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A New Class of Nonlinear Finite-Volume
Methods for Vlasov Simulation

Jeffrey William Banks and Jeffrey Alan Furst Hittinger

Abstract—Methods for the numerical discretization of the
Vlasov equation should efficiently use the phase-space discretiza-
tion and should introduce only enough numerical dissipation
to promote stability and control oscillations. A new high-order
nonlinear finite-volume algorithm for the Vlasov equation that
discretely conserves particle number and controls oscillations is
presented. The method is fourth order in space and time in
well-resolved regions but smoothly reduces to a third-order up-
wind scheme as features become poorly resolved. The new scheme
is applied to several standard problems for the Vlasov–Poisson
system, and the results are compared with those from other
finite-volume approaches, including an artificial viscosity scheme
and the piecewise parabolic method. It is shown that the new
scheme is able to control oscillations while preserving a higher
degree of fidelity of the solution than the other approaches.

Index Terms—Finite-volume methods, plasma simulation,
Vlasov equation.

I. INTRODUCTION

THE VLASOV equation is a fundamental kinetic model
for low-density high-temperature plasmas typical of many

plasmas of interest. Because this model expresses the particle
distribution as a function of time, particle location, and particle
velocity, direct discretization methods are extremely expensive;
the computational cost increases geometrically with dimension.
Thus, stochastic particle-in-cell (PIC) methods [1] have been
the dominant Vlasov simulation techniques. Continuum (or
Eulerian) discretizations of Vlasov are still useful in a comple-
mentary role to PIC, since the continuum approach can provide
information where the inherent noise of PIC may mask physical
effects.

Development of continuum discretization techniques for the
Vlasov equation has not received the attention that it deserves,
perhaps because available computer resources have been in-
sufficient to simulate meaningful multidimensional problems.
Much work that has been done has focused on the dimension-
ally split semi-Lagrangian approach, with a variety of spline or
spectral interpolants [2]–[4] used. The shortcomings of this ap-
proach include the lack of discrete conservation, the occurrence
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of unphysical oscillations in the solution, and the generation of
negative values in the positive-definite solution. Several vari-
ations of the semi-Lagrangian approach have been developed
to address these numerical difficulties [5]–[9]. Nevertheless, in
the modern era of massively parallel computing, one of the
primary advantages of the semi-Lagrangian approach—the lack
of a stability restriction on the time step used—is diminished
by the fact that domain decomposition favors local schemes of
compact support. Furthermore, split algorithms are inherently
task serial, whereas unsplit algorithms are more amenable to
task parallelization on multicore processors.

In the last decade, as increased computer power has enabled
Vlasov simulation in higher dimensions, attention has been
drawn toward discretization methods developed in the applied
mathematics and engineering communities for hyperbolic sys-
tems. Examples include finite-element [10] and pseudospectral
methods [11] that allow for adaptive mesh refinement (AMR),
as well as finite-volume methods from compressible gas dy-
namics [12]–[14]. In related work, 5-D gyrokinetic core codes
have been developed using low- and high-order linear finite-
difference schemes [15]–[17].

A very promising class of such algorithms are the flux-
based higher order nonlinear finite-volume schemes [18]–[20]
that can enforce conservation, monotonicity, and, with further
modification, positivity; at least one 4-D Vlasov–Maxwell code
based on the piecewise parabolic method (PPM) has been
developed [14]. Additional advantages of these finite-volume
approaches are that they can easily be extended to higher order
in both space and time and that they naturally fit within the
framework of AMR. Both higher order and AMR can be used
to reduce the cost of continuum Vlasov simulation. However,
nonlinear finite-volume methods have disadvantages for Vlasov
simulation as well, most notably a potentially severe stability
restriction on time step size and increased computational cost
due to oscillation control.

In this paper, we present a new class of nonlinear finite-
volume schemes that attempt to balance these tradeoffs. The
new approach is based on the higher order finite-volume frame-
work developed in [21], [22] and has certain similarities with
the more standard WENO approach. However, this new scheme
is optimized more for Vlasov solutions than for shock-capturing
applications for which PPM and WENO were originally de-
veloped. The result is a scheme that does an excellent job of
preserving order while adding sufficient dissipation to control
unphysical oscillations. An optional addition to the algorithm
based on a multidimensional flux-corrected transport (FCT)
algorithm [23] can be used to self-consistently enforce distri-
bution function positivity [21].

0093-3813/$26.00 © 2010 IEEE
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In the next section, we briefly describe the Vlasov–Poisson
system that we use as our model problem. We then present
the generic formulation of the fourth-order finite-volume dis-
cretization. In Section III, we discuss the challenges of Vlasov
simulation within the context of the numerical analysis of meth-
ods for hyperbolic partial differential equations and follow them
with a discussion of traditional fixes to these problems. We then
describe the new algorithm in full detail, and in Section VII, we
present the results of comparative numerical studies using the
new algorithm.

II. GOVERNING EQUATIONS AND MODEL PROBLEM

Because the purpose of this is to describe a new algorithm
and demonstrate its performance, it is appropriate to describe
a simple physical model. Consider a collisionless quasi-neutral
plasma in one space and one velocity dimension where the ions
have been assumed to be stationary. As a further simplification,
assume that we are in the nonrelativistic zero-magnetic-field
limit. For this case, the well-known Vlasov–Poisson system
(1)–(3) describes the evolution of the electron distribution
function f(x, v, t) in phase space (x, v)

∂

∂t
f(x, v, t) + v

∂

∂x
f(x, v, t) − E

∂

∂v
f(x, v, t) = 0 (1)

E(x, t) = − ∂

∂x
φ(x, t) (2)

∂2φ

∂x2
=

∞∫
−∞

f(x, v, t)dv − 1. (3)

In (1)–(3), v is the velocity, x is the physical coordinate, t is
the time, φ is the electric potential, and E is the electric field.
We have chosen units such that the electron mass and charge
are unity.

We investigate problems on the periodic domain x ∈ [−L,L]
with initial conditions f(x, v, 0) = f0(x, v). The domain is
artificially truncated in the v-direction at some location vmax,
and an appropriate outflow/inflow condition is applied. Note
that periodicity and (3) imply that

L∫
−L

∞∫
−∞

f(x, v, t)dvdx = 1

for all time. The exact specifications of the initial conditions as
perturbations of Maxwellian distributions will be provided as
needed.

III. MOTIVATING EXAMPLE

In the context of numerical approximation, two prevalent
features of Vlasov systems deserve special consideration. The
first of these is the fact that the system is nonlinear. Although
the fourth-order Runge–Kutta integration scheme (RK-4) that
we adopt here is slightly dissipative, that dissipation is insuf-
ficient to stabilize the centered spatial approximations when
used for the simulation of sufficiently nonlinear problems [24].
The question of whether the Vlasov systems of interest are in
this class is not proved, but practical experience indicates quite

Fig. 1. Examples showing the need for AV. Plotted is the distribution function
f(x, v, t) at time t = 45 computed using (left) Nx = Nv = 64 and (right)
Nx = Nv = 2048.

strongly that additional dissipation of some kind is required
while respecting certain conservation properties. The second
feature to which we need to pay heed is the shearing nature
of the solutions. By this we mean that because the spatial
advection velocity is the velocity coordinate, structures present
in the initial conditions will tend to shear and become thin as
time progresses.

These two features are demonstrated using a two-stream
instability problem using the parameters from [4] but a stronger
initial spatial perturbation. The initial distribution function used
here is given by

f(x, v, t = 0) =
v2

√
2π

(
1 − 1

2
cos

(x

2

))
exp

(
−v2

2

)
(4)

and the domain is given by L = 2π and vmax = 6. Fig. 1 shows
numerically computed results using the linear centered scheme
of Section V. Shown are a coarse simulation (Nx = Nv = 64)
and a finely resolved simulation (Nx = Nv = 2048) at the
same time t = 45. Both results capture, at some level, the broad
dynamics of the problem, but for both cases, the approximations
exhibit erroneous numerical oscillations. These are caused by
some combination of fine scales in the exact solution and the
inherent nonlinearity of the governing system. Notice further
that, for both simulations, the electron number density drops
significantly below zero. These results serve to demonstrate that
poor behavior can be exhibited by schemes using purely central
spatial discretizations for this type of nonlinear problem.

IV. POSSIBLE FIXES

Numerical analysis informs us that most low-dissipation lin-
ear discretizations applied to variable-coefficient and nonlinear
hyperbolic problems will eventually generate spurious oscilla-
tions and often become unstable [24]. The problem arises from
the nature of the continuous solutions that typically generate
finer and finer scales, and an accurate discrete approximation
will do the same. Thus, the discrete operator eventually gener-
ates scales unresolvable on the mesh, and oscillations are pro-
duced. From a spectral perspective, the energy in unresolvable
modes is aliased to resolvable modes.

Since the earliest days of numerical simulation, researchers
have been wrestling with this problem. The generation of
oscillations is a signal that the solution is under-resolved, and
one philosophy is that the computation should be terminated or
a finer mesh should be used. This is often impractical, and if
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the under-resolved scales have little influence on the goal of
the calculation, increasing the resolution would be wasteful.
Many other approaches have emerged, and the commonality
is that these methods attempt to remove energy either directly
or indirectly from under-resolved scales through some sort of
dissipation. The tradeoff is that the accuracy of some scales
resolvable on the grid is sacrificed. Thus, while each of these
“fixes” can be posed such that particle number is conserved to
round-off error, all other conserved quantities are accurate only
to within truncation error.

The simplest solution is to add a linear dissipative term to
the discretization in the form of an artificial viscosity (AV) or
hyperviscosity [24]. Precise forms are known that guarantee
stability [24]. However, there are drawbacks to this approach.
First, the linear viscosity term is always active and so con-
tinuously damps all modes in the solution, which can even
smear well-represented profiles. In addition, high-derivative
hyperviscosity terms are required to achieve higher order,
but discretizations of higher derivatives are often not robust.
Finally, the method introduces an adjustable coefficient on
which the discrete solution depends.

A related approach from spectral discretizations are de-
aliasing [25, Sec. 11.5] or direct filtering [5]. Here, the coef-
ficients of a predetermined set of high-wavenumber modes are
zeroed out at the end of each time step. Effectively, the energy
that naturally flows into these modes is artificially removed
from the system.

Shock-capturing methods are a somewhat different class of
schemes that have been developed in computational compress-
ible fluid dynamics. A well-known theorem [26] states that
linear monotonic algorithms for hyperbolic equations will be
at most first order. To achieve higher order, shock-capturing
approaches nonlinearly adapt the stencil and order of the dis-
cretization in order to obtain monotonic or nearly monotonic
solutions. Standard methods include flux-limiting methods of
FCT type [23], [27] and geometric approaches based on limit-
ing conservative interpolations within cells, such as the piece-
wise linear MUSCL scheme [28] and the PPM scheme [18].
Results using a method-of-lines variant of the PPM scheme
[22] are shown in Fig. 2. In a method-of-lines approach, this
scheme is fourth order accurate in space and, for our RK-4
time discretization, is fourth order accurate in time. A difficulty
with these methods is that, because they are optimized for
shock capturing, they all reduce to first order in regions where
the solution is under-resolved and typically also at solution
extrema, although recent work has tried to minimize extrema
clipping [19].

Other geometrically inspired schemes include the (weighted)
essentially nonoscillatory [(W)ENO] [20] methods. These
methods do not guarantee monotonicity, but they are higher or-
der, do not clip extrema, and do a reasonable job of minimizing
oscillations, even around a discontinuity. Schemes of this type
adapt their stencil in order to obtain the smoothest interpolant of
the data. In the standard upwind formulation, WENO schemes
select a computational stencil as a weighted combination from
a collection of upwind-biased lower order stencils, e.g., a fifth-
order discretization in smooth regions composed of three third-
order stencils. On the other hand, switching from central to

Fig. 2. Distribution function f(x, v, t) at time t = 45 for the two-stream
instability problem using the mesh Nx = Nv = 64 and the centered scheme
with (left) AV and (right) PPM.

upwind stencils may have advantages if the goal is to switch
from a dissipationless difference to a difference with implicit
numerical dissipation. It is this fact that leads to our new
approach in Section VI.

Before proceeding, however, we will make one final point
about positivity. Unphysical oscillations are the most obvi-
ous causes of nonpositive solution values. However, merely
controlling oscillations does not guarantee solution positivity,
particularly in multiple dimensions. Well-known theory [26]
demonstrates that there are no linear schemes above first order
that preserve solution positivity, and the nonlinear oscillation-
controlling schemes above do not, by themselves, guarantee
positivity. To retain positivity, one must appeal to some other
mechanism. By far, the most common approach is to floor
nonpositive values to zero; this technique is neither consistent
with the governing equations nor conservative.

Alternatively, as discussed in [21], a consistent conserva-
tive correction to enforce solution positivity can be formu-
lated using FCT. Specifically, Zalesak’s multidimensional FCT
scheme [23] allows for the imposition of constraints on the
solution other than monotonicity. In this usage, the multidimen-
sional FCT scheme limits base-scheme fluxes with positivity-
preserving fluxes just enough to guarantee that the updated
solution is positive definite. Any base-scheme fluxes can be
used, including fluxes previously limited by other means; the
procedure works with all of the linear and nonlinear discrete
fluxes discussed in this paper. Thus, this FCT approach de-
couples the issues of oscillation control and positivity preser-
vation, while the flux-based form ensures consistency and
conservation.

We mention the FCT positivity-preservation procedure here
for completeness. We have made successful use of the approach
in practice with all of the methods presented in this paper.
However, the intent of this paper is to focus on the properties
of our new oscillation-suppressing scheme in contrast to other
common methods. In the interest of space, and since the FCT
positivity-preservation procedure is independent of the choice
of base-scheme flux, we have elected to include no results
using the FCT algorithm in this paper. The interested reader is
referred to [21] for some comparative results of the FCT scheme
for positivity preservation.

V. BASIC NUMERICAL METHOD

Our basic finite-volume discretizations follow the approach
in [21], [22]. Let us rewrite the Vlasov equation (1) in
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flux-divergence form

∂

∂t
f(ξ, t) + ∇ξ · F (f, ξ, t) = 0 (5)

where the phase-space flux vector is F = (Fx, Fv) = af , the
phase-space velocity vector is a = (v,−E), and the divergence
is with respect to ξ = (x, v). We construct a uniform Cartesian
partitioning of phase space into control volumes

Vij =
[
i − 1

2
, i +

1
2

]
Δx ×

[
j − 1

2
, j +

1
2

]
Δv.

Integrating (5) over one such control volume and dividing
by the volume ΔxΔv, we obtain the exact system of ordinary
differential equations

d

dt
f̄ij = − 1

ΔxΔv

∫
Vij

∇ξ · Fdxdv

= − 1
Δx

(
〈Fx〉i+ 1

2 ,j − 〈Fx〉i− 1
2 ,j

)

− 1
Δv

(
〈Fv〉i,j+ 1

2
− 〈Fv〉i,j− 1

2

)
(6)

where the cell average f̄ij is defined to be

f̄ij ≡ 1
ΔxΔv

∫
Vij

fdxdv

and the angle braces denote face averages, e.g.,

〈Fx〉i+ 1
2 ,j =

1
Δv

vj+1/2∫
vj−1/2

F (xi+1/2, v)dv.

The face-averaged fluxes can be approximated by the
products of other face-averaged quantities and transverse deriv-
atives by using Taylor series expansions. Define the second-
order central difference operators Dxuij ≡ ui+1,j − ui−1,j and
Dvuij ≡ ui,j+1 − ui,j−1. Then, to fourth order

〈Fx〉i+ 1
2 ,j ≈〈v〉i+ 1

2 ,j〈f〉i+ 1
2 ,j +

1
48

Dv〈f〉i+ 1
2 ,j

〈Fv〉i,j+ 1
2
≈ − 〈E〉i,j+ 1

2
〈f〉i,j+ 1

2

− 1
48

Dx〈E〉i,j+ 1
2
Dx〈f〉i,j+ 1

2
.

Relating the face averages of a and f to cell averages of
the same quantities completes the spatial discretization. For
comparison in subsequent sections, the baseline linear central
fourth-order approximation is used, e.g.,

〈f〉i+ 1
2 ,j ≈ 7

12
(f̄i,j + f̄i+1,j) −

1
12

(f̄i−1,j + f̄i+2,j). (7)

One variant that we use for comparison is the addition of
a linear AV that adds O(Δx4) and O(Δv4) dissipation to the
truncation error, i.e.,

〈f〉AV
i+ 1

2 ,j =〈f〉i+ 1
2 ,j−μΔx

[
f̄i+2,j−3(f̄i+1,j−f̄i,j)−f̄i−1,j

]
(8)

with a constant μ > 0; the form is similar for v-faces. A choice
of μ = 0.1 performs reasonably well for the problems consid-
ered in this paper. When differenced in flux-divergence form
(6), the additional terms (8) approximate fourth derivatives of
the solution in each coordinate direction. A second variant we
will use for comparison is the nonlinear method-of-lines PPM
scheme described in detail in [22]. The choice of the face-
average approximation is what distinguishes our new scheme
from previous work.

To compute the phase-space velocity, we require velocity
face averages of the electric field; these are equivalent to the
configuration-space cell averages of the electric field com-
puted by solving the potential equation. The instantaneous cell-
averaged electric field are to fourth order

Ēi ≈
1

12Δx

[
8(φ̄i+1 − φ̄i−1) − φ̄i+2 − φ̄i−2

]
.

In configuration space, we average (3) over each
configuration-space cell Vi

1
Δx

∫
Vi

∂2φ(x, t)
dx2

dx = ρ̄i(t).

Discretely, we construct a nearly pentadiagonal system from
the stencil

30φ̄i − 16(φ̄i+1 + φ̄i−1) + (φ̄i+2 + φ̄i−2) = 12Δxρ̄i (9)

which gives a fourth-order approximation of the cell-averaged
potential. The resulting linear algebra problem can be LU-
decomposed once at the beginning of a run and stored. Periodic
boundary conditions in x lead to a singular system, which is a
well-known problem that can be handled by projecting out the
portion of ρ̄(x) residing in the null space of the matrix. This
amounts to ensuring that

∑
i ρ̄(xi) = 0, and in doing so, we

ensure that φ̄(x) is normalized around zero. Of course, since we
take a derivative of φ̄(x) to get Ē(x), the offset has no effect on
the solution.

The cell average of net charge density is computed in this
finite-volume formulation

ρ(x, t) = 1 −
∞∫

−∞

f(x, v, t)dv

= 1 − Δv

∞∑
j=−∞

f̄ij ≈ 1 − Δv

vmax∑
j=−vmax

f̄ij .

The last approximation occurs in any noninfinite discretiza-
tion basis; we adopt the standard approach of truncating the
velocity domain to |v| ≤ vmax, where the number of particles
beyond this domain is treated as negligible.

For the temporal discretization of the semidiscrete Vlasov
equation (6), any stable method can be used. We do not have
competing time scales in this problem, so as in [22], we choose
the standard explicit fourth-order Runge–Kutta scheme. At
each stage in the Runge–Kutta update, we solve the discrete
potential equation (9) prior to the evaluation of phase-space flux
divergence, as given by the right-hand side of (6).
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VI. NEW NUMERICAL METHOD

We wish to devise a numerical method that has the property
that, for well-represented solutions, the fourth-order centered
approximation (7) is used, but that introduces numerical dissi-
pation when solution features cannot be represented on a given
mesh. We take the stance that a suitable viscosity is provided by
the third-order upwind approximation, and our goal is to derive
a solution-dependent switch to transition smoothly between the
fourth-order central and third-order upwind fluxes. As an ad-
ditional design criterion, we seek to preserve the discretization
stencil of the centered fourth-order approximation.

We focus on the determination of the face average Fi+(1/2),j ;
the other face averages are determined in a similar manner. We
suppress mention of the time step for clarity. Similarly to the
WENO method [20], we compose the face reconstruction as a
weighted sum of third-order approximations

〈F 〉i+ 1
2 ,j ≈ wi+ 1

2 ,j,L〈F 〉i+ 1
2 ,j,L + wi+ 1

2 ,j,R〈F 〉i+ 1
2 ,j,R (10)

with

〈F 〉i+ 1
2 ,j,L ≈ 1

6
(−f̄i−1,j + 5f̄i,j + 2f̄i+1,j) (11)

〈F 〉i+ 1
2 ,j,R ≈ 1

6
(2f̄i,j + 5f̄i+1,j − f̄i+2,j). (12)

Here, 〈F 〉i+(1/2),j,L and 〈F 〉i+(1/2),j,R are third-order ap-
proximations of the face average, with “ L” and “ R” indicating
the data biased to the left or right, respectively. Define the ideal
weight d = 1/2 such that, for wi+(1/2),j,L = wi+(1/2),j,R = d,
(10) reduces to the centered fourth-order approximation.

Focusing on the stencil associated with Fi+(1/2),j,L, we
define the polynomial

Pi+ 1
2 ,j,L(x) =

Ai+ 1
2 ,j,L

2Δx2
η2 +

Bi+ 1
2 ,j,L

2Δx
η + Ci+ 1

2 ,j,L (13)

with

Ai+ 1
2 ,j,L = f̄i+1,j − 2f̄i,j + f̄i−1,j

Bi+ 1
2 ,j,L = f̄i+1,j − f̄i−1,j

Ci+ 1
2 ,j,L = f̄i,j .

Here, η = x − xi measures the distance from xi. A smooth-
ness indicator in a symmetric interval about xi+(1/2) is
given by

βi+ 1
2 ,j,L = Δx

Δx∫
0

(
d

dχ
Pi+ 1

2 ,j,L(χ)
)2

dχ

+Δx3

Δx∫
0

(
d2

dχ2
Pi+ 1

2 ,j,L(χ)
)2

dχ.

This is more concisely written as

βi+ 1
2 ,j,L =

4
3
A2

i+ 1
2 ,j,L +

1
2
Ai+ 1

2 ,j,LBi+ 1
2 ,j,L +

1
4
B2

i+ 1
2 ,j,L.

(14)

Similar reasoning for the right stencil yields

βi+ 1
2 ,j,R =

4
3
A2

i+ 1
2 ,j,R − 1

2
Ai+ 1

2 ,j,RBi+ 1
2 ,j,R +

1
4
B2

i+ 1
2 ,j,R

(15)
where

Ai+ 1
2 ,j,R = f̄i+2,j − 2f̄i+1,j + f̄i,j

Bi+ 1
2 ,j,R = f̄i+2,j − f̄i,j .

Define approximate stencil weights as

ŵi+ 1
2 ,j,k =

ai+ 1
2 ,j,k

ai+ 1
2 ,j,1 + ai+ 1

2 ,j,2

with

ai+ 1
2 ,j,1 =

d(
ε + βi+ 1

2 ,j,L

)2

ai+ 1
2 ,j,2 =

d(
ε + βi+ 1

2 ,j,R

)2

for k = 1, 2 and ε being a small parameter (typically ε = 1 ×
10−40).

As with traditional WENO schemes, convergence rates near
certain types of critical points (points with many zero deriva-
tives) may be less than optimal. A detailed discussion of these
issues is presented in [29]. As in that work, we perform a
mapping of the weights in order to regain optimal convergence
rates whenever possible. For our fourth-order implementation,
the mapping suggested in [29] can be rewritten

bi+ 1
2 ,j,k = ŵi+ 1

2 ,j,k

(
3
4

+ ŵi+ 1
2 ,j,k

(
ŵi+ 1

2 ,j,k − 1
2

))
.

The final formula for the weights is then

wi+ 1
2 ,j,k =

bi+ 1
2 ,j,k

bi+ 1
2 ,j,1 + bi+ 1

2 ,j,2

. (16)

Note that we have not associated the weights with either
stencil.

The two weights (16) provide a quantitative measure of the
degree to which the solution can be represented on the grid.
More specifically, the weights define how well the two third-
order approximations represent the solution. For smooth flows,
they both converge to the ideal weight d = 1/2 as O(Δx2), and
so, in terms of accuracy, it makes no difference which stencil re-
ceives which weight. In order to maximize the upwind diffusion
in the final numerical method, we choose the larger weight for
the upwind third-order approximation and the smaller weight
for the downwind third-order stencil. Thus

if
(
vi+ 1

2 ,j > 0
)

,

⎧⎨
⎩

wi+ 1
2 ,j,L = maxk

(
wi+ 1

2 ,j,k

)

wi+ 1
2 ,j,R = mink

(
wi+ 1

2 ,j,k

)

else

⎧⎨
⎩

wi+ 1
2 ,j,L = mink

(
wi+ 1

2 ,j,k

)

wi+ 1
2 ,j,R = maxk

(
wi+ 1

2 ,j,k

)
.
(17)
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Fig. 3. Distribution function f(x, v, t) at time t = 45 for the two-stream
instability problem. On the left are the results with Nx = Nv = 64, and on
the right are those with Nx = Nv = 2048.

The resulting scheme converges at fourth order for smooth
flows, uses the same stencil as the linear fourth-order algorithm,
but introduces an upwind AV when the flow features become
sharp. Our choice of weights is distinct from the traditional
WENO approach, where the weighting is done to favor the
smoothest interpolant, even if it is an unstable downwind
approximation.

We return to the two stream examples shown in Figs. 1 and
2 using the new scheme. The results for Nx = Nv = 64 and
Nx = Nv = 2048 are shown in Fig. 3. The effectiveness of the
proposed scheme is clear, as these results lack the numerical os-
cillations that characterize the purely centered results of Fig. 1.
At the same time, the scheme captures the relevant features of
the solution that are representable on the given computational
domain. Notice that, for Nx = Nv = 64, the solution displays
many of the features of the finely resolved computation, even
capturing the trapping regions near (±2,∓3); this is not seen in
either the AV or PPM solutions in Fig. 2.

To demonstrate the convergence properties of the new
method, we consider results for a variable-coefficient advection
problem using a manufactured solution. Such an example exer-
cises all the terms in the new algorithm and has a known smooth
exact solution. We solve

∂f

∂t
+

∂(v1f)
∂x1

+
∂(v2f)
∂x2

=
∂U

∂t
+

∂(v1U)
∂x1

+
∂(v2U)

∂x2
(18)

where

v1 = a1 sin(2πx1) cos(2πx2) + v1,0

v2 = a2 sin(2πx1) sin(2πx2) + v2,0

U = a3 sin(2πx1) sin(2πx2) cos(2πt) + f0

and a1 = 0.1, a2 = 0.2, a3 = 0.3, v1,0 = 1.0, v2,0 = 0.9, and
f0 = 0.8. Note that the right-hand side of (18) forces the
solution in such a way that f = U is the solution to (18). Fig. 4
shows the error for the various schemes using N = 160. Table I
shows convergence results for a series of resolutions.

A number of salient points can be made using this example.
First, all schemes achieve the optimal fourth-order convergence
by N = 80. Second, we note that the new scheme becomes
virtually indistinguishable from the centered scheme at mod-
erate resolutions but provides sufficient nonlinear viscosity

Fig. 4. Error in the manufactured solution using N = 160 for (top left) the
centered scheme, (top right) new scheme, (bottom left) AV, and (bottom right)
PPM. Note the larger errors from the AV scheme and the noisy error signature
of the PPM method.

TABLE I
CONVERGENCE OF MAXIMUM POINTWISE ERROR FOR THE

MANUFACTURED SOLUTION WITH VARIOUS SCHEMES.
A RATIO OF 16 BETWEEN SUCCESSIVE ERRORS

INDICATES FOURTH-ORDER CONVERGENCE

when needed. Third, the mixing between low and high orders
in the new scheme is based on smooth high-order accurate
smoothness indicators, and so, the error is smooth. The error
is not smooth for the PPM scheme, which uses hard switches
to preserve accuracy near extrema; hard switches, also a feature
of ENO schemes, tend to produce “noisy” errors.

VII. ADDITIONAL NUMERICAL RESULTS

In order to more clearly understand the character of the
proposed scheme, we apply it to a number of well-known test
problems from the literature.

A. Landau Damping

We begin with the Landau damping problems [30, Sec. 8.6]
with the initial distribution function given by

f =
1√
2π

exp
(
−v2

2

) (
1 + α cos

(x

2

))
(19)

as specified in [4] and [12]. We take the domain with L = 2π
and vmax = 2π. The parameter α defines the problem, with
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Fig. 5. Magnitude of the (blue) first and (red) tenth Fourier modes of the
electric field for the Landau damping problem with α = 0.01. Also shown
is a reference line indicating the theoretical decay rate of the first mode, i.e.,
γ = −0.1553. The results were computed on the mesh Nx = Nv = 64 using
(top left) the centered scheme, (top right) the new scheme, and the centered
scheme with (bottom left) AV and (bottom right) PPM.

α = 0.01 and α = 0.5 being often called “linear” and
“nonlinear,” respectively. For the weaker case with α = 0.01,
the nonlinear effects in the problem are negligible at early
times, and so, the use of a nonlinear scheme is unnecessary.
As such, the desired behavior is that the oscillation-controlling
methods produce results similar to those of the original centered
scheme. Fig. 5 shows the magnitude of the first and tenth
Fourier modes of the electric field, as well as a reference line
indicating the analytic decay rate for the magnitude of the
first Fourier mode. For the linear, PPM, and new schemes,
the resonant frequency is computed to be ω = 1.4155 over the
first 12 periods; the theoretical value is 1.4157. The resonant
frequency from the AV scheme varies between ω = 1.4155 and
ω = 1.4661 over the first 12 periods.

The AV scheme also sits apart from the others in that it con-
tinually damps the solution, which eliminates the well-known
recurrence phenomenon; note that the decay rate gradually
departs from the analytical result as it becomes dominated by
artificial damping. The centered scheme, the new scheme, and
the PPM scheme behave in a similar way for the leading mode,
but their treatment of the tenth mode is somewhat different. The
nonlinearity of the nonlinear schemes pushes energy into higher
modes, even in the early-time linear phase of the problem, and
the PPM scheme transfers more energy than the new scheme.
The original (linear) centered scheme shows no growth in the
higher mode initially, but at longer times, the nonlinearity of
the Vlasov–Poisson system begins to transfer energy to higher
modes. Unlike the (linear) AV scheme, the centered scheme
has too little dissipation to damp high-wavenumber modes, and
the energy in higher modes will continue to grow, most likely
causing instability.

For the Landau damping problem with α = 0.5, the non-
linearities in the problem will pose difficulties for the central
scheme similar to those shown for the motivating two-stream
problem in Fig. 1. In fact, this type of strongly nonlinear exam-

Fig. 6. Distribution function f(x, v, t) at t = 140 for the strong Landau
damping problem with α = 0.5. The results were computed on the grid Nx =
Nv = 64 using (top left) the centered scheme, (top right) the new scheme,
and the centered scheme with (bottom left) AV and (bottom right) PPM. Note
that the range of variation for the unphysically oscillating solution using a
low-dissipation linear scheme is actually [−0.14, 0.65], so extrema have been
clipped by the choice of color map. The new scheme does the best job capturing
the trapping regions near v = ±2.

ple is the primary motivation of our investigation of nonlinear
limiting algorithms. The desired effect for this test problem is
for the method to allow the representable nonlinear features to
grow but to provide sufficient damping to ensure the overall
algorithmic stability, even at late time.

Fig. 6 shows computed approximations at low resolution
(Nx = Nv = 64) and late time (t = 140) and serves to demon-
strate the need to include some form of artificial dissipation for
this type of problem. It is clear that there is little of practical
value that can be determined from the purely centered scheme
(note that the full range of variation [−0.14, 0.65] is not visible
with the unified color map), while the linear AV scheme has
essentially smeared any coherent structures in the problem. On
the other hand, the two nonlinear schemes are able to capture
the representable features in the problem; our new scheme does
so with slightly better fidelity.

Fig. 7 shows this point by comparing the spatially averaged
distribution functions of the coarse simulations with a more
finely resolved simulation computed using the new scheme with
Nx = Nv = 1024 at t = 30 and t = 140. Clearly, the fine-scale
structures in the problem will not be visible on the coarse mesh,
and so, for the zoomed-in plots on the right, we compare only
the fist 32 Fourier modes of the finely resolved simulation. The
AV scheme clearly adds too much overall dissipation to the
solution. At early time t = 30, the centered and new schemes
are in good agreement, while the PPM scheme captures more
of the variation but with greater amplitude error. At a later
time, the centered scheme contains unacceptable unphysical
oscillations. The PPM and new schemes, however, capture the
general features of the smoothed high-resolution solution, with
the new scheme generally showing slightly better agreement.
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Fig. 7. Average distribution functions for the strong Landau damping problem
at (top) t = 30 and (bottom) t = 140. The plots on the right include only the
first 32 Fourier modes from the finely resolved solution and are an enlargement
near the shoulder in the distribution function to better show details.

Fig. 8. Magnified region of the distribution function f(x, v, t) at time t = 45
for the two-stream instability problem using the mesh Nx = Nv = 2048
and (left) the new scheme and (right) the AV scheme. Note the grid-mode
oscillations in the center of the plot on the right.

B. Two-Stream Instability

We return briefly to the motivating example of Section III.
Throughout the results, we have mentioned that the artificial
dissipation scheme is overly dissipative. One logical response
would be to decrease the tunable dissipation coefficient μ; the
choice of such an algorithmic knob is always open to debate.
However, Fig. 8 shows the same computation, as shown in
Fig. 3, but in a zoom near the origin, and compares the new
scheme to the AV scheme. Throughout this paper, we have
taken a constant value for the AV parameter, and in Fig. 8,
one can see that this choice is actually insufficient to suppress
all numerical oscillations in the approximation at very high
resolution. In the figure, note the unphysical high-wavenumber
oscillations in the AV results near the top and bottom of
the trapping region that are not present in the new scheme.
Although small in magnitude, these oscillations show that our
choice of the AV parameter is not too high but is rather too
small. In general, the choice of parameter is error prone and
represents a severe disadvantage to linear artificial dissipation.

Finally, for quantitative comparison, we consider another
variation of the two-stream instability problem with the initial

Fig. 9. Magnitude of the first Fourier mode of the electric field for the two-
stream instability problem with (blue) vt = 0.5 and (red) vt = 0.0625. Also
shown is a reference line indicating the theoretical growth rate of the first mode,
i.e., γ = 1/

√
8. The results were computed on the mesh Nx = Nv = 64 using

(top left) the centered scheme, (top right) the new scheme, and the centered
scheme with (bottom left) AV and (bottom right) PPM.

distribution function given by

f = ft(v) (1 + 0.0005 cos(0.2x))

with

ft(v)=
1√
8πvt

[
exp

(
− (v − v0)2

2v2
t

)
+exp

(
− (v + v0)2

2v2
t

)]

where v0 = 5
√

3/4. The domain is defined by L = 5π and
vmax = 8, and we use Nx =Nv = 64. Linear theory [30,
Sec. 9.3] for cold distributions predicts that a maximum growth
rate of γ = 1/

√
8 ≈ 0.354 will occur for mode k = 0.2. Since

we cannot represent delta functions discretely, we instead
choose vt = 1/2 and 1/16 to observe the behavior as the initial
distributions become narrower.

The results are shown in Fig. 9. We see that, for all schemes,
the agreement is reasonable, given the finite-width distributions
and the asymptotic nature of the theoretical prediction. For
all schemes except PPM, as we decrease the width of the
initial streams, the growth rate increases toward the theoretical
maximum value. We believe that the lack of change in the PPM
scheme is due to its more severe reduction in order for poorly
resolved features leading to enhanced numerical damping. The
new scheme does not have this problem and, in fact, comes
closest to the theoretical value. Linearly extrapolating to the
zero-width limit from the growth rates in the time range 20 ≤
t ≤ 30, the zero-width growth rates are 0.178, 0.180, and 0.209
for the linear, AV, and new schemes, respectively.

C. Bump-on-Tail Instability

As a final example, we address the bump-on-tail instability
[30, Sec. 9.4] using the parameters specified in [4] and [12].
The initial distribution function is given by

f = fb(v) (1 + 0.04 cos(0.3x))
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Fig. 10. Distribution function f(x, v, t) at t = 200 for (left) the PPM scheme
and (right) the new scheme with grid resolutions (Nx, Nv) = (128m, 512m)
for (top) m = 1 and (bottom) m = 4. Note that the degree of detail in the PPM
solution is comparable to that in the solution from the new scheme with four
times less resolution. A quadratic (cf. linear) color mapping was used in these
plots to accentuate the details in the trapping region.

with

fb(v) =
0.9√
2π

exp
(
−v2

2

)
+

0.2√
2π

exp
(
−4(v − 4.5)2

)
.

The domain is defined by L = 10π/3 and vmax = 8, and
we use Nx = 128m and Nv = 512m, where m is a parameter
dictating the resolution. We have already demonstrated the
need to include viscosity into the approximation, and we have
demonstrated that the linear AV is not satisfactory. As a result,
we present results for this bump-on-tail problem only for the
new proposed scheme and the PPM scheme for comparison.
Note that the computations have been performed with the other
schemes, and the results present no surprises. Fig. 10 shows
computed approximations of the phase-space distribution func-
tion at t = 200 for m = 1 and m = 4 using the two schemes.
Both approximation techniques capture the trapping region near
v = 3, but the new approximation (right) achieves significantly
higher resolution of small features. In fact, the coarser results
(m = 1) for the new scheme (top right) capture roughly the
same set of features as the PPM scheme with four times as much
resolution (m = 4, bottom left).

Notice further that the position of the trapped region is
quite well located even at m = 1 for the new scheme, while
for PPM, it is moving slightly too fast. This phase error can
also be investigated via the electric field that is shown in
Fig. 11 for four resolutions, i.e., m = 1, 2, 4, and 16. The final
resolution is included as a reference and is intended to be a
close approximation to the exact electric field. Here, we see that
the PPM scheme has accumulated a significant phase error for
low resolution and is converging to the reference solution quite
slowly. On the other hand, the new scheme produces quite-close
results, even at low resolution, and the higher resolutions are
seen to be nicely convergent.

Fig. 11. Electric field E(x, t) at t = 200 for (left) the PPM scheme and
(right) the new scheme. The result from a highly resolved computation with
m = 16 is also displayed for reference. Note that the new scheme better
captures the phase at all resolutions.

VIII. CONCLUSION

In this paper, we have discussed the application of high-order
finite-volume methods to the simulation of Vlasov systems.
The need for the explicit or implicit inclusion of some form
of artificial dissipation was demonstrated through a number of
model problems, including Landau damping, two-stream insta-
bility, and bump-on-tail instability. The standard methods used
for comparison included high-order linear AV and nonlinear
PPM. We introduced a new nonlinear method that is designed to
add an upwind AV when the solution is under-resolved, but to
transition smoothly to a high-order centered approximation for
well-resolved regions of the flow. This method is constructed
specifically with Vlasov systems in mind and leverages the spe-
cific type of nonlinearities present in that the system disallows
genuine nonlinear discontinuities (i.e., shocks). The result is a
scheme that behaves like a fourth-order centered scheme when
the solution is well resolved, but adds an appropriate artificial
dissipation as features in the solution become too fine to be
represented accurately. The properties of this new scheme were
demonstrated in relation to the other schemes through a series
of classical test problems.

Two remaining important advantages of this new scheme
deserve reiteration. First, the finite-volume method that lies at
the heart of our algorithms is inherently local, and so, paral-
lelization is easily done. In fact, some computations presented
in this paper used up to 512 processors, and nearly linear
parallel scaling was observed. Second, the construction of the
new method is quite general and extends to orders higher than
fourth in a straightforward manner. That is to say, the recipe in
Section VI is easily extensible to construct nonlinear schemes
of any even order that reduce to upwind schemes of one
order less.
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