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Motivated by recent experiments, numerical simulations were performed of cylindrically con-
verging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space
obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped
patterns near the point of focus. The maximum pressure and temperature as a function of number
of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped
shocks were also investigated.
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I. INTRODUCTION

Converging shock waves can be found in a broad
range of situations, from astronomical size events like
supernovae collapse, to microscopic events such as sono-
luminescence when tiny bubbles collapse so strongly as
to produce light. Shock waves are an effective method to
generate high temperatures and pressures for experimen-
tal and engineering purposes and thus remain an area of
continued research.

Over the years many experiments have been performed
on cylindrically converging shock waves; see e.g. [1, 2]. It
is common to use annular shock tubes to create and study
converging shock waves. The converging shocks are often
visualized by either schlieren photographs or interfero-
grams taken during the focusing process. These methods
give a measure of the shock position and shape develop-
ment as a function of time. With these techniques, it is
not possible to measure other quantities, like tempera-
tures and pressures. In a recent paper [3] Eliasson et al.
presented experimental results on the light emission oc-
curring at the focal point for converging shock waves of
different shapes. By analyzing the response from a photo
mulitplier tube, Eliasson et al. found that the amount
of emitted light depended on the shape of the converging
shock wave. In [3] only a small number of obstacles were
considered which resulted in polygons with a few number
of sides.

In this paper we present numerical simulations of the
experimental setup used in [3]. We consider cylindrically
converging shock waves shaped by zero to sixteen ob-
stacles, yielding seventeen different configurations. From
monitoring the maximum pressure and temperature as
the shocks converge, we find that a low number of ob-
stacles gives a low maximum pressure and temperature,
compared to the case with no obstacles. This is consis-
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tent with the amount of light observed in [3] for 0,1,3
and 4 obstacles. However, as we increase the number
of obstacles we see a gradual increase in the maximum
pressure and temperature; this is somewhat surprising
since a greater portion of the initial cylindrical shock is
reflected by the obstacles. The present model, the Eu-
ler equations for an ideal gas, does not take real gas and
ionization effects into account, thus it is not possible to
make detailed predictions on light production. Our nu-
merical results suggest that further experiments for more
than four obstacles would be of great interest.

Converging shock waves of different polygonal shapes
have been studied for example in [4, 5]. For a polygonal
shock the regions of high curvature, such as corners, gen-
erally travel faster than the planar parts. This leads to
a reconfiguration of the shape of the shock wave during
the focusing process. For example, a square-shaped shock
wave will transform into an octagon and then back to a
square again. This process repeats as the shock focuses
provided there are no other disturbances to interrupt it.

In this work, we use the method suggested and tested
in experiments by Eliasson et al. [4], to produce con-
verging polygonal shock waves. The numerical simu-
lations were performed using a state of the art adap-
tive mesh refinement (AMR) flow solver. Disturbances
in the form of cylindrical obstacles were introduced in
front of an initially cylindrical converging shock. The
obstacles used to shape the shock are not small. There-
fore it takes some time for the shock front to reach the
asymptotic state described by the theory of Schwende-
man and Whitham, [5]. From our highly resolved nu-
merical simulations we find that, only at the very final
stage of the convergence, a shock perturbed by four ob-
stacles becomes square-shaped. At this stage, the mean
radius of the shock is well described by Guderley’s, [6],
self-similar solution, giving a base solution around which
geometrical shock dynamics,[5], can be utilized. The fact
that the polygonal shape of the shock is attained only at
the final stage, where characteristic length scales (the
sides of the polygon) are very small compared to the ini-
tial scales (the diameter of initial shock), means that the
numerical simulations become quite challenging.
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FIG. 1: Experimental and numerical schlieren photographs of
a converging polygonal shock wave. Top: experimental results
for seven obstacles. Lower left: numerical results. Lower
right: An AMR grid with two levels of refinement adapted to
the shock structures (every 8th line is plotted).

II. NUMERICAL METHOD

The Euler equations of gas dynamics are solved nu-
merically using using a high-order accurate Godunov
method, [7, 8]. The geometry is discretized with over-
lapping structured grids. Adaptive mesh refinement is
used to dynamically track the shocks and contacts. The
software, along with references describing the approach
can be found at www.llnl.gov/casc/Overture.

III. NUMERICAL EXPERIMENTS

The initial conditions in front of the shock are set to be
a gas at pressure p = 13.33 kPa (100 torr) and at room
temperature T = 294 K, where γ = 1.4, Rg = 287.06
J/KgK and p = ρRgT . The shock front is given an initial
shock Mach number of M = 2.4. The state behind the
shock is determined by the standard shock relations. The
diameter of the computational domain is set to 150 mm.

The following cases were simulated: an initially cylin-
drical shock wave perturbed by 0-16 obstacles (cylinders
with a diameter of 15 mm) placed in a symmetrical pat-
tern at a radial distance of 46.25 mm from the focal point,
see Figure 1. The boundary conditions on the cylinders
are modeled by slip wall conditions. Supersonic outflow
boundary conditions are imposed at the perimeter of the
computational domain.

In a first set of simulations we compute solutions with
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FIG. 2: Maximum pressure and temperature near the focal
point as a function of the number of cylinders.

0–16 obstacles to study how quantities like the maxi-
mum pressure and temperature vary with the number
of obstacles. For these computations the initial grid is
composed of a Cartesian background grid (covering most
of the domain), an annular perimeter grid and embedded
cylindrical grids around each obstacle. The annular grids
have a cell size adjusted to the (non-refined) Cartesian
grid which has a grid-spacing of 0.2 mm. We use two
levels of AMR with a refinement ratio of four yielding a
smallest grid size of 50 µm.

In a second set of experiments, we use an initial grid
with a Cartesian grid-spacing of 0.5 mm but with four
levels of AMR with refinement ratio four, yielding a
smallest grid size of 7.8125 µm. With this setup, we limit
our simulations to the cases with 0, 3 and 4 obstacles
and focus on the asymptotic behavior of the converging
shocks.

A. Maximum pressure and temperature as a

function of the number of cylinders

The pressure and temperature near the focal point
were measured for all seventeen cases. Figure 2 shows
the maximum pressure and temperature as a function
of the number of cylinders. Figure 7 shows the numeri-
cally computed schlieren images for some of these cases.
The results show that the undisturbed cylindrical shock
gives the highest pressure and temperature near the focal
point. This should be expected, since in all other cases,
part of the flow is reflected by the obstacles and never
reaches the focal point. For a low number of cylinders,
1–6, the maximum values are low. This is most likely
caused by the fact that all parts of the shock front do
not reach the focal point at the same time and hence
the focusing effect is lost, see Figure 7. Higher pressure
and temperatures are obtained for the cases with a larger
number of obstacles, 7-13.

B. Comparison to Guderley’s self-similar solution

Guderley, [6], derived a self-similar solution for the ra-
dius of the converging shock wave as a function of time,
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FIG. 3: The case with zero obstacles. Left: the solution along
the neg. x axis and the line y = x, x > 0, at times 22.28,
22.38, 22.48. The difference between the solutions increases
as the shock sharpens up. Right: the value of the pressure
averaged along the pos. and neg. x and y axes at times
22.34 − 22.56 with time spacing 0.02. Note that the shock is
accelerating.

which can be expressed as

R = ξ0 (tc − t)α
. (1)

Here α is the self-similar power law exponent, R is the ra-
dius of the converging shock wave, t is the time, tc is the
time when the shock wave arrives at the center of con-
vergence and ξ0 is a constant. Guderley found the self-
similar power law exponent for cylindrical shock waves
to be α = 0.834 and this has been confirmed by many
other investigations, see Table I.

In this study, we investigate when the converging
shocks shaped by obstacles are described by Guderely’s
solution. We fit data from the numerical experiments to
equation (1) in order to find the similarity exponent, α.
We do this for the three cases of a cylinder, a triangle
and a square-shaped shock.

Zero Obstacles. To test the accuracy of the numeri-
cal algorithms we first consider an unperturbed converg-
ing shock and extract the distance between the shock
front and the focal point. Starting at time 20 we save so-
lutions every 0.02 time units until time 22.46. For each of
the saved solutions we find the position along rays start-
ing at the focal point, where the pressure is half of its
global maximum. Precisely, we use rays along the posi-
tive and negative x and y axis and the four diagonals in
between. We fit the extracted data to equation (1) by
minimizing

∑
i |R(ti) − ξ0 (tc − ti)

α
|2, thus finding α, tc

and ξ0. Here R(ti) is taken as the average of the data
from the eight rays at time ti. The value of the self-
similar power law exponent, α = 0.844, agrees well with
other values in the literature, see Table I. Note that for
the rays used here, the anisotropy in the solution due to
grid effects is largest (see Figure 3), thus the errors in the
results obtained using these values are likely maximized.

Three Obstacles. The triangular shape was gener-
ated by placing three obstacles in an equilateral trian-
gular pattern. Close to the focal point, the shock wave
assumes a triangular shape and the similarity exponent
can be found. The shock front just before the trian-
gular shape appears is shown in Figure 4 (a)-(b). The
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FIG. 4: Contours of the pressure for three obstacles showing
the formation of the triangular converging shock.
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FIG. 5: The value of the pressure with three obstacles aver-
aged along the lines t1, t2, t3, of Figure 4. The solutions are
displayed at times 22.28 − 22.5 with time spacing 0.02. The
solution to the left of the origin corresponds to the part of the
lines t1, t2, t3 closest to the obstacles.

plane sides develop as soon as the reflected part of the
shock, originating from the reflection off the cylinder, has
passed the whole side of the triangle. In Figure 4 (a) the
reflected shock is still interacting with the sides of the
triangle. In (b), the reflected shocks have passed the
sides of the triangle and in (c) a triangle-shaped shock
is observed. Once the triangle-shaped shock has formed,
it remains for the duration of the focusing process since
the plane sides undergo regular reflection,this is consis-
tent with results in [9].

For this experiment the self-similar exponent was com-
puted from solution data along the three lines shown in
Figure 4 (d). The pressure, averaged along the three
lines, is plotted in Figure 5. Referring to Figure 5, there
is a significant difference in the profile of the pressure in
the regions to the left and right of the focal point at the
origin; we therefore make two fits to the data. Using the
averaged values of the solutions at times 22.34 to 22.56
we get a self-similar exponent α = 1.155 for the data to
the left and α = 0.977 to the data on the right. The
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fact the similarity exponent is not exactly equal to unity
probably results from the sides not being perfectly plane
until the very last stages of the focusing process (see,
Figure 4 (c)).

Four Obstacles. A square-shaped shock was ob-
tained by perturbing a cylindrical shock with four ob-
stacles placed in a square formation, see Figure 6. A
square-shaped shock undergoes Mach reflection if the
shock Mach number is larger than 1.24, [9], as is the
case here. This means that when two plane sides meet in
a corner, a new shock (Mach stem) is created. The Mach
stem travels faster than the adjacent plane sides and will
consume these; repeating for the rest of the focusing pro-
cess. In the present setup, the Mach stem will form along
the lines s2 and s4 (see Figure 6 (d)) and expand out-
wards towards the lines s1 and s3. When adjacent stems
meet the square has turned 45 degrees.

Because of this reconfiguration process it is impractical
to detect the location of the shock along rays. Instead
we compute the area of the domain where the pressure is
within 5% of its quiescent state. Assuming the area to be

Self similar exponent

Present results (zero obstacles) 0.844

Present results (four obstacles) 0.835

Guderley (1942), [6] 0.834

Butler (1954) 0.835217

Stanyukovich (1960) 0.834

Welsh (1967) 0.835323

Mishkin & Fujimoto (1978) 0.828

Nakamura (1983) 0.8342, Ms = 4.0

0.8345, Ms = 10.0

de Neef & Nechtman∗ (1978) 0.835±0.003

Kleine∗ (1985) 0.832 + 0.028, -0.043

Takayama∗ (1986) 0.831 ±0.002

TABLE I: Self similarity exponents for converging cylindrical
shock waves. ∗Experiments.

.

proportional to the square of the mean radius, we can use
the square root of the area instead of R to find α from (1).
Using solutions from the final stages, corresponding to
times 21.96 to 22.7 (with a time step of 0.02), we obtain
a self-similar exponent α = 0.835. This in agreement
with the theory in [5].

It should be noted that in general the computed value
of the self-similar exponent depends slightly on the data
set used. In particular for the case of four obstacles, there
is a tendency for the computed value of α to be somewhat
larger when solutions at earlier times are included.

IV. CONCLUSIONS

The shape of the shock front and the diffraction pat-
tern behind the shock in the numerical simulations agree
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FIG. 6: Contours of the pressure for four obstacles. The
square shaped shock front periodically reforms, rotated by 45
degrees.

well with the experimental results in [4]. The maxi-
mum pressure and temperature near the focal point were
computed using 0–16 cylindrical obstacles. The high-
est maximum pressure and temperature occurred with
zero obstacles. With a small number of obstacles, 1–6,
the maximum pressure and temperature were lower than
with a large number of obstacles, 7–16. During the final
stages of the focusing process, a self-similar solution is
obtained for the triangular and the square-shaped shock.
The triangle-shaped shock undergoes regular reflection
and the same shape remains during the focusing process.
For the triangle, the self-similar exponent depends on
the direction in which the location of the shock front is
measured. For the two directions measured here, the ex-
ponents were α = 0.977 and α = 1.155, compared to the
expected value of one. The square-shaped shock under-
goes Mach reflection and the self-similar exponent was
found to be α = 0.835 in agreement with other published
results.
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0 cyl, t = 22.3 1 cyl, t = 22.0 2 cyl, t = 22.0

3 cyl, t = 22.0 4 cyl, t = 22.2 5 cyl, t = 22.4

8 cyl, t = 22.6 12 cyl, t = 23.2 16 cyl, t = 23.5

FIG. 7: Numerically computed schlieren images for a converging shock diffracted by 0, 1, 2, 3, 4, 5, 8, 12 and 16 cylindrical
obstacles. The dominant portion of the shock is located near the focal point. This part of the shock front is far from circular
in cases 1–5, whereas it is close to circular in cases 8–16.
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