θa + i2(θb − θa)/N2, φi3 = φa + i3(φb − φa)/N3,

iα = 0, 1, . . . , Nα, α = 1, 2, 3}. (A.7)

Finally, we can define the composite grid with grid spacing approximately hj = 1
10j as,

G(j)
s =B([−2, 2]3, Nx(j), Nx(j), Nx(j)) ∪

O±1([Rinner, Router], Sa, Sa, Nr, Nθ(j), Nθ(j)) ∪
S([Rinner, Router]× [0, 2π]× [0.125π, 0.875π], Nr, N2(j), N3(j)),
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with

Rinner = R, Router = Rinner + (Nr − 1)hj , Sa = 0.65 + (m− 1)hj ,

Nx(j) =

⌊
6/hj +

3

2

⌋
, Nr = 5 +m, Nθ(j) =

⌊
0.72 πR

hj
+

3

2

⌋
,

N2(j) =

⌊
0.7

2πR

hj
+

3

2

⌋
, N3(j) =

⌊
0.85

πR

hj
+

3

2

⌋
,

for a scheme of order m and a sphere of radius R.

Appendix A.5. Composite grid for a dielectric sphere embedded in a box

The composite grid for the regions interior and exterior to a sphere, used in Section 6.4 for scattering from
a dielectric sphere , and as illustrated in Fig. 20 consists of a total eight component grids. The region outside
the sphere uses the four component grids, one Cartesian and the “three-patch” sphere grid, as described
in Section Appendix A.4. The region interior to the sphere uses a similiar set of four component grids, a
“three-patch” sphere grid and one interior background Cartesian grid. The composite grid is thus defined as

G(j)
ss =B([−Xa, Xa]3, NX(j), NX(j), NX(j)) ∪

S([Ri, Ro]× [0, 2π]× [.125π, .875π], NR, Nθ(j), Nφ(j)) ∪
O±1([Ri, Ro], Sa, Sa, NR, N0(j), N0(j)) ∪

B([−xa, xa]3, NX(j), NX(j), NX(j)) ∪
S([ri, ro]× [0, 2π]× [.125π, .875π], Nr, Nθ(j), Nφ(j)) ∪
O±1([ri, ro], Sa, Sa, Nr, N0(j), N0(j)),

with grid parameters for a scheme of order m given by

Xa = 2, xa = (Ri + (m− 2)hj), NX(j) =

⌊
2Xa

hj
+

3

2

⌋
, Nx(j) =

⌊
2xa
hj

+
3

2

⌋
,

Ri = R, Ro = Ri + (Nr − 1)hj , ro = Ri, ri = ro − (Nr − 1)hj , Sa = 0.55 + (m− 1)hj

Nr = 3 +m, Nθ(j) =

⌊
πR

hj
+

3

2

⌋
, Nφ(j) =

⌊
πR

2hj
+

3

2

⌋
, N0(j) =

⌊
0.7Sa

πR

2hj
+

3

2

⌋
,

with a target grid spacing of hj = 1
10j .

Appendix A.6. Composite grid for a rectangular shaped body embedded in a dielectric slab

The composite grid, used in Section 6.5 for the simulation of a chirped plane wave impinging on a
rectangular shaped body embedded in a dielectric slab, and shown in Figures 22 and A.25, covers an upper
and lower region. The grid for the upper region consists of a Cartesian grid that covers the majority of the
domain, together with a semi-circular annular grid for outer far-field boundary. The inner domain is also
covered with a Cartesian and annular grid but in addition includes a body fitted curvilinear grid, denoted by
E , for the embedded body, see Fig. A.25. The curve for the surface of the rounded-rectangle is a smoothed-
polygon mapping with rounded corners that is defined in terms of hyperbolic tangent functions as described
in [43]. The rounding of the sharp corners allows a high quality grid to be generated near the corners
which is important in resolving the numerical solution to Maxwell’s equations in the vicinity of the corners.
The sharpness of the corners can be adjusted, for all computations presented in this paper the sharpness
parameter was taken to be 100. The composite grid for the upper and lower regions is defined by

G(j) =R([xa, xb]× [ya, yb], Nx(j), Ny(j)) ∪ A([ra, rb]× [θa, θb], Nr, Nθ(j)) ∪
R([xa, xb]× [Ya, Yb], Nx(j), NY (j)) ∪ A([ra, rb]× [Θa,Θb], Nr, NΘ(j)) ∪ E(Nrb , Nθb(j)).
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Figure A.25: A smoothed polygon mapping (in red) is used to represent the rectangular-shaped body with smoothed
corners. The high-quality grid near the rounded corners is used to accurately resolve the numerical solution which
can vary rapidly in the vicinity of the corners.

The grid parameters are

xa = −4, xb = 4, ya = 0, yb = 4, Ya = −4, Yb = 0, rb = xb, ra = rb − hjNr(j),
θa = 0, θb = π, Θa = π, Θb = 2π,

Nx(j) =

⌊
xb − xa
hj

+
3

2

⌋
, Ny(j) =

⌊
yb − ya
hj

+
3

2

⌋
, NY (j) =

⌊
Yb − Ya
hj

+
3

2

⌋
,

Nr = N0
r +Nghost, Nθ(j) =

⌊
π(ra + rb)

hj
+

3

2

⌋
, NΘ(j) = Nθ(j).

where hj = 1
10j is the target grid spacing and Nghost is the number of ghost cells.
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