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We are interested in building structured overlapping grids for geometries defined by computer-aided-design
(CAD) packages. Geometric information defining the boundary surfaces of a computation domain is often
provided in the form of a collection of possibly hundreds of trimmed patches. The first step in building an
overlapping volume grid on such a geometry is to build overlapping surface grids. A surface grid is typically
built using hyperbolic grid generation; starting from a curve on the surface, a grid is grown by marching
over the surface. A given hyperbolic grid will typically cover many of the underlying CAD surface patches.
The fundamental operation needed for building surface grids is that of projecting a point in space onto the
closest point on the CAD surface. We describe a fast and robust algorithm for performing this projection
which makes use of a fairly coarse global triangulation of the CAD geometry. Before the global triangulation
is constructed the connectivity of the model is determined by an edge-matching algorithm which corrects for
gaps and overlaps between neighbouring patches.
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In this paper we describe a fast method to gener-
ate hyperbolic surface grids on CAD geometries.
We are motivated by the problem of grid gen-
eration on geometrical configurations defined by
computer aided design (CAD) programs. In our

approach we build a set of structured overlap-
ping grids [1] that cover the computational do-
main. The grids are allowed to overlap which sim-
plifies the grid construction process compared to
the multi-block approach. The overlapping grids
are connected through interpolation. The loca-
tion of the interpolation points and “hole regions”



(parts of grids that are unused) are computed au-
tomatically using the Ogen overlapping grid gen-
erator [2]. Ogen is part of the Overture object
oriented framework which can be used to generate
grids and solve partial differential equations [3][4].

The first step in building overlapping volume grids
is the generation of a set of overlapping surface
grids. Both the surface and volume grids are typi-
cally generated using a hyperbolic marching algo-
rithm [5]. The description of the geometry is of-
ten in the form of a collection of trimmed patches,
see figure (1). The output from a CAD program
will often be saved in a standard file format such
as IGES or the newer STEP specification. The
description defines a boundary-representation (B-
rep) of the geometry, as opposed to say a solid-
model representation. Unfortunately the typical
IGES output file does not include any connectiv-
ity (topology) information; that is there is no in-
formation specifying how a given patch connects
to other neighbouring patches. To further com-
plicate matters the trimmed patches will often be
inaccurate, or contain mistakes, making it diffi-
cult to determine where two neighbouring patches
should be joined. As a first step in the grid gener-
ation process this connectivity information must
be determined. As a second step we build a global
triangulation of the surface where the triangula-
tion will respect the boundaries of the trimmed
patches. The fundamental operation needed for
building surface grids is that of projecting a point
in space onto the closest point on the CAD sur-
face. The global triangulation will be used to aid
in this projection step. In order to project a point
onto the surface we first project onto the global
triangulation and then project onto a particular
surface patch.

One possible method to determine the connectiv-
ity of a patched CAD model is the stitching algo-
rithm described by Barequet et.al. [6][7]. In this
technique the boundaries of the trimmed patches
are approximated as polygons and the algorithm
attempts to stitch together the polygonal repre-
sentations. Initially we implemented an algorithm
along these same lines, and although it worked
well in many cases there were a number of situa-
tions that caused difficulties; overlapping patches
and extremely thin patches were especially trou-
blesome. Admittedly we used a less sophisticated
approach than [6].

An alternative way to determine the topology
is the edge-curve approach described by Stein-
brenner, Wyman and Chawner [8] whereby the
boundary edges of a trimmed surfaces are merged
with the boundary edges of neighbouring patches.
The basic idea of this method is used in a num-
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ber of CAD fix-up programs, for example [9][10].
We have implemented our own variation of this
scheme. This technique begins by building curves
(edge-curves) on the boundaries of all trimmed-
patches and then attempts to identify where an
edge-curve from one patch matches to the edge-
curve of a neighbouring patch. It is usually neces-
sary to split the edge-curves at appropriate loca-
tions in order to perform the matching. When two
edge-curves are identified to be the same we say
the edges have been merged and choose one edge-
curve to define the boundary segment for both
patches. By merging edge-curves we effectively
remove any gaps or overlaps present in the orig-
inal representation. The details of algorithm de-
scribed here differ in a variety of ways from that of
Steinbrenner et.al. [8], such as in the representa-
tion of the edge-curves, the order of the merging
and splitting operations and the data structures
used for searching. In contrast to our implemen-
tation of the stitching algorithm, we have found
the edge-curve merging approach to be fast and
quite robust. One reason why it works well is
that it implicitly assumes the boundaries of the
trimmed-patches consist of piecewise smooth seg-
ments that should either match to a smooth seg-
ment of a neighbouring patch or be on the bound-
ary of the surface. This additional assumption can
be used to resolve most ambiguous cases.

Once the edge-curves have been matched and the



topology determined we then form a global trian-
gulation for the patched surface. The initial step
in forming this global triangulation is to build a
triangulation on each trimmed patch. The trian-
gulation of each patch is performed in the two-
dimensional parameter space, permitting the use
of fast triangulation algorithms. The triangulation
on each patch will have boundary nodes that are
defined by the merged edge-curves. This means
that the separate surface triangulations can be
connected together since they will share boundary
nodes with a neighbouring patch.

There are a number of issues that must be ad-
dressed when triangulating trimmed surfaces and
there are many papers on this subject, see for ex-
ample [11][12]. Usually the trimmed surface is tes-
selated in parameter space and the resulting tri-
angles are mapped onto the three-dimensional sur-
face. Care must be taken to avoid having poorly
shaped triangles in three-dimensions since the tri-
angles can be badly deformed by the mapping to
the three-dimensional surface. Cho et.al. [12][13]
describe an approach for generating high quality
triangulations on trimmed surfaces by creating a
mapping from two-dimensional parameter space to
the three-dimensional surface that approximately
preserves distances. Marcum and Gaither [14]
describe how to generate quality triangulations
across collections of patches surfaces so that the
tessellation need not conform to the internal patch
boundaries. In our approach we do not use the tri-
angulation as part of the final grid so that we only
require reasonable quality meshes. We use a sim-
ple bilinear transformation of the parameter space
to improve the quality of the triangles. In addi-
tion we require the triangulations to conform to
the boundaries of the surface patches so that each
triangle lies on exactly one patch.

The global triangulation serves as a basis for a fast
algorithm for projecting points onto the patched
surface. This projection algorithm is used by the
hyperbolic surface grid generator. The projection
algorithm can also be useful for other purposes
such building a high quality surface triangulation.
To project a point onto the patched surface we
start by projecting the point onto the global trian-
gulation. Finding the closest triangle is performed
by a walking-algorithm if an initial guess is known
or by a global search using an alternating-digital-
tree (ADT) tree (briefly described below). Since
each triangle belongs to just one sub-patch we can
then project the point onto the sub-patch using
Newton’s method. The hyperbolic grid generator
solves a set of hyperbolic equations to generate a
surface grid starting from some initial curve. At
each step, the positions of the new grid points are

predicted from values of the current grid points
and the normal to the surface. The predicted
points are projected onto the patch surface using
the scheme described here.

The algorithms presented here perform a variety
of searches and intersections using an alternating-
digital-tree (ADT) tree. We have found this data
structure to be very fast and efficient. We give a
brief description here, for more details see [15][16].
An ADT tree is a binary search tree for multi-
dimensional data. It is a binary tree since each
node can have at most two leaves. If we are stor-
ing data points x = (x1, . . . , xd) ∈ IRd in the
ADT tree then at level m in the tree we com-
pare xm < cm or xm > cm (for some value cm) to
determine if x should be stored in the left or the
right branch (thus alternating between the coordi-
nates xm, m = 1, 2, . . . , d). It is called a digital
tree since the values of cm are fixed independent
of x and are determined by evenly dividing a large
bounding box that includes all data points. A sim-
ilar data structure is the k-d tree where cm are not
fixed but depend on the data stored in the tree.
The k-d tree is used, for example, by [7] for similar
searching queries.
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A patched-surface consists of a set of sub-surfaces.
There are often hundreds of sub-surfaces. A sub-
surface may defined in a variety of ways such as
with a spline, B-spline or non-uniform-rational-b-
spline (NURBS). In general the sub-surface will
be trimmed, in which case only a portion of the
surface will be used, the valid region is defined by
trimming curves, see figure (2). It is often the case
that the CAD file contains no topology informa-
tion, that is there is no information to say which
sub-surface connects to which other sub-surfaces.
The purpose of the connectivity algorithm is to
determine how the sub-surfaces are joined to one
another. Once the connection information is com-
puted a triangulation for the whole surface can be
found.

A useful feature of the connectivity algorithm is
that it will aid in the discovery of errors in the
trimmed surfaces. Gross errors in the trimming
curves are detected when the geometry is first read
from the database file. Errors detected at this ini-
tial step include trim curves that lie outside the
unit square in parameter space, trim curves that
don’t close on themselves (i.e. they should be pe-
riodic), and trim curves that self-intersect. These
gross errors should be fixed before proceeding to



the connectivity stage. In Overture we have the
ability to edit the trim curves to fix these types of
errors. See Petersson and Chand [17] for more
details of how we repair CAD geometries. Er-
rors detected later at the connectivity stage would
include large gaps between patches or multiple
definition of patches (sometimes the exact same
trimmed patch may appear more than once in the
CAD file!). These errors are usually easily found
by visually inspecting the set of merged and un-
merged curves. There should, for example, only
be unmerged curves on the boundary of the sur-
face. There are many other approaches to fixing
CAD and removing unwanted details, see for ex-
ample [9][10].
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There are two main steps in determining how sub-
surfaces are connected:

build edge-curves : build curve-segments that
lie on the boundary of each sub-surface. A
sub-surface defined by a NURBS, for exam-
ple, will have 4 boundary curve segments.
A sub-surface defined by a trimmed-mapping



will have boundary segments corresponding
to each trimming curve. A single trimming
curve may be split into multiple boundary-
segments, if the trimming curve was originally
represented that way in the CAD file, or if the
curve was split at corners.

merge/split edge-curves : We examine the
curve-segments to look for matching seg-
ments. If two segments agree (at a few num-
ber of points to some tolerance) we declare
that the segments are the same (i.e. that
they both represent the true boundary curve).
Where two segments are the same, we also
declare that their respective sub-surfaces are
joined. It may be necessary to split a curve-
segment into two or more pieces so that the
pieces can be joined to other segments. Af-
ter merging all possible curve-segments we
should have matched all sub-surfaces where
they join other sub-surfaces, thus determin-
ing the topology of the surface.

There are two user-adjustable parameters that are
used in computing the connectivity and the trian-
gulation:

εmerge : the merge tolerance indicates the maxi-
mum distance between two edge-curves when
determining candidates for merging or split-
ting.

∆ST : a user specified arc-length to suggest how
many points to place on each edge-curved
when triangulating the surface.

These parameters are given default values based
on the scale of the CAD model surfaces.

Trimming curves are usually defined in the two-
dimensional parameter space of the patch. In or-
der to compare edge-curves from different patches
we must build three-dimensional representations
for the edge curves. In some cases we can build
an exact representation of the edge curve. For ex-
ample, if the edge-curve is a parameter line on a
NURBS then the edge-curve is itself a NURBS.
In other cases it would be too difficult to build
an exact representation of the curve so instead
we sample the curve at some appropriate num-
ber of points and then fit a curve to these points.
The two-dimensional arclength and curvature of
the curve are used to determine how many points
to use. The number of points used to represent
the curve is usually much finer than the num-
ber of points used when triangulating the sur-
face, which is determined from the user-specified
parameter ∆ST . Usually we parameterize the
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3D edge-curve using the parameterization of the
2D trimming curve unless the parameterization
is poor and then we parameterize by the three-
dimensional arclength. In general a single trim-
ming curve will be represented in the CAD file as
a collection of sub-curves, figure (2). Normally
each sub-curve will be smooth with no corners.



When a trimming curve is created from a CAD file
these sub-curves are joined into a single composite
curve. In addition to the composite curve we also
keep the the original sub-curves. These sub-curves
will usually correspond to the curve of intersection
between two surface patches and thus be exactly
the edge-curves that we wish to merge. In some
cases a trimming curve will not be smooth; a piece-
wise linear NURBS, for example, can have sharp
corners, and even higher-order NURBS can repre-
sent corners using multiple knots. Such trimming
curves are split into smooth sub-curves by looking
for multiple knots and detecting corners where the
direction of the tangent vector changes rapidly.

After the edge-curves have been built we attempt
to merge the edge-curves. The merging step con-
sists of two phases, see figure (3). In the starting
phase we examine all the original edge-curves and
look for matching curves. We use an alternating-
digital-tree (ADT) to search for possible matching
edge-curves. The ADT tree holds the bounding
box for each edge-curve. To determine if a given
edge-curve, e, matches to some other edge curve
we put a small box, of size 2εmerge, around one
end-point of e and search for intersections with
the bounding boxes of other edge-curves. For any
candidate edge-curve found in this way we then
check more carefully that the curves agree at the
end points and some number of interior points.
We check that the distance between these points is
less than or equal to the merge tolerance εmerge. In
practice we have only found it necessary to com-
pare the edge-curves at the end points and the
midpoint. If two edges agree then we define the
edges to be merged. One of the edge-curves is de-
fined to be the merged edge-curve. In the second
phase we consider all curves that were not merged
in the first phase. We attempt to split these curves
into sub-curves which may then be merged. An
edge curve can be split where it touches the end-
point of another edge curve. For each un-merged
edge we look for the endpoints of nearby edge-
curves that will cause a split. The same ADT
tree is used to locate edge-curves whose end points
could cause a split. A split is not allowed if the
split position lies very close to the start or end of
the un-merged edge.
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A global triangulation can be built once the edge-
curves have been merged. Recall that when two
edge-curves are merged, one of the two curves is
defined to be the true edge-curve. The global
triangulation is formed by initially triangulating
each surface patch independently. The surface

patches are triangulated in the parameter space
of the patch. This allows us to use fast two-
dimensional triangulation algorithms. We use the
triangle program from Shewchuk [18] to compute
a constrained Delaunay triangulation. It uses a
divide and conquer algorithm to first build an un-
constrained triangulation. The triangulation algo-
rithm starts with a collection of edges that define
the boundaries of the trimmed patch in param-
eter space. Each edge has two end-points. The
end-points are taken from points on the trimming
curve. The trimming curve will be defined in terms
of the true edge-curves computed in the merg-
ing step. This ensures that the boundary nodes
of the triangulation of a patch will match to the
boundary nodes of the triangulation of neighbour-
ing patches. To improve the quality of the trian-
gulation we initially add additional nodes to the
interior of the triangulation and allow the trian-
gulation program to also add new nodes, however,
we prevent new nodes from being added to the
boundary. The quality of the triangles is also
improved by scaling the parameter space coor-
dinates, (r0, r1) by a transformation of the form
(r̃0, r̃1) = ((ra + rbr1)r0, (rc + rdr0)r1). The pa-
rameters ra, rb, rc, rd depend on the aspect ratio
of the patch.
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Since the merged edge-curve is defined in three-
dimensional space we must determine the corre-
sponding parameter space coordinates for nodes
on the edge-curve. In some cases the parameter
space coordinates are known from the time when
the edge-curve was generated. In other cases we
must project the 3D points onto the surface patch.
In addition to being more expensive this projec-
tion step can also be error prone if the surface-
patch is defined by a poor parameterization. For
example, it it not uncommon that the surface has
a coordinate singularity where one side is collapsed
to a point. We double check the result of the pro-
jection step by comparing the projected 3D point
to the original point being projected. If these
points are not close we instead project the point
onto the boundary edge of the surface.

After the patch has been triangulated in param-
eter space it is a simple matter to map the 2D
parameter space nodes to 3D. The triangulations
for the patches must be stitched together to form
a global triangulation. For each trimmed-patch
we keep a list its trimming curves. Each trim-
ming curve keeps pointers to the possibly two
patches that use it (determined when the edge-
curves were merged). We use this information to
determine whether a new patch is connected to
any of the patches in the current global triangula-
tion. We begin by joining the triangulations from
the first two patches to form a valid global tri-
angulation. The triangulation from patch three
is then stitched to this global triangulation. The
process is repeated until all triangulations have
been added. The triangulation of each patch is
oriented so that the nodes of each triangle are or-
dered in a counter-clockwise order with respect to
the parameter space triangulation. When a new
patch triangulation is added it may be necessary
to change the orientation of the triangulation to
ensure that the normal to each triangle points in
a consistent direction.

Figure (4) shows a global triangulation computed
for a CAD description of a diesel engine. This ex-
ample shows that a relatively coarse triangulation
can be computed. The coarseness of the triangu-
lation is determined by user-specified tolerance.
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The global triangulation for a patched surface can
be used to define a fast algorithm for projecting
points onto the CAD surface (i.e. finding the clos-
est point on the CAD surface to a given point).
The projection algorithm is used by our hyperbolic
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surface grid generator. The grid generator begins
from an initial curve on the surface and generates
a surface grid by marching over the CAD geome-
try. At each step the points predicted by the grid
generator must be projected onto the CAD sur-
face.

Given a target point, pt, in space near the surface
we wish project the point onto the surface, i.e. we
want to find the closest point on the surface to a
given point, defined in some norm. The projection
algorithm consist of two steps. First find the clos-
est point on the global triangulation. Secondly,
uses the closest triangle to determine the closest
surface patch and project onto the surface patch.

Given a good initial guess for the closest triangle
to pt, we find the closest point on the global tri-



angulation using a walking method. The walking
method starts at a given triangle and marches to
a neighbouring triangle that is closer to the target
point. This marching continues until it reaches
the boundary of the triangulation or else reaches
an extremal triangle. An extremal triangle will
be one where the line passing through the target
point in the direction normal to the triangle face
intersects the triangle. An extremal triangle could
be a local maximum, a local minimum or a saddle
point in the distance from the target point to the
surface. We rely on the initial guess being good
enough and the triangulation to be sufficiently fine
for this walking method to give a reasonable an-
swer. In our experience the walking method works
without difficulty unless the user has chosen ∆ST

to give an extremely coarse triangulation.

If we do not have an initial guess we use a global
search to find the closest point on the triangu-
lation. The global search uses an alternating-
digital-tree (ADT) tree in which we have stored
the bounding boxes for all triangles on the global
mesh. We look for the intersection of a box around
the target point with the triangle bounding boxes;
this will determine potential triangles to check.
The ADT tree is a fast way to answer this query.
Given a list of potential triangles we check each
one to determine the closest point. The only pa-
rameter in this search is the size of the bounding
box around the target point. It should not be too
large nor too small. We start with a safe value and
then increase or decrease the box size depending
on the number of intersections found.

Each triangle on the global triangulation lies on
exactly one surface-patch. Once the closest tri-
angle has been found we then suppose that the
closest point on the surface will lie on the patch
pointed to by the triangle. This assumes that the
surface triangulation resolves the surface to a rea-
sonable degree. If the target point lies very near
the boundary between two patches it could be that
the true projected point is on the neighbouring
patch. For now we have ignored this possibility,
although it would be possible to deal with this
case. For our purposes so far it doesn’t seem to be
an issue.
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Structured surface grids can be generated using
hyperbolic grid generation. This approach was de-
veloped by Steger, Chan and Buning [19, 20, 21]
and is also available in Gridgen, see Steinbrenner
and Chawner [22]. We have implemented our own

version within the Overture framework [5].

Rather than have separate codes for surface and
volume grid generation we have a single program
that can generate 2D or 3D volume grids and 3D
surface grids. The algorithms in all cases are ba-
sically the same. For surface grid generation we
have the additional boundary condition that the
grid points should lie on the defining boundary
surface, which we denote by C(x) = 0.
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Let (r, t) denote the parameter space (computa-
tional) coordinates for the hyperbolic surface grid.
Instead of taking parameter space to be the unit



cube we instead take the grid spacing in parameter
space to be 1, ∆r = ∆t = 1. The basic march-
ing equations to determine the surface grid x(r, t)
given the initial curve x(r, 0) are defined by the
hyperbolic PDE

xt = S(r, t) n(r, t)

x(r, 0) = x0(r) , initial curve

C(x(r, t) = 0 , grid is constrained to C(x) = 0

B(x(r, t)) = 0 , boundary conditions

where

n(r, t) =
xr × ns

‖xr × ns‖
, normal to the front

ns : normal to the surface C at x

S(r, t) : scalar speed function

and the norm ‖ · ‖ is defined by ‖f‖2 ≡ f · f . These
equations march the grid in the direction locally
orthogonal to the current front. The parameter
t is a time like variable. At each unit interval in
time we generate a new grid line.

Note that the normal to the front, n, is the march-
ing direction for the front and should not be con-
fused with the, ns, the normal to the surface we
are marching over. The speed function S(r, s, t)
determines how fast the front propagates; it can
depend on local properties of the front. Smooth-
ing is also added to the equations so we actually
solve a parabolic equation of the form

xt = S(r, t)n + ε(r, t)xrr

There are a variety of ways to define the speed
function S. See [5] for some possible approaches.
These nonlinear parabolic equations are linearized
and discretized using an implicit method. The im-
plicit matrices are solved with an approximate fac-
torization requiring the formation and solution of
a block tridiagonal matrix. At each step the posi-
tions of the new grid points are predicted through
the solution of the implicit method. These pre-
dicted points are then projected onto the underly-
ing CAD geometry using the projection algorithm
described earlier.

Figure (6) show an example of growing a surface
grid over a CAD surface. The user may optionally
project onto the original CAD surface or simply
project onto the triangulation. The original sur-
face description could also just be a triangulation.

We have been generating grids on CAD surfaces
for some years. However our previous projection
algorithm, which did not take advantage of the
unstructured grid, was not as robust and quite a
bit slower than the current approach. Figure (7)
shows an example of an overlapping grid that gen-
erated using component grids generated with the
hyperbolic grid generation equations.
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We have described an algorithm for creating struc-
tured surface grids on CAD models defined as a
collection of trimmed surface patches. We deter-
mine the topology of the model through an edge-
curve algorithm by merging adjacent patch bound-
ary segments, thus repairing gaps and overlaps
in the representation. The edge-curve algorithm
was found to be less problematic than attempt-
ing to stitch together polygonal representations of
the patch boundaries. We compute a global trian-
gulation on the repaired model by independently
tesselating each trimmed surface using common
points at the boundaries between sub-surfaces.
The global triangulation is used as the basis for
a fast algorithm for projecting points onto the
original CAD surfaces. Points are first projected
onto the triangulation and then onto a particular



CAD patch. The projection algorithm is used at
each step in the hyperbolic grid generation algo-
rithm which generates a structured surface grid
that smoothly crosses the boundaries between the
surface patches. The resulting surface grid gener-
ator was found to be much faster and more robust
than a previous implementation.

There are a number of areas that could use im-
provement in the current approach.

1. Surface patches that have singular parame-
terizations (for example it is not uncommon
for a patch to have one side collapsed to a
point) can cause various difficulties in the
edge-merging algorithm since the surface is
not well defined in a neighbourhood of the sin-
gularity. Surface patches that have extremely
thin regions can also cause problems. These
types of patches could perhaps be merged
with adjacent patches or a completely new
patch could be built.

2. Currently the merge tolerance εmerge must
usually be adjusted by the user to achieve
the desired results. This parameter should
be computed automatically in most cases.

3. When the edge-curve algorithm fails on cer-
tain edges we need better interactive tools for
fixing the offending edges.

The algorithms we describe here have been im-
plemented within the Overture object oriented
framework and will be made freely available start-
ing with version 19. The current version of Over-
ture software can be obtained from http://-
www.llnl.gov/casc/Overture.
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