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Abstract

A high-order accurate scheme for solving the time-domain Maxwell’s equations with a gener-
alized dispersive material model is described. The equations for the electric field are solved in
second-order form, and a general dispersion model is treated with the addition of one or more
polarization vectors which obey a set of auxiliary differential equations (ADE). Numerical methods
are developed for both second-order and fourth-order accuracy in space and time. The equations
are discretized using finite-differences, and advanced in time with a single-stage, three-level, space-
time scheme which remains stable up to the usual explicit CFL restriction, as proven using mode
analysis. Because the equations are treated in their second-order form, there is no need for grid
staggering, and instead a collocated grid is used. Composite overlapping grids are used to treat
complex geometries with boundary-conforming grids, and a high-order upwind dissipation is added
to ensure robust and stable approximations on overlapping grids. Numerical results in two and
three space dimensions confirm the accuracy and stability of the new schemes.
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1. Introduction

Maxwell’s equations in the time-domain are usually solved in first-order form, and there is a
wide class of methods available for their numerical solution. These include those based on finite
difference, spectral, pseudo-spectral, finite-element, and discontinuous Galerkin methods, among
others. The literature is very broad, and good overviews can be found in the review by Hestaven [1],
or the references books by Taflove [2] and Cohen [3]. The first-order spatial formulation, however,
has certain challenges, not the least of which is the fact that standard centered differences and
continuous finite elements on collocated grids result in a discretization with a large unphysical
null-space due to the discrete treatment of the curl operator. This difficulty can be overcome in
the first-order formulation through the use of staggered grids for finite difference methods (e.g. the
well-known Yee scheme [4]), or through the use of special edge elements (e.g. Nedelec finite ele-
ments [5]). The addition of dissipation to the collocated equations in first-order form can also be
used as a remedy. The alternative approach taken here is to treat the equations in their second-
order formulation. As discussed in [6, 7], this approach naturally leads to compact high-order
accurate approximations of Maxwell’s equations with no non-trivial null-spaces even on collocated
grids. The ability to use non-staggered grids gives additional practical advantages, for example
simplifying the treatment of complex geometry for high-order accurate numerical methods. More
generally as discussed in [8], using the second-order formulation of wave equations has additional
benefits including fewer dependent variables (e.g. from six to three for Maxwell’s equations in three
dimensions), and in some cases fewer constraint equations (e.g. the Saint-Venant compatibility
conditions for linear elasticity).

For many physical applications, particularly electromagnetic propagation in matter, incorpora-
tion of dispersive effects arising from wave-matter interactions is critical. For time-domain prob-
lems, classical descriptions of the electron response (e.g. Drude, Drude-Lorentz, Lorentz, and Debye
models) incorporate ab initio assumptions for interband and/or intraband electron transitions, as
discussed for example in [2]. These classical models appear to possess some universality. For ex-
ample, the same Lorentzian representation for the dielectric permittivity is capable of accurately
approximating the optical dispersion due to phonon-polaritons excited with infrared light in SiC,
or the interband electron transitions excited using ultraviolet light in metals. On the other hand,
experimentally-based descriptions of dispersive dielectric functions given in the frequency domain
are also broadly used. Such descriptions, for example, include polymeric relaxation behavior ap-
proximated by the Cole-Cole (C-C), Davidson-Cole (D-C), and Havriliak-Negami (H-N) models [9–
12]. The C-C model is commonly utilized in biomedical electromagnetics for describing frequency
dependent dielectric permittivity of human tissues [13], while in addition to the Debye and C-C
models, the Jonscher approximation is often employed in the simulation of dispersive dielectric
permittivity of concrete in civil and industrial engineering [14]. However, the need for fractional
derivatives in the C-C, D-C, H-N, and Jonscher models significantly complicate their numerical
implementations [15–17].

In order to numerically implement generic dispersive material models including classical de-
scriptions derived from ab initio assumptions, or those fitted to experiment, we adopt a generalized
dispersive material (GDM) model based on Padé approximants as described in [18]. In this ap-
proach, the frequency response of any material is approximated to arbitrary accuracy using a
rational function of sufficiently high-order. This fitted frequency response is then transformed into
the time-domain to yield either a time-delayed integral convolution equation, or a system of auxil-
iary ordinary differential equations. Numerical treatment of these two options are then classically
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referred to as either recursive convolution (RC) [19–23] or the auxiliary differential equation (ADE)
method [23–28]. For ab initio dispersive models, various higher-order accurate numerical methods
have been proposed using the ADE time-domain approach [29–33], while high-order schemes for
Maxwell’s equations in second-order form using RC were considered in [34]. On the other hand,
second-order accurate RC- and ADE-type schemes for the solution of Maxwell’s equations coupled
to the GDM model were presented and analyzed in [18, 35]. Dispersive effects have also been
incorporated into Maxwell’s equations in first-order [36, 37] and second-order [38–40] form using a
combination of finite-element and discontinuous Galerkin approaches with the ADE and RC cou-
pling techniques. More sophisticated phenomenological hydrodynamic models for dispersion, their
numerical implementation and comparison to experiments have also been addressed, e.g. [41–47]
and references within.

In the current work, we consider higher-order accurate numerical methods for electromagnetic
wave propagation and general dispersive materials on complex geometric domains. The new scheme
builds upon the approach developed in [6] with significant extensions to model general dispersive
materials in an efficient manner. The scheme retains only three time-levels for electric field and
polarization vectors; this version is more memory efficient, especially when there are many polar-
ization vectors, than alternative approaches that were also considered. In particular, we propose a
finite difference time domain (FDTD) solver for Maxwell’s equations coupled to the GDM model
on non-Cartesian and overlapping grids. Maxwell’s equations are solved in second-order form to
avoid the need for grid staggering. Material dispersion is described with a general Padé approxi-
mant implemented through multiple polarization vectors, each of which satisfies and ADE. Some
theoretical analysis of the material model is included to indicate when solutions to the coupled
equations will grow, decay, or remain neutrally stable in time. We present efficient second- and
fourth-order accurate algorithms which are centered in time and space. Both algorithms use only
three time-levels for the electric field and each polarization vector, and are stable for a wide range
of material parameters. In addition, the scheme is made stable and robust on overlapping grids
through the use of a novel upwind dissipation based upon the upwind scheme for wave equations
developed in [7, 8]. To the authors’ knowledge, this is the first second- and fourth-order accurate
FDTD scheme for a general dispersive model on curvilinear and overlapping grids. This is also the
first fourth-order accurate scheme for a generalized model which incorporates the Drude, Drude-
Lorentz, and critical point descriptions of dispersive media while at the same time addressing more
complicated electric permittivity functions.

The remainder of the article is organized as follows. In Section 2 the governing equations for the
ADE-GDM model are presented together with a discussion of the GDM model and its dispersion
relation. Section 3 describes the second-order and fourth-order accurate numerical schemes while
Section 4 describes details of the spatial approximations and overlapping grids. The stability of the
numerical schemes is considered in Section 5. Numerical results are presented in Section 6 while
conclusions are given in Section 7.

2. Governing Equations

Consider the solution to the time-domain Maxwell’s equations in a domain Ω containing a
linearly dispersive medium with negligible magnetic polarization so that B “ µ0H. In this case,
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Maxwell’s equations in first-order form are

BtD “ ∇ˆH, x P Ω, (1a)

µ0BtH “ ´∇ˆE, x P Ω, (1b)

∇ ¨D “ 0, ∇ ¨H “ 0, x P Ω, (1c)

D “ ε0E`P. (1d)

Here, D “ Dpx, tq is the displacement vector, E “ Epx, tq is the electric field, H “ Hpx, tq is the
magnetic field, P “ Ppx, tq is the electric polarization vector, and ε0 and µ0 are, respectively, the
vacuum permittivity and permeability. The dispersive medium is modeled using the GDM model,
as discussed in more detail in Section 2.1, and an ADE approach is used to describe the time
evolution of the polarization vector. The second-order formulation of the governing equations is

B2
tE “ c2∆E´ ε´1

0 B2
tP, x P Ω, (2a)

B2
tPm ` b1,mBtPm ` b0,mPm “ ε0

`

a0,mE` a1,mBtE
˘

, x P Ω, m “ 1, 2, . . . , Np, (2b)

P “

Np
ÿ

m“1

Pm. (2c)

where c2 “ 1{pε0µ0q is the nominal wave speed, and the total polarization vector, P, is the sum of Np

component polarization vectors Pm. Each Pm satisfies an ordinary differential equation (2b), whose
coefficients a0,m, a1,m, b0,m, and b1,m are chosen to fit a given dispersion model or spectroscopic
data. For completeness we note that H satisfies the generalized second-order wave equation given
by

1

c2
B2
tH “ ∆H`∇ˆ BtP. (3)

The system of equations in (2) is augmented with appropriate initial conditions for E and Pm as

Epx, 0q “ E0pxq, BtEpx, 0q “ E1pxq, (4a)

Pmpx, 0q “ P0
mpxq, BtPmpx, 0q “ P1

mpxq. (4b)

In general, forcing functions can also be introduced into the equations and used as source terms
but these are left off here to simplify the presentation. Boundary conditions are needed to close
the system. For example the boundary conditions for a perfect electrical conductor (PEC) involve
the tangential components of E, which can be expressed as

nˆE “ 0, x P BΩPEC. (5)

Note that the second-order order form of Maxwell’s equations requires another boundary condition,
and as in [6] we set the divergence of the field to be zero,

∇ ¨E “ 0, x P BΩPEC. (6)

Finally, note that since the equations for Pm are ODEs in time, no boundary conditions are needed
on these components of the solution.
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2.1. The generalized dispersion model in the frequency domain

The GDM model for the electric permittivity in the frequency domain, ε̂, takes the form

ε̂pωq “ ε0
`

1` χ̂p´iωq
˘

,

where the electric susceptibility χ̂ is given by

χ̂psq
def
“

Np
ÿ

m“1

χ̂mpsq, (7a)

χ̂mpsq
def
“

a0,m ` s a1,m

b0,m ` s b1,m ` s2
. (7b)

Given a representation for the susceptibility χ̂p´iωq (from theory or experiment), the real-valued
GDM coefficients a0,m, a1,m, b0,m and b1,m can be determined to fit the representation as a sum of
Padé approximants of the form (7b) with Np terms (see Appendix B for a discussion of determining
the coefficients in the GDM model). Note that the classical Debye, Drude and Lorentz dispersion
models are special cases of the GDM model. Note also that for the second-order form of the
equations, electrical conductivity is given by a term ´σEt which is added to the right-hand side
of (2a). This term is a special case of (7b) with a0,m “ b0,m “ b1,m “ 0 and a1,m “ σ. Thus,
conductivity, if present, could be treated separately for efficiency but here we do not do this as it
simplifies the exposition of the algorithms.

To reveal the correspondence between (7) and (2), Fourier transform the relation (1d) for the
displacement vector D in time to give

D̂ “ ε0Ê` P̂,

where hats indicate the transformed variables, i.e. E “ e´iωtÊ. Defining

P̂
def
“ ε0 χ̂p´iωqÊ, (8a)

P̂m
def
“ ε0χ̂mp´iωqÊ, (8b)

leads to the expected relation

D̂ “ ε̂ Ê.

Starting from (8b) and multiplying both sides by the denominator in (7b) for χ̂mp´iωq, gives

´ω2P̂m ´ iω b0,mP̂m ` b0,mP̂m “ ε0
`

a0,mÊ´ iωa1,mÊ
˘

. (9)

Transforming (9) back to the time domain gives the ADE (2b).

2.2. Dispersion relation for a general GDM model

The ADE-GDM equations for Maxwell’s equations in second-order form are defined by the
system in (2). The dispersion relation to these equations is found by seeking separable solutions of
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the form

Epx, tq “ esteikx Ê,

Pmpx, tq “ esteikx P̂m,

for constants s P C and k P C. Substituting this ansatz into (2) leads to the following relation
between the polarization vectors Pm, and the electric field E,

P̂m “ ε0χ̂mpsq Ê, P̂ “

Np
ÿ

m“1

P̂m “ ε0 χ̂psqÊ, (10)

together with the dispersion relation

`

s2 ` pckq2
˘

` s2
Np
ÿ

m“1

"

a0,m ` sa1,m

s2 ` b1,ms` b0,m

*

“ 0. (11)

Multiplying by the denominators in the sum in (11) yields a polynomial of degree 2Np ` 2 in s:

`

s2 ` pckq2
˘

Np
ź

j“1

`

s2 ` b1,js` b0,j
˘

` s2
Np
ÿ

m“1

#

`

a0,m ` sa1,m

˘

Np
ź

j“1,j‰m

`

s2 ` b1,js` b0,j
˘

+

“ 0. (12)

Given k, this polynomial can be solved to determine the roots sn, n “ 1, 2, . . . , 2Np ` 2. For real
k and real coefficients a0,m, a1,m, b0,m and b1,m, the roots sn appear as complex conjugate pairs
corresponding to left- and right-traveling plane-wave solutions that decay in time when <psq ă 0
and grow in time when <psq ą 0. Alternatively, (11) can be solved for a given s to give two values
of k P C,

pckq2 “ ´s2 ´ s2
Np
ÿ

m“1

"

a0,m ` sa1,m

s2 ` b1,ms` b0,m

*

. (13)

When s “ ˘iω, ω P R, the solutions for k from (13) correspond to time-periodic solutions that
decay or grow in space depending on the sign of <pikxq, except for the constant solution when
ω “ 0.

Resonant modes. Consider (13) with vanishing damping terms, a1,m “ 0, b1,m “ 0 so that

´pckq2 “ s2
´

1`

Np
ÿ

m“1

a0,m

s2 ` b0,m

¯

. (14)

When |ck| is large (i.e. |ck| " 1), in order for the right-hand side of (14) to balance the left-hand
side, it must be that either s2, or one of the terms in the sum is large (assuming the b0,m are
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distinct). Therefore, for large |ck| the roots to (14) take one of the following asymptotic forms

s2 „ ´pckq2, (15)

s2
m „ ´b0,m `

a0,m b0,m
pckq2

, m “ 1, 2, . . . , Np. (16)

The roots s „ ˘ick correspond to the usual wave modes for the non-dispersive Maxwell’s equations
with phase speed c. The roots sm „ ˘i

a

b0,m (assuming positive b0,m) are the dispersive modes
with phase speed

a

b0,m{k (i.e. slowly-moving waves). When sm „ ˘i
a

b0,m the polarization vector,

P̂m, given by

P̂m “
ε0a0,m

s2
m ` b0,m

Ê „
ε0pckq

2

b0,m
Ê, (17)

has a large response, and thus ω „
a

b0,m, m “ 1, 2, . . . , Np, represents the resonant frequencies of
the dispersive model for |ck| large.

Consider now the general case for Np “ 1 with non-zero damping coefficients. For clarity we
drop the subscript m on a1,m, b0m, etc. The asymptotic forms for the roots for large ck are given
by

s “ ˘ick ´
a1

2
¯

i

8ck

´

a2
1 ` 4a1b1 ´ 4a0

˘

`O
`

pckq´2
˘

, (18)

s “ r `
1

pckq2

´

´b21a1r ` pra0 ´ a1b0qb1 ` b0pa0 ` ra1q

b1 ` 2r

¯

`O
`

pckq´4
˘

, (19)

where r is a root of r2 ` b1r ` b0 “ 0. The first correction term for the non-resonant root in (18)
is the addition of a negative real part, ´a1{2, which corresponds to damping in time; the second
correction term in (18) incorporates a phase shift. The resonant mode sm in (19) incorporates
damping at the leading order term through the effect of b1 on the root r; the first correction term
in (19) adjusts both the real and imaginary parts of s, in general.

Conditions on the GDM parameters for non-growing solutions. Intuition suggests that a1,m and
b1,m are coefficients of damping terms in the equations, and should normally be taken as non-
negative to avoid exponential growth (gain materials could be modeled with negative values for
a1,m or b1,m). On the other hand,

?
a0,m and

a

b0,m change the phase (imaginary part of s) and
thus should also be non-negative to avoid exponential growth. These conjectures are in agreement
with the asymptotic formulae (15)–(16) and (18)–(19) (although the role of a0 is only evident in the
higher corrections). Despite this intuition and partial evidence, the model actually admits bounded
exponential growth in the solution even for some cases where the constants a0,m, a1,m, b0,m and
b1,m, are all positive. To see this phenomenon, specialize to the case of one polarization vector, so
that (12) becomes

`

s2 ` pckq2
˘ `

s2 ` b1s` b0
˘

` s2
`

a0 ` sa1

˘

“ 0, (20)

which is a quartic polynomial of the form

fpsq “ s4 `Bs3 ` Cs2 `Ds` E “ 0,
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where

B “ b1 ` a1,

C “ pckq2 ` b0 ` a0,

D “ pckq2b1,

E “ pckq2b0.

Routh-Hurwitz theory [48] yields the following necessary and sufficient conditions for all roots to
have a negative real part:

B ą 0,

E ą 0,

C ´
D

B
ą 0,

D ´
BE

C ´ D
B

ą 0.

As shown in Appendix A, these conditions are satisfied if the GDM coefficients are positive and

pckq2
“

pa1 ` b1qpa0b1 ´ a1b0q ` a1b1pckq
2
‰

ą 0. (21)

Note that (21) may be violated if a0b1 ă a1b0, depending on the value of a1b1pckq
2.

Theorem 1. A sufficient, but not necessary, condition for there to be no roots to the GDM
dispersion-relation (20) with non-negative real part is that all coefficients are positive and

a0b1 ą a1b0. (22)

When a0b1 ă a1b0 there may be exponentially growing solutions to the ADE-GDM equations (this
is confirmed by computations), which would generally occur for small values of k when

pa1 ` b1qpa0b1 ´ a1b0q ` a1b1pckq
2 ă 0.

It is important to note however, that the growth rate is bounded (for GDM coefficients of any
sign) since the rate does not increase with k. This can be seen for the case of Np “ 1 from the
asymptotic form of the roots for large ck in equations (18)–(19). The asymptotic formulae show
that as |k| Ñ 8, the real part of the non-resonant roots become bounded above by ´a1{2 while
the resonant roots converge to the roots to r2` b1r` b0 “ 0. Thus the equations remain well-posed
even in the presence of this growth. We note that Routh-Hurwitz conditions for more than one
polarization vector become algebraically complex and deriving a simple condition for growth of the
solution seems difficult. However, for given GDM parameters it is straightforward to check the
conditions numerically for the polynomial (12) to determine whether a given model admits growing
solutions.
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3. Numerical Scheme

The numerical approximations of the ADE-GDM equations described in this manuscript are
derived using a similar methodology as that described previously in [6] for the non-dispersive
Maxwell’s equations in second-order form. The construction uses a space-time procedure to develop
single-stage schemes with arbitrarily high orders of accuracy in space and time using the electric
field values at only three time levels. The approach is based on a Taylor series expansion of the
solution in time, and uses a Cauchy-Kowalevski (Lax-Wendroff) procedure to convert higher-order
temporal derivatives into spatial derivatives as determined by the governing PDEs. Higher-order
schemes are derived hierarchically, with high-order accurate schemes building upon lower-order
approximations. Spatial derivatives are then approximated using finite-differences on overlapping
grids as discussed in Section 4. Overlapping grids are used to represent complex geometry with
a set of structured curvilinear grids. Optimized versions of the numerical schemes are used for
Cartesian grids, since and these can be orders of magnitude faster than the corresponding schemes
for curvilinear grids. Since most of the domain is often covered with a background Cartesian grid,
the cost of the overall scheme approaches that of the Cartesian-grid implementation as the grid is
refined.

3.1. Second-order accurate scheme

We begin with a description of the second-order accurate scheme in d space dimensions. Let
xj P Rd denote the grid-points on a structured grid, where j “ pj1, . . . , jdq P Zd is a multi-index of
integers. Let Enj « Epxj, n∆tq and Pn

m,j « Pmpxj, n∆tq denote grid functions that approximate E
and Pm respectively. The second-order accurate approximation to (2a)-(2b) is given by

D`tD´tE
n
j “ c2∆2hE

n
j ´ ε

´1
0 D`tD´tP

n
j , (23a)

D`tD´tP
n
m,j ` b1,mD0tP

n
m,j ` b0,mP

n
m,j “ ǎ0,mE

n
j ` ǎ1,mD0tE

n
j , (23b)

where

Pn
j

def
“

Np
ÿ

m“1

Pn
m,j, (24)

and ǎ0,m and ǎ1,m are the scaled GDM parameters

ǎ0,m
def
“ ε0 a0,m, ǎ1,m

def
“ ε0 a1,m. (25)

Here ∆2h denotes a second-order accurate approximation to the Laplace operator ∆, while D`t,
D´t, and D0t denote the usual forward, backward, and central divided difference approximations
to the time derivative, as given by

D`tW
n def
“

Wn`1 ´Wn

∆t
, D´tW

n def
“

Wn ´Wn´1

∆t
, D0tW

n def
“

Wn`1 ´Wn´1

2∆t
, (26)
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for a generic grid function Wn (with the spatial index suppressed). A second-order accurate
approximation to the first time-derivative is D0tW

n, while

D`tD´tW
n “

Wn`1 ´ 2Wn `Wn´1

∆t2
, (27)

is a second-order accurate approximation to the second time-derivative. The spatial approximation
is described in detail in Section 4. The discrete approximations in (23) define a locally implicit
system for the vector unknowns En`1

j and Pn`1
m,j , m “ 1, . . . , Np. For future notational convenience,

the linear difference operator defining the solution to this system will be denoted L2h so that the
update can be expressed compactly as

„

E
Pm

n`1

j

“ L2h

˜

„

E
Pm

n

j

,

„

E
Pm

n´1

j

¸

. (28)

This operator takes the usual form of a standard explicit update equation for the wave equation as a
3-level scheme with a 3d-point stencil. It is important to note that the components, En`1

j and Pn`1
m,j ,

in (28) can be decoupled algebraically, which then leads to an efficient implementation of the update.
Details of this efficient implementation of the time-stepping scheme are given in Appendix C.1.

3.2. Fourth-order accurate scheme

Higher-order accurate schemes can be defined using a modified equation approach starting from
the second-order-accurate scheme given in (23). Taylor-series in time implies

D`tD´tWpx, tq “ B2
tW `

2∆t2

4!
B4
tW `Op∆t4q. (29)

where W represents either E or P. Time differentiation of the governing equations (2) yields

B4
tE “ pc

2∆q2E´ ε´1
0 c2∆B2

tP´ ε
´1
0 B4

tP, (30)

which are used to replace time-derivatives of E to give

D`tD´tE “ c2∆E´ ε´1
0 B2

tP`
∆t2

12

“

pc2∆q2E´ ε´1
0 c2∆B2

tP´ ε
´1
0 B4

tP
‰

`Op∆t4q. (31)

For fourth-order accuracy, the continuous temporal operators on the right-hand side of (31) are
approximated using

B2
tP “ D`tD´t

ˆ

1´
∆t2

12
D`tD´t

˙

P`Op∆t4q,

B4
tP “ pD`tD´tq

2P`Op∆t2q,

which after spatial discretization yields

D`tD´tE
n
j “ c2∆4hE

n
j ´ ε

´1
0 D`tD´tP

n
j `

∆t2

12

´

pc2∆2hq
2Enj ´ ε

´1
0 c2

“

∆2hB
2
tP

˚
‰n

j

¯

. (32)
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Here ∆4h denotes a fourth-order accurate approximation to the Laplace operator ∆, and the blue
“star” terms in square braces are needed only to second-order accuracy because they appear as
Op∆t2q corrections. This term is therefore evaluated using an explicit prediction from the second-
order-accurate scheme as

“

∆2hB
2
tP

˚
‰n

j
“ ∆2h

˜

P˚j
n`1

´ 2Pn
j `Pn´1

j

∆t2

¸

, (33)

where

„

E˚

P˚m

n`1

j

“ L2h

˜

„

E
Pm

n

j

,

„

E
Pm

n´1

j

¸

. (34)

Similar manipulations yield a fourth-order accurate update equation for the Pm, j equation as

D`tD´tP
n
m, j “ ´b1,m

´

D0tP
n
m, j ´

∆t2

6

“

B3
tP

˚
m

‰n

j

¯

´ b0,mP
n
m, j

` ǎ0,mE
n
j ` ǎ1,m

´

D0tE
n
j ´

∆t2

6

“

B3
tE

˚
‰n

j

¯

`
∆t2

12

´

´ b1,m
“

B3
tP

˚
m

‰n

j
´ b0,mD`tD´tP

n
m, j

` ǎ0,mD`tD´tE
n
j ` ǎ1,m

“

B3
tE

˚
‰n

j

¯

, (35)

where again the blue “star” terms in square braces are evaluated using explicit predictions from
the second-order-accurate scheme. The ADE (2b) can be used to recursively replace second-order
(or higher) temporal derivatives of Pm in terms of lower-order derivatives so that B3

tPm can be
written as

B3
tPm “ b

p3q
1,mBtPm ` b

p3q
0,mPm ` ǎ

p3q
0,mE` ǎ

p3q
1,mBtE` ǎ

p3q
2,mB

2
tE, (36)

where
b
p3q
1,m “ pb

2
1,m ´ b0,mq, b

p3q
0,m “ b1,mb0,m,

ǎ
p3q
0,m “ ´ǎ0,mb1,m, ǎ

p3q
1,m “ pǎ0,m ´ ǎ1,mb1,mq, ǎ

p3q
2,m “ ǎ1,m.

Equation (36) could be discretized directly at second-order. However, for the purposes of simplifying
the implementation for the case of multiple polarization vectors, we find it advantageous to again
use the second-order scheme to predict values at the new time prior to time discretization of (36).
In this way,

“

B3
tP

˚
m

‰n

j
in (35) is defined as

“

B3
tP

˚
m

‰n

j
“ b

p3q
1,m

“

BtP
˚
m

‰n

j
` b

p3q
0,mPm, j ` ǎ

p3q
0,mEj ` ǎ

p3q
1,m

“

BtE
˚
‰n

j
` ǎ

p3q
2,m

“

B2
tE

˚snj . (37)
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where

“

BtP
˚
m

‰n

j
“

P˚n`1
m, j ´Pn´1

m, j

2∆t
, (38a)

“

BtE
˚
‰n

j
“

E˚n`1
j ´En´1

j

2∆t
, (38b)

“

B2
tE

˚snj “
E˚n`1

j ´ 2Enj ´En´1
j

∆t2
. (38c)

The approach to approximating
“

B3
tE

˚
‰n

j
in (35) follows similar steps to yield

“

B3
tE

˚
‰n

j
“ c2

“

∆2hBtE
˚
‰n

j
´ ε´1

0

“

B3
tP

˚
‰n

j
, (39)

where, as before,
“

∆2hBtE
˚
‰n

j
uses the second-order approximation

“

∆2hBtE
˚
‰n

j
“

∆2hE
˚n`1
j ´∆2hE

n´1
j

2∆t
, (40)

with E˚n`1
j obtained from (34).

To summarize the fourth-order scheme, the approximations in (32) and (35) determine the
updates for En`1

j and Pn`1
m, j , with the summation of the latter quantity giving Pn`1

j . Similar to the
second-order case, this linear difference operator will be denoted

„

E
Pm

n`1

j

“ L4h

˜

„

E
Pm

n

j

,

„

E
Pm

n´1

j

¸

, (41)

which ultimately takes the form of a standard explicit update equation for the wave equation as
a 3-level scheme with a 5d-point stencil. Note that embedded in the operator L4h are explicit
evaluations of the correction terms

“

BtE
˚
‰n

j
,
“

∆2hBtE
˚
‰n

j
, etc., using the second-order scheme L2h.

Therefore, the L4h operator can be evaluated by explicit inversion of the system as in the second-
order case. See Appendix C for further details of this efficient implementation. Finally, we note
that it also appears possible to define a scheme that introduces new unknowns defining the time-

derivatives of Pm, j such as Qm
def
“ B2

tPm, j. This leads to an algebraically simpler scheme, but at
the cost of requiring additional storage for Qm, and so we have not pursued this approach.

4. Spatial approximations and composite grids

The ADE-GDM schemes presented in Section 3 are defined in terms of generic spatial ap-
proximations for the Laplace operator and the square of the Laplace operator. While there are
a variety of approaches that can be used to approximate these operators, our approach employs
finite-difference approximations on overlapping grids. In the discussion below, we provide a brief
description of the overlapping grid approach and the approximation of the Laplace operator. This
is followed by a discussion of the upwind dissipation used to suppress numerical instabilities at
overlapping-grid boundaries, and the numerical treatment of the boundary conditions at a perfect
electrical conductor (PEC) boundary.
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box

cylinder

box unit-cube

cylinder unit-cube

interpolation points

Figure 1: Top: a three-dimensional overlapping grid for a quarter-cylinder in a box. Bottom left and right: component
grids for the cylindrical and box grids in the unit cube parameter space. Interpolation points at the grid overlap are
marked and color-coded for each component grid.

4.1. Composite grids for complex geometry

As illustrated in Figure 1, a composite overlapping grid, denoted as G, consists of a set of
component grids Gg, g “ 1, . . . ,N , that cover the entire domain Ω. In three dimensions, each
component grid, Gg, is a logically rectangular, curvilinear grid defined by a smooth mapping from
a unit cube parameter space r to physical space x,

x “ Ggpr, tq, r P r0, 1s3, x P R3. (42)

The overlapping grid generator Ogen [49] from the Overture framework is used to construct the
overlapping grid information. In a typical composite grid, one or more boundary-fitted curvilinear
grids represents each boundary. The remainder of the domain is covered by one or more Cartesian
grids. Ogen cuts holes in the appropriate component grids by using physical boundaries to distin-
guish between the interior and exterior to the domain. For example, the “cylinder” grid displayed
in the upper right image of Figure 1 cuts a hole in the Cartesian “box” grid so that the latter grid
has many unused points (those not being plotted in the lower right image). Ogen also provides
the interpolation information for all interpolation points in the overlap region between component
grids. The interpolation between grids is defined using tensor-product Lagrange interpolation in the
parameter space of the mapping Gg. The unit square coordinates r of a given point x on one grid
are located in the donor-grid parameter space. The interpolation is performed in the Cartesian-grid
parameter space and is thus straightforward [50]. The width of the interpolation depends on the
order of accuracy of the scheme. For fourth-order accuracy, for example, a five-point wide interpo-
lation stencil is used, and two layers of interpolation points are required to support the five-point
stencil.
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4.2. Finite-difference approximations on overlapping grids

The ADE-GDM scheme is discretized in space using finite-difference approximations. We require
second- and fourth-order accurate compact-stencil approximations to the Laplace operator,

L
def
“ ∆ “

d
ÿ

µ“1

B2

Bx2
µ

. (43)

Each component grid of the overlapping grid is defined by a smooth invertible mapping x “ Ggprq,
where r P r0, 1sd denotes the unit parameter-space coordinate-vector in d space dimensions. Using
the chain rule, an exact transformation of the derivatives in (43) from physical space to parameter
space is performed. This transformation involves metrics of the mapping, and their derivatives,
and this information is supplied by the grid generator. The first and second derivatives with
respect to the parameter-space coordinates that appear in the transformation of the Laplacian
are approximated to the desired order of accuracy, either second- or fourth-order accuracy, using
standard centered differences, see [50] for example.

4.3. Upwind dissipation

A high-order upwind dissipation is added to the centered approximation in order to eliminate
instabilities that may arise from the interpolation between overlapping grids. For efficiency we
often use thin boundary-fitted grids at curved boundaries with a fixed number of grid points in
the direction normal to the boundary. As a result, the majority of the domain is covered by
efficient Cartesian component grids as the grids are refined. However, this choice means that the
interpolation interface approaches the physical boundary as the grids are refined, which is known
to excite numerical instabilities, as discussed, for example, in [7, 51]. It was shown in [51] that
typical artificial dissipation operators used to guard against these instabilities are ineffective unless
the coefficient determining the strength of the dissipation scales inversely proportionally to the grid
spacing. This scaling would thus lead to a loss in the observed order of accuracy. In [7] a high-order
upwind scheme was presented for the wave equation on overlapping grids and applied to Maxwell’s
equations in second-order form. Upwinding was incorporated by embedding an exact solution to
a local Riemann problem into the scheme. The scheme was shown to be robustly stable and fully
accurate even in the difficult case of instabilities caused by interpolation at thin boundary-fitted
grids. In follow up work [52], a reformulation of the scheme incorporated several optimizations that
led to a new method where the upwind term that ultimately contributes numerical dissipation is
separated from the wave operator. This observation was leveraged to give an effective dissipation
term that can be added readily to existing wave equation solvers. The approach has no free tunable
parameters, and the upwind dissipation is effective at eliminating numerical instabilities caused by
overlapping grid interpolation.

The dissipation operator suggested by the approach in [52] is used in the present scheme. For
the fourth-order accurate scheme, for example, the upwind dissipation takes the form

Dp4qEnj
def
“ δp4q

d
ÿ

l“1

h5
l pD`lD´lq

3D0tE
n
j . (44)

Here, δp4q is the coefficient of the dissipation, hl is the grid spacing is the rl parameter-space
coordinate direction, and D`l and D´l denote the usual forward and backward divided-difference

15



operators defined by

D`lwj
def
“

wj`el ´ wj

hl
, D´lwj

def
“

wj ´ wj´el

hl
, (45)

where el is the unit vector in rl-direction, e.g. e2 “ r0, 1, 0s
T for d “ 3. Following the approach

in [52], the coefficient of the dissipation is taken to be δp4q “ 5c{288, which is given automatically
by the construction of the dissipation, and in general varies with the order of accuracy. For this
fourth-order accurate scheme, the dissipation stencil is seven-points wide (compared to the five-
point L4h operator), and so one additional ghost point is needed at physical boundaries. The
dissipation in (44) scales as Oph5

l q for well-resolved modes of the solution, and thus does not affect
the overall fourth-order accuracy of the scheme. As discussed in [52], the dissipation is added in a
predictor-corrector fashion since this allows for a larger time-step. The solution is first advanced
with the base scheme in the predictor stage and then the dissipation is added in the corrector stage,

Enj Ð Enj `∆tDp4qEn´1
j .

A further discussion of a stable choice for the time-step is given in Section 5 below.

4.4. Boundary Conditions

In this section, we describe the numerical implementation of the boundary conditions at a PEC
boundary. The primary boundary conditions, given previously in (5) and (6), are

nˆE “ 0, x P BΩPEC, (46a)

∇ ¨E “ 0, x P BΩPEC, (46b)

respectively, setting the right-side forcing function in (5) to be zero. Since the ADE-GDM governing
equations in (2) involve no spatial derivatives of Pm, there are no boundary conditions required for
Pm at the continuous level. The condition in (46a) specifies the tangential components of E on the
boundary. A second-order accurate centered approximation of (46b) gives the normal component of
E in the first ghost line, while the tangential components of E can be obtained in the first ghost line
using extrapolation. This is sufficient for the implementation of the second-order accurate scheme
described in Section 3.1 without upwind dissipation. When the dissipation is included, values of E
are required at a second ghost line and these are obtained using extrapolation.

For the fourth-order accurate scheme discussed in Section 3.2, additional values involving both
E and Pm are needed on ghost lines. These values may be obtained from compatibility conditions
derived at a continuous level from the governing equations and boundary conditions. For example,
taking the divergence of (2b) and evaluating the result on the boundary implies

B2p∇ ¨Pmq

Bt2
` b1,k

Bp∇ ¨Pmq

Bt
` b0,kp∇ ¨Pmq “ 0, x P BΩPEC, (47)

since ∇ ¨E “ 0 and Btp∇ ¨Eq “ 0 on the boundary. Assuming that ∇ ¨Pm “ 0 and Btp∇ ¨Pmq “ 0
initially, then (47) implies that

∇ ¨Pm “ 0, x P BΩPEC. (48)

16



A similar argument gives

nˆPm “ 0, x P BΩPEC, (49)

which implies that the tangential components of Pm are also zero on a PEC boundary.
Additional compatibility conditions for E at PEC boundaries are derived following the ap-

proach in [6] by taking time-derivatives of the governing equations. For example, taking two time
derivatives of (2a) and using (46a) implies

c2nˆ∆E “ ´ε´1
0

B4pnˆPq

Bt4
“ 0, x P BΩPEC,

which is the same condition for E as in the non-dispersive case. It then follows by applying nˆ∆
to (2a) for Pm that

nˆ∆Pm “ 0, x P BΩPEC, (50)

and thus Pm satisfies the same compatibility condition as E. In general, Pm will satisfy the same
compatibility conditions for E at a PEC boundary (see [6] for the general conditions).

When there are a large number of polarization vectors, an application of the full compatibility
boundary conditions for all Pm, m “ 1, . . . , Np, may become expensive. Therefore, we currently
only impose (49) as a primary compatibility boundary condition for Pm, but do not use compat-
ibility conditions in (48) or (50). Instead, the ghost points values for Pm are simply obtained by
extrapolation (which appears to be effective in practice). For example,

Dq
`lP

n
m,j “ 0, for a ghost point j,

defines a q-point extrapolation formula. For the second-order accurate scheme, q is taken as three
while for the fourth-order accurate scheme, q is taken as five.

5. Stability

We now examine the stability and accuracy of the second- and fourth-order accurate ADE-
GDM schemes. The analysis considers the case of one polarization vector, i.e. Np “ 1, and assumes
that the damping coefficients, a1 and b1, in (2b) are zero. Our motivation for these choices is to
make the details of the analysis as simple as possible. Also, with the damping coefficients equal to
zero, there is no mechanism for decay in the exact solution of the equations which could provide
a corresponding damping in the numerical scheme. In fact, we find, as discussed below, that the
two numerical schemes described in Section 3 is neutrally stable for a suitable CFL time-step. The
numerical results discussed later in this section confirm the analysis and provide evidence of the
stability in the case with nonzero damping coefficients.

5.1. Stability of the second-order accurate ADE-GDM scheme

The stability of the second-order accurate ADE-GDM scheme can be studied using a von Neu-
mann analysis. We consider a square domain Ω “ r0, 2πsd, discretized with a Cartesian grid, and
examine 2π-periodic solutions. A second-order accurate approximation to the Laplacian is given
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by

∆2h
def
“

d
ÿ

l“1

D`lD´l,

where the grid spacing, hl, given in the definitions of the divided difference operators in (45) are
now scaled by 2π. We seek solutions to the difference approximation (23) of the form

Enj “ An eik¨xj Ê, (51a)

Pn
j “ An eik¨xj P̂, (51b)

where A denotes the amplification factor and k is a wave-number vector. Substitution of the
ansatz (51) into (23) gives

„

A´ 2`A´1

∆t2
` c2L̂2hpkq



Ê “ ´ε´1
0

A´ 2`A´1

∆t2
P̂, (52a)

„

A´ 2`A´1

∆t2
` b0



P̂ “ ε0 a0Ê, (52b)

where

L̂2hpkq
def
“

d
ÿ

l“1

4 sin2pξl{2q

h2
l

, ξl
def
“ klhl P r´π, πs. (53)

Equation (52b) is used to solve for P̂ in terms of Ê, and this is substituted into (52a) to give the
following equation for the amplification factor A:

„

A´ 2`A´1

∆t2
` c2L̂2hpkq

 „

A´ 2`A´1

∆t2
` b0



` a0

ˆ

A´ 2`A´1

∆t2

˙

“ 0. (54)

Multiplying (54) by A2 gives a polynomial equation for A of degree four. Since the coefficients
in the polynomial are all real, the four roots will be either real, or they will appear as complex
conjugate pairs which we denote by A and Ā, respectively.

The number of roots for A is the same as the number of roots s of the corresponding analytic
dispersion relation in (20) with the damping coefficients set to zero. Thus, there are no spurious
roots for A. For well-resolved modes with ∆t Ñ 0 and c2L̂2hpkq∆t

2 Ñ 0, it is straightforward to
show that the solutions of (54) take the form

A “ 1` s∆t`
1

2
ps∆tq2 `Op∆t3q, (55)

where s is a root of the corresponding continuous dispersion relation (20). This confirms that the
scheme is second-order accurate since A should be an approximation to es∆t.

For stability we require |A| ď 1 if A is an isolated root, and |A| ă 1 if A is a multiple root. We
now show that the second-order accurate ADE-GDM scheme is neutrally stable under a reasonably
CFL time-step constraint.

The constraint in (54) for the amplification factor A of the second-order accurate scheme can
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be written as

P0pAq
def
“

”

`

A´ 2`A´1
˘

` c2∆t2L̂2hpkq
ı”

`

A´ 2`A´1
˘

`∆t2 b0

ı

`∆t2a0

`

A´ 2`A´1
˘

“ 0, (56)

which is a quadratic in A´ 2`A´1. Letting

A´ 2`A´1 “ ´4R, (57)

we find that there are two roots for A,

A “ 1´ 2R˘
a

p1´ 2Rq2 ´ 1, (58)

for a given value of R. For |A| ď 1, and to avoid the case of a double roots for A, it is sufficient to
require that p1´ 2Rq2 ă 1 in (58), in which case |A| “ 1. Thus, the stability condition is

0 ă R ă 1 Ñ |A| “ 1. (59)

Therefore, when 0 ă R ă 1, there is no damping in the discrete solution (when R “ 0 or R “ 1
there is a double root for A and we exclude these cases). Substituting (57) into (56) leads to

”

R´ c2∆t2L̂2hpkq{4
ı”

R´ b0∆t2{4
ı

´R
`

a0∆t2{4
˘

“ 0. (60)

Equation (60) is a quadratic equation in R, which may be expressed as

R2 ´ 2BR` C “ 0,

where

B “
∆t2

8
pc2L̂2hpkq ` b0 ` a0q, C “

∆t4

16
pc2L̂2hpkq b0q.

The roots of the quadratic are given by

R “ B ˘
a

B2 ´ C. (61)

For stability, we require 0 ă R ă 1 which will be true when 0 ď C ď B2 and

B `
a

B2 ´ C ă 1. (62)

Note that B2 ´ C ě 0 since

B2 ´ C “
∆t4

64

„

´

c2L̂2hpkq ` b0 ` a0

¯2
´ 4

´

c2L̂2hpkq b0

¯



“
∆t4

64

„

´

c2L̂2hpkq ´ b0

¯2
` 2

´

c2L̂2hpkq ` b0

¯

a0 ` a
2
0



ě 0.
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Since C ě 0 and
?
B2 ´ C ď B, a sufficient condition for stability from (62) is 2B ă 1, and so

∆t2
„

1

4
c2L̂2hpkq `

1

4
pb0 ` a0q



ă 1. (63)

Noting that

0 ď L̂2hpkq ď 4
d
ÿ

l“1

1

h2
l

, (64)

it follows that a sufficient condition for stability is

∆t2

«

c2
d
ÿ

l“1

1

h2
l

`
1

4
pb0 ` a0q

ff

ă 1. (65)

This result is expressed in the following theorem.

Theorem 2. The second-order accurate ADE-GDM scheme for one polarization vector (Np “ 1)
and zero damping coefficients (a1 “ b1 “ 0), and with non-negative values for a0 and b0 is neutrally
stable provided

∆t ă

«

c2
d
ÿ

l“1

1

h2
l

`
1

4
pb0 ` a0q

ff´1{2

. (66)

It is noted that the GDM coefficients b0 and a0 will generally have negligible effect on the time-step
as the mesh is refined, and thus in practice the time-step can be chosen from the usual non-dispersive
condition,

∆t ď
Ccfl

b

c2
řd
l“1

1
h2
l

, (67)

with a safety factor, Ccfl “ 0.9, for example.

Note. We expect that (67), with Ccfl “ 0.9, will also give a practical choice of the time-step for
the general case with one or more polarization vectors and any non-negative GDM coefficients,
including the damping coefficients.

5.2. Stability of the fourth-order accurate ADE-GDM scheme

Consider now the stability of the fourth-order accurate ADE-GDM scheme given in Section 3.2.
As noted previously for the second-order scheme, we consider the case of one polarization vector
(Np “ 1), zero damping coefficients in the GDM model (a1 “ b1 “ 0), and use the domain
Ω “ r0, 2πsd with periodic boundaries. The fourth-order accurate scheme is applied on a Cartesian
grid for which the spatial discretizations is

∆4h
def
“

d
ÿ

l“1

D`lD´l

ˆ

I ´
h2
l

12
D`lD´l

˙

.
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Using the ansatz in (51) gives

„

A´ 2`A´1

∆t2
` L̂hpkq ´

pc∆tq2

12
a0L̂2h



Ê “ ´

„

p
A´ 2`A´1

∆t2
q `

pc∆tq2

12
pb0L̂2hq



P̂, (68a)

„

`A´ 2`A´1

∆t2
qp1`

b0∆t2

12
q ` b0



P̂ “

„

a0 `
a0∆t2

12

pA´ 2`A´1q

∆t2



Ê, (68b)

where

L̂hpkq
def
“ c2L̂4hpkq ´ c

4 ∆t2

12

”

L̂2hpkq
ı2
. (69)

Here,

L̂4hpkq
def
“ ´y∆4h “

d
ÿ

l“1

4

h2
l

sin2pξl{2q

„

1`
1

3
sin2pξl{2q



,

with ξl “ klhl P r´π, πs as before and with L̂2hpkq defined in (53). Seeking nontrivial solutions
then leads to a polynomial equation for A:

„

A´ 2`A´1

∆t2
` L̂h ´

pc∆tq2

12
a0L̂2h

 „ˆ

A´ 2`A´1

∆t2

˙ˆ

1`
b0∆t2

12

˙

` b0



`

„ˆ

A´ 2`A´1

∆t2

˙

`
pc∆tq2

12
pb0L̂2hq

 „

a0 `
a0∆t2

12

ˆ

A´ 2`A´1

∆t2

˙

“ 0. (70)

As for the second-order accurate scheme, the number of roots for A is the same as the number
of roots s to the corresponding analytic dispersion relation, and so there are no spurious roots
for A. Furthermore, for well-resolved modes with ∆t Ñ 0, c2L̂h∆t2 Ñ 0 and c2L̂2h∆t2 Ñ 0, it is
straightforward to show that solutions of (70) take the form

A “ 1` s∆t`
1

2
ps∆tq2 `

1

3!
ps∆tq3 `

1

4!
ps∆tq4 `Op∆t5q, (71)

where s is a root of the corresponding continuous dispersion relation (20). This confirms that the
scheme is fourth-order accurate, as expected, since we expect A to be an approximation to es∆t.

To analyze the roots of (70), it is useful to use the substitution in (57), which again leads to a
quadratic equation in R:

R2 ´ 2BR` C “ 0,

where for the fourth-order case the coefficients in the quadratic are now given by

B “
∆t2

´

a0 ` b0 `
´

1` b0∆t2

12

¯

L̂h ` pc∆tq2

12 a0L̂2h

¯

8
´

1` b0∆t2

12 ` a0∆t2

12

¯ ,

C “
b0∆t4L̂h

16
´

1` b0∆t2

12 ` a0∆t2

12

¯ .

Note that B2 ´ C ě 0 as was the case for the second-order accurate scheme, and thus a sufficient
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condition for stability is 2B ă 1, or equivalently

∆t2
´

a0 ` b0 `
´

1` b0∆t2

12

¯

L̂h ` pc∆tq2

12 a0L̂2h

¯

4
´

1` b0∆t2

12 ` a0∆t2

12

¯ ă 1. (72)

Using the assumption that c∆t{hl ď 1 leads to pc∆tq2L̂2hpkq “ Op1q, and thus

∆t2L̂hpkq ă 4´K∆t2, (73)

for K “ Op1q ą 0 as ∆tÑ 0. Using the definition of L̂h in (69) yields

L̂hpkq “ c2
d
ÿ

l“1

"

4

h2
l

sin2pξl{2q

ˆ

1`
1

3
sin2pξl{2q

˙*

´ c2 pc∆tq
2

12

«

d
ÿ

l“1

4

h2
l

sin2pξl{2q

ff2

.

Assuming c∆t{hl ď 1, it can be shown that the maximum of L̂hpkq occurs when ξl “ ˘π for all l,
so that

max
|ξl|ďπ

∆t2L̂hpkq “
4

3

d
ÿ

l“1

4pc∆tq2

h2
l

´
1

12

«

d
ÿ

l“1

4pc∆tq2

h2
l

ff2

. (74)

Finally, setting Z “
řd
l“1

4pc∆tq2

h2
l

in (74) and substituting into (73) implies

´
1

12
pZ ´ 4qpZ ´ 12q ă ´K∆t2,

which is true provided Z ă 4 ´ p3{2qK∆t2. Therefore, the leading-order time-step stability con-
straint for the fourth-order scheme is

pc∆tq2
d
ÿ

l“1

1

h2
l

ă 1´
3

8
K∆t2, (75)

which for sufficiently fine grids is essentially the same time-step restriction as for the non-dispersive
case. This result is summarized in the following theorem.

Theorem 3. The fourth-order accurate ADE-GDM scheme for one polarization vector (Np “ 1)
and zero damping coefficients (a1 “ b1 “ 0), and with non-negative values for a0 and b0 is neutrally
stable provided

∆t ă
Ccfl

b

c2
řd
l“1

1
h2
l

, (76)

where Ccfl “ 1´Op∆t2q.

The analysis shows that the fourth-order scheme has essentially the same time-step restriction as
the second-order accurate scheme.
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5.3. Numerical investigation of stability for ADE-GDM

Having investigated the stability of the ADE-GDM schemes analytically for the zero damping
case, the purpose of this section is to verify the analysis and also to probe the behaviour of the
schemes for nonzero values of the damping parameters, a1 and b1, using a numerical evaluation
of the roots of the stability polynomials (again assuming Np “ 1). Results for both the second-
and fourth-order accurate schemes are given. It is shown that the schemes exhibit no growth for
parameter values for which the exact solution of the governing equations does not grow, i.e. when
the algebraic condition in (22) is satisfied, and when a CFL stability condition holds (as in the
theorems above).

For the second-order scheme with Np “ 1, the amplification factor satisfies the constraint

P pAq
def
“

”

`

A´ 2`A´1
˘

` c2∆t2L̂2hpkq
ı

„

`

A´ 2`A´1
˘

`
b1∆t

2

`

A´A´1
˘

` b0∆t2


`
`

A´ 2`A´1
˘

„

a1∆t

2

`

A´A´1
˘

` a0∆t2


“ 0, (77)

where L̂2hpkq was defined previously in (53). The constraint in (77) is a generalization of the one
in (56) for the case of nonzero damping parameters. Multiplication of (77) by A2 yields a polynomial
in A of degree four, and the corresponding four roots of this polynomial can be regarded as functions

of ξ P r´π, πsd, where ξl “ klhl, the set of model parameters ϑ
def
“

 

a0, a1, b0, b1
(

, the time-step ∆t,
and the CFL parameter

Λ
def
“

g

f

f

ec2∆t2
d
ÿ

l“1

1

h2
l

.

Denote by A2pϑ,∆t,Λq, the maximum over ξ of the largest |A|,

A2pϑ,∆t,Λq
def
“ max

ξPr´π,πsd, P pAq“0
|A|,

and let Λmaxpϑ,∆tq be defined to be the largest value of the CFL parameter Λ such that the
scheme is “stable”6, A2 ď 1, for all 0 ă Λpϑ,∆tq ď Λmaxpϑ,∆tq. Thus, Λmaxpϑ,∆tq determines the
maximum stable time-step for a given set of parameters. Due to the large number of parameters, it
is difficult to show the full behaviour of Λmaxpϑ,∆tq. For clarity, therefore, a selection of parameters
are chosen to have some fixed values while others are allowed to vary over some range. We note
that due to roundoff errors in the numerical computations, the stability condition is taken to be
A2 ď 1` ε, with ε “ 10´6 for the second-order accurate scheme and ε “ 10´5 for the fourth-order
accurate scheme.

Figure 2 shows contours of Λmax for the second-order accurate scheme. The three plots in the
top row show contours of Λmax as a function of a0 P r0, 1s and b0 P r0, 1s for a1 “ b1 “ 0 and
∆t “ 1, 0.5 and 0.25. These plots show that the scheme is stable with a value of Λmax close to 1
in agreement with the stability analysis of Section 5.1. There is some dependence of Λmax on a0

6For the purposes of the discussion here, “stable” is defined to be no growth in the solution. In general one
may allow bounded growth in the solution; this would be the appropriate definition when the true solution exhibits
growth. It practice the schemes defined here are found to converge at the expected order of accuracy even when the
true solution grows.
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Figure 2: Stability bound for the second-order accurate scheme. The maximum stable CFL number is shown as a
function of the GDM parameters. No values are shown where the numerical solution shows growth and this closely
matches the regions where the true solution shows growth, a0 b1 ă a1 b0.

and b0, especially for larger values of a0, b0 and ∆t, as expected from the stability bound in (66).
The three plots in the middle row of Figure 2 show similar contours but for a1 “ 1 and b1 “ 1. No
contours are plotted where Λmax “ 0; this corresponds to regions where the numerical solution has
growth in time. As seen in the figure, the scheme is found to have no growth when a1b0 ă a0b1,
but to have growth otherwise. This agrees with (22) that specifies when the analytic solution does
not grow. The bottom three contours fix a0 “ b0 “ 1 and vary a1 P r0, 1s and b1 P r0, 1s. These
results also demonstrate that the numerical scheme has no growth for a1b0 ă a0b1.

A similar investigation is performed for the fourth-order accurate scheme with corresponding
amplification factor A4. The results are shown in Figure 3 and show an overall behaviour that is
similar to the second-order accurate scheme. Without damping, as seen in the top three contours,
the scheme has a stability bound near 1 as a0 and b0 are varied. With damping, as seen in the
plots in the middle and bottom rows, the scheme has no growth in the region a1b0 ă a0b1.
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Figure 3: Stability bound for the fourth-order accurate scheme. The maximum stable CFL number is shown as a
function of the GDM parameters. No values are shown where the numerical solution shows growth and this closely
matches the regions where the true solution shows growth, a0 b1 ă a1 b0.

6. Numerical results

In this section, numerical results are presented to verify the implementation, stability and
numerical convergence of the ADE-GDM scheme for the dispersive Maxwell’s equations in second-
order form on overlapping grids. A variety of different configurations are considered, and grid
refinement studies are performed to assess the accuracy of the solution as the mesh is refined.
Problems are selected to demonstrate the properties of the numerical scheme, as well as the use of
overlapping grids to accommodate non-rectangular geometries in both two and three dimensions.
In addition, we include several standard dispersion tests with the classical Drude material model (a
special case of the GDM model) and PEC boundary conditions to facilitate comparison with other
schemes. Before presenting the numerical results, Section 6.1 discusses the general procedure for
deriving exact solutions of the GDM model, which are used to in the convergence studies.

The first problem considered in Section 6.2 is the propagation of a dispersive plane wave. This
simple configuration is a good benchmark for future comparisons to other schemes. In Section 6.3,
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the GDM eigenmodes for a square and box domains are computed. This example involves sim-
ple geometrical configurations that includes physical PEC boundary conditions. In Section 6.4, the
eigenmodes for a two-dimensional disk and three-dimensional cylinder are computed. This example
demonstrates the accuracy of the schemes for overlapping grids with curved PEC boundaries. Sec-
tion 6.5 considers the scattering of a dispersive plane-wave from a PEC cylinder in two dimensions
and a PEC sphere in three dimensions. These last two examples generalize the classical Mie-series
exact-solutions to the case of GDM materials.

All numerical studies are performed with the Overture-based CgMx solver7, to which the
second- and fourth-order accurate schemes presented in Section 3 have been added. Overture
provides tools to generate high-quality composite grids for high-order methods along with a suite of
PDE solvers for various problems in computational physics (compressible and incompressible flows,
solid mechanics, conjugate heat transfer, electrodynamics, etc). Overture’s overlapping structured
grid generator Ogen is used to create all of the composite grids (see Section 4.1), and the CgMx
solver is used to compute all the solutions.

6.1. Exact separable solutions for the GDM model

A number of the exact solutions that are used to verify the ADE-GDM scheme in the subsequent
sections are generalized from the non-dispersive case. The extension of the non-dispersive solutions
to the case of a GDM model requires a number of modifications to the usual construction. This
section briefly outlines these modifications.

The exact solutions under consideration take the form of separable solutions in t and x with an
exponential time dependence,

Epx, tq “ est Êpxq, Hpx, tq “ est Ĥpxq, Pmpx, tq “ est P̂mpxq.

Substituting this ansatz into (2b) (essentially a Laplace transform in time but ignoring initial con-
ditions) leads to the relation (10) between the polarization vectors and E. The wave equations (2a)
and (3) for the electric and magnetic fields, E and H, respectively, then transform to the vector
Helmholtz equations

∆Ê “ ηpsqÊ, (78a)

∆Ĥ “ ηpsq Ĥ, (78b)

where

ηpsq
def
“

s2

c2
p1` χ̂psqq, (78c)

with χ̂psq given in (7). From the first-order form in (1), Ê and Ĥ are related by

Ĥ “ ´
1

µs
∇ˆ Ê, (79a)

Ê “
sµ0

ηpsq
∇ˆ Ĥ, (79b)

7See www.overtureFramework.org for documentation, run scripts and software downloads.
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which can be used to compute Ĥ given Ê, or Ê given Ĥ. Note that the non-dispersive case
corresponds to the case χ̂psq “ 0 in (78c), and so for time periodic solutions with s “ ´iω, it
is clear that η “ ´pc{ωq2 “ ´k2. The primary change moving to the dispersive case is that the
parameters s and ηpsq can be complex, in general, and so dispersive solutions can decay (or grow)
in time and/or space.

It can be seen from (78a) and (78b) that in the dispersive case, Ê and Ĥ satisfy vector Helmholtz
equations, similar to the non-dispersive case. For a given problem, these equations are augmented
by appropriate boundary conditions. Thus, the spatial form of solutions to eigenvalue problems
(e.g. eigenmodes for a square, box, disk or cylinder) or to scattering problems (e.g. scattering from
a PEC cylinder or sphere) have a similar spatial form to the non-dispersive case although the form
of the temporal evolution may allow growth or decay since η can in general be complex. Note that
all computations presented here are performed using real arithmetic. The real part of the exact
solutions are obtained by first deriving the full complex-valued solution, and then retaining only
the real part as the exact solution.

The precise form of the exact solution hinges on the dispersion relation (11), which in turn
depends on the specifics of the GDM model. For the computations presented in subsequent sections,
we take8 ε0 “ 1 and µ0 “ 1, and use sets of GDM parameters for either 1 or 2 polarization vectors
as given in Table 1. The parameter set denoted by SND (“no-damping”) has a single polarization
vector and is an undamped dispersive material. Set SD (“Drude”) has a single polarization vector
and corresponds to the classical Drude material model. Note that in terms of traditional parameters
defining the Drude model, a0 corresponds to ω2

p while b1 corresponds to γ. Finally, set SGDM has
two polarization vectors with all terms in the GDM model present for both. The corresponding
roots s of the dispersion relation (11) are given below for each numerical example. Note that in
all two-dimensional computations presented, the transverse electric (TE-z) mode pEx, Ey, Hzq is
considered.

GDM Parameters for simulations

set Np a0,m a1,m b0,m b1,m

SND 1 0.9 0 1 0

SD 1 1 0 0 .9

SGDM 2 0.9 , 0.7 0.2 , 0.1 1 , 2 0.5 , 0.3

Table 1: Sets SND, SGDM, and SD of GDM parameters used in the numerical simulations.

6.2. GDM plane wave solution

Consider exact traveling wave solutions to Maxwell’s equations with the GDM model of the
form

Epx, tq “ esteik¨x Ê,

Pmpx, tq “ esteik¨x P̂m, m “ 1, 2, . . . , Np,

where s and k
def
“ |k| satisfy the dispersion relation (11). For this test, the computational domain

is taken to be the unit square, Ω “ r0, 1s2, or unit cube, Ω “ r0, 1s3, and the domain is discretized

8We have non-dimensionalized the problem by an appropriate length and time scale so that c “ 1.
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using a uniform Cartesian grid. The boundary conditions are set using the exact traveling-wave
solution. Specific solutions are defined by fixing the wave-vector k and then numerically determining
roots of (11), for example by computing the eigenvalues of the associated companion matrix. For
the results presented here, k “ r4π, 4πs for two dimensions, while in three dimensions we set
k “ r4π, 4π, 0s. Note that these particular wave vectors are chosen for convenience of presentation,
and other choices yield similar results. Also note that for the cases run here, Ê “ r1,´1, 1sT with
P̂m then determined using (10). With these choices, the divergence constraint is satisfied since
k ¨ Ê “ 0.

Roots of the dispersion relation for a plane wave

Set SND SGDM

ck 4
?

2π 4
?

2π

sR 0.9985737152943i ´0.2490458903963` 0.9671824116021i

sN 17.79691522062i ´0.1515848220324` 17.81237691252i

Table 2: Roots of the dispersion relation for the plane wave solution with GDM parameters corresponding to material
sets SND and SGDM, as given in Table 1.

2D plane wave, resonant mode, SND

hj E r P r

1/10 1.3e-2 1.0e-3

1/20 2.9e-4 44.1 2.5e-5 41.5

1/40 2.1e-5 13.4 1.5e-6 17.0

1/80 1.4e-6 15.2 9.3e-8 16.0

1/160 8.8e-8 15.9 5.9e-9 15.7

rate 4.19 4.30

2D plane wave, non-resonant, SND

hj E r P r

1/10 5.6e-2 2.6e-4

1/20 1.6e-3 34.0 1.7e-5 15.7

1/40 1.1e-4 15.4 1.0e-6 16.3

1/80 6.5e-6 16.4 6.3e-8 16.3

1/160 4.0e-7 16.1 3.9e-9 16.1

rate 4.21 4.01

3D plane wave, resonant mode, SND

hj E r P r

1/10 2.5e-2 1.3e-3

1/20 1.1e-3 21.8 6.5e-5 20.5

1/40 6.1e-5 18.4 3.6e-6 17.8

1/80 3.5e-6 17.3 2.1e-7 17.4

1/160 2.2e-7 16.0 1.3e-8 16.3

rate 4.18 4.16

3D plane wave, non-resonant, SND

hj E r P r

1/10 1.4e-1 3.1e-4

1/20 8.2e-3 17.4 2.1e-5 14.7

1/40 5.0e-4 16.2 1.3e-6 16.4

1/80 3.0e-5 16.9 7.9e-8 16.3

1/160 1.8e-6 16.1 4.9e-9 16.0

rate 4.06 4.00

Figure 4: Max-norm convergence results for a dispersive plane wave in 2D and 3D for parameter set SND and using
the fourth-order accurate scheme with Ccfl “ 0.95. At left are results for resonant modes, while at right are results
for non-resonant modes. The column labeled “r” denotes the ratio of the error at the current resolution to the error
at the previous resolution. A least squares estimate of the convergence rate over the entire range of grid refinements
is also given.

Table 2 shows the specific roots to the dispersion relation for which numerical results are
presented. These specific roots have been selected as representative resonant and non-resonant
modes, as discussed in Section 2.2, and are referred to as mode “R” and “N”, respectively. The
notion of resonance indicates that the dispersive effects of the GDM model are significant with
respect to the wave motion of the non-dispersive Maxwell’s equations. Therefore in the present
example with ck “ 4

?
2π « 17.8, non-resonant modes have the magnitude of the imaginary part
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of s, |=psq|, near that value, whereas resonant modes have |=psq| significantly modified by the
dispersion in the model. For example, sR « 1.00i is considered resonant for parameter set SND

in Table 2, while sN « 17.80i is considered non-resonant. More generally, non-resonant modes
have the largest imaginary part in magnitude (corresponding to fast propagation with respect to a
vacuum), while resonant modes have significantly smaller imaginary component (corresponding to
a significant alteration of the wave speed).

Computational results for resonant and non-resonant cases are presented in Figure 4, which
show maximum norm errors and estimated convergence rates for the electrical field E and the
polarization P at t “ 0.5 computed using the fourth-order accurate scheme with Ccfl “ 0.959.
These results demonstrate that the scheme converges with the designed accuracy for both resonant
and non-resonant modes.
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Figure 5: Convergence study for }E}8 and }P}8 for the exact plane wave solution with parameter set SGDM using
the second- and fourth-order accurate schemes in 2D (left) and 3D (right) on a rectangular grid. In all cases, mode R
corresponds to a resonant wave, and mode N corresponds to a non-resonant wave.

Given the large number of potential cases (parameter sets, dimensionality, resonance, and order
of scheme), results will subsequently be presented in a graphical manner in an effort to show all
results compactly. For example, results for parameter set SGDM at t “ 0.5 are shown in Figure 5,
which presents the max-norm errors versus grid size on a log-log plot for d “ 2 and 3, and using
both the second- and fourth-order accurate discretizations. Reference lines indicating the expected
convergence rates for the respective schemes are also shown. In all cases, the ADE-GDM scheme
is shown to converge at or near the designed rate.

6.3. Eigenmodes of a PEC square and box

Now consider computing the eigenmodes of a two-dimensional square and three-dimensional box
with PEC boundaries. We start with a standard benchmark test using a classical Drude material
(a special case of the GDM model), and then proceed with a general GDM material including
multiple polarization vectors. As discussed in Section 6.1, the exact solutions for this case are

9The choice here to run at Ccfl “ 0.95, instead of the value Ccfl “ 0.9 used elsewhere, was made to avoid a fortuitous
super-convergence for the fourth-order scheme with the resonant model caused by a cancellation in truncation error
terms at Ccfl “ 0.9.
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of a similar form to the well-known exact solutions for the case of a non-dispersive material. In
particular, each component of the electric field satisfies a Helmholtz equation (78a) with either
Dirichlet or Neumann boundary conditions. For example, in a box B “ r0, Lxs ˆ r0, Lys ˆ r0, Lzs,
the x-component of the electric field is

Expx, tq “ Cx cos

ˆ

α1 πx

Lx

˙

sin

ˆ

α2 πy

Ly

˙

sin

ˆ

α3 πz

Lz

˙

esαt, (80)

for any integer values of the d components of the multi-index α “ pα1, . . . , αdq. Here, sα is a root
of equation

ηpsq “
s2

c2
p1` χ̂psqq “ ´λ2

α, (81)

where χ̂psq is defined in (7a) and

λ2
α “

ˆ

α1 π

Lx

˙2

`

ˆ

α2 π

Ly

˙2

`

ˆ

α3 π

Lz

˙2

. (82)

The computations presented in this work use α “ p4, 4q for two space dimensions, and α “

p4, 4, 4q for three space dimensions. In both the Drude material SD and the general GDM material
SGDM, both resonant and non-resonant modes are considered. Table 3 gives roots of the dispersion
relation (81) for the Drude model with material parameters SD, while Table 4 gives roots of the
dispersion relation for the the general GDM material using SGDM.

Roots of the dispersion relation for eigenmodes of a square or box with SD

2D square 3D box

α p4, 4q p4, 4, 4q

sR ´.8971665345572 ´.8981074450078

sN ´.001416732721401` 1.779957293694i ´.0009462774961050` 21.78851327280i

Table 3: Roots of the GDM dispersion relation for eigenfunctions of a square and box with PEC boundaries, and
material corresponding to parameter set SD (a Drude material) as given in Table 1.

Roots of the dispersion relation for eigenmodes of a square or box with SGDM

2D square 3D box

α p4, 4q p4, 4, 4q

sR ´0.2490458903963` 0.9671824116021i ´0.2493648636708` 0.9675370281513i

sN ´0.1515848220324` 17.81237691252i ´0.1510565353711` 21.79890966705i

Table 4: Roots of the GDM dispersion relation for eigenfunctions of a square and box with PEC boundaries, and
material corresponding to parameter set SGDM as given in Table 1.

Computational convergence studies are performed for the eigenmodes of a square with Lx “
Ly “ 1, and box with Lx “ Ly “ Lz “ 1 using uniform Cartesian grids and Ccfl “ 0.9. A
representative computation is depicted in Figure 6, which shows the x-component of the electric
field Ex, the error in Ex, and the y-component of the first polarization vector at t “ 1.0 for the
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resonant mode from Table 4, as computed on a square using the fourth-order accurate ADE-GDM
scheme. Of particular note is the smoothness of the error in the electric field for this fourth-order
case, even up to the boundary. A more comprehensive set of convergence results at t “ 0.7 using
the max-norm are shown in Figure 7 for material parameter set SD and in Figure 8 for material
parameters SGDM. These figures illustrate that the schemes converge at or near their designed rate
for E and P for all cases.

Ex

-1.1 1.1

Ex error

-1.0e-6 1.0e-6
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Figure 6: GDM eigemode of a square with PEC BCs on grid with grid-spacing h “ 1{128 at t “ 1 computed with
the fourth-order accurate ADE-GDM scheme and Ccfl “ 0.9. Left: Ex. Middle: error in Ex. Right: Py.
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Figure 7: Convergence study in }E}8 and }P}8 for the eigenmodes of a two-dimensional PEC square (left), and a
three-dimensional PEC box (right) using the second- and fourth-order accurate schemes. All computations use the
SD parameter set from Table 1, with corresponding resonant and non-resonant roots of the dispersion relation given
in Table 3.

6.4. Eigenmodes of a PEC disk and cylinder

The prior numerical examples have all used a single Cartesian grid on a square or box geometry,
with no overlapping-grid construction required. In the present section we consider eigenmode oscil-
lations on a disk in two dimension and a cylinder in three-dimensional space. The TE-z eigenmodes
for these geometries, disk and cylinder, with PEC boundary conditions can be determined for the
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Figure 8: Convergence study in }E}8 and }P}8 for the eigenmodes of a two-dimensional PEC square (left), and a
three-dimensional PEC box (right) using the second- and fourth-order accurate schemes. All computations use the
SGDM parameter set from Table 1, with corresponding resonant and non-resonant roots of the dispersion relation
given in Table 4.

GDM-ADE equations in a similar manner to the non-dispersive case. As in the non-dispersive case,
we find the eigenvalues and eigenmodes to the boundary value problem

∆Ĥz “ ´λ
2
αĤz, x P Ω, (83a)

BĤz

Bn
“ 0, x P BΩ, (83b)

where λα P R are eigenvalues (of which there are an infinite number). Values for sα are found for
a given λα as roots of the equation

ηpsq
def
“

s2

c2
p1` χ̂psqq “ ´λ2

α,

and the exact solution for Hz is

Hzpx, tq “ Ĥzpxq e
sαt.

The corresponding electric field is then determined from (79b) and Pm is given by (10). The PEC
conditions (46a) on the electric field E are satisfied by construction.

Overlapping grids for these cases consist of a thin boundary-fitted annular grid and a large
background Cartesian grid, see for example Figures 9 and 10. The two-dimensional geometry, as
illustrated in Figure 9, has a disk of radius R “ 1 centered at the origin, and is discretized using an
overlapping grid, called Gp2q in the figure, with approximate grid spacing h « 1{20. The notation
Gpjq is meant to be generic, and indicates a grid with approximate grid spacing h « 1{p10jq, and
so grid refinement studies will typically take j “ 1, 2, 4, 8, 16, for example. The three-dimensional
geometry, as shown in Figure 10, is a cylindrical tube of unit length H “ 1 in the z-direction,
with a circular cross section of radius R “ 1 centered at the origin. The overlapping grid shown in
Figure 10 for this geometry is denoted by Gp1q, which indicates that the approximate grid spacing in
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all directions is h « 1{10. In the computations, the GDM material is taken to be the S2 parameter
set. The exact solution in two dimensions is computed for α “ p2, 2q, while α “ p1, 1, 1q is used for
the three-dimensional case, and both resonant and non-resonant modes are considered. The roots
of the dispersion relation defining the various exact solutions for all cases is presented in Table 6.

Roots of the dispersion relation for eigenmodes of a disk and cylinder with SD

2D disk 3D cylinder

α p2, 2q p1, 1, 1q

sR ´.8911053445114 ´.8852147959837

sN ´.004447327744287` 10.01909890269i ´.007392602008164` 7.750801119295i

Table 5: GDM roots of the dispersion relation corresponding to the Drude material with SD parameters from Table 1
for PEC eigenfunctions of a disk and cylinder.

Roots of the dispersion relation for eigenmodes of a disk and cylinder with SGDM

2D disk 3D cylinder

α p2, 2q p1, 1, 1q

sR ´0.2469392239304` 0.9648621424962i ´0.1980569982541` 0.5085729538910i

sN ´0.1550353933625` 10.04274371916i ´.6104976708475` 7.690546586525i

Table 6: GDM roots of the dispersion relation corresponding to set SGDM of GDM parameters shown in Table 1 for
PEC eigenfunctions of a disk and cylinder.

Representative computational results using Ccfl “ 0.9 for the two-dimensional disk are shown in
Figure 9, which includes a plot showing a coarse version of the overlapping grid. The figure shows
the x-component of the electric field, as computed on Gp16q at t “ 1. The error in Ex at t “ 1 is also
displayed, which illustrates the smooth and small error in the computed solution. Figure 10 shows
analogous results for the cylindrical domain, and again the computation is observed to be very well
behaved, with smooth error up to the boundary and through the interpolation interface. Results
of convergence studies at t “ 0.7 with Ccfl “ 0.9 for two- and three-dimensional cases are presented
in Figure 11 for the parameter set SD corresponding to a Drude medium, and Figure 12 for the
parameter set SGDM. In these figures, max-norm errors illustrate convergence of the computed
solutions at or near the expected rates for both resonant and non-resonant modes.
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Figure 9: At left a coarse grid representation of the disk Gp2q. At center is the Ex field for a GDM eigenmode of a disk
with PEC BCs on grid Gp16q at t “ 1 computed using the fourth-order accurate ADE-GDM scheme with Ccfl “ 0.9,
and at right is the error in the computed Ex field.

Ex
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Ex-err

-2.5e-8 2.5e-8

Figure 10: At left a coarse grid representation of the cylinder Gp1q. At center is the Ex field for a GDM eigenmode
of a cylinder with PEC BCs on grid Gp4q at t “ 1 computed using the fourth-order accurate ADE-GDM scheme and
Ccfl “ 0.9, and at right is the error in the computed Ex field.
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Eigenfunctions of a 2D disk (SD) Eigenfunctions of a 3D cylinder (SD)

Figure 11: Convergence study in }E}8 and }P}8 at t “ 0.7 and Ccfl “ 0.9 for the eigenmodes of a two-dimensional
PEC disk (left), and a three-dimensional PEC cylinder (right) using the second- and fourth-order accurate schemes.
All computations use the Drude material with SD parameters from Table 1, with corresponding resonant and non-
resonant roots of the dispersion relation given in Table 5.
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Eigenfunctions of a 2D disk (SGDM) Eigenfunctions of a 3D cylinder (SGDM)

Figure 12: Convergence study in }E}8 and }P}8 at t “ 0.7 and Ccfl “ 0.9 for the eigenmodes of a two-dimensional
PEC disk (left), and a three-dimensional PEC cylinder (right) using the second- and fourth-order accurate schemes.
All computations use the SGDM parameter set from Table 1, with corresponding resonant and non-resonant roots of
the dispersion relation given in Table 6.

6.5. GDM scattering from a PEC cylinder and a PEC sphere

In this example we consider the scattering of a dispersive TE-z plane wave from a PEC cylinder
in two dimensions and from a PEC sphere in three dimensions. The solution of the dispersive
model is determined analytically following the same steps as the classical solution for non-dispersive
electromagnetics. The key is to solve a scalar Helmholtz boundary-value problem for scattered field
Ĥs
z ,

∆Ĥs
z “ ηpsq Ĥs

z , (84)

with appropriate boundary conditions (the classical Mie series solution) in terms of Bessel functions.
Given the solution for Ĥs

z , the electric field E is found from (79b) while the polarization Pm is
determined from (10). Depending on the choice of s or ηpsq, the solution may decay in space or
time. We take η “ ´k2, k P R, and solve for s from the dispersion relation (11).

Ey

-1.0 1.0

Ey-err

-2.0e-4 2.0e-4

Figure 13: Scattering of a dispersive plane wave from a PEC cylinder. Solution at t “ 1.0 using the fourth-order
accurate ADE-GDM scheme and Ccfl “ 0.9. Left: coarse grid Gp1q. Middle: Ey at t “ 1 for Gp4q. Right: error in Ey.
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Ey

-1.4 1.4

Figure 14: Left: component grids for the sphere. A spherical polar patch covers the main part of the sphere while
orthographic patches cover the polar regions. The orthographic patches have been shifted outward for illustration
purposes. At right is the computed scattered field Ey at t “ 0.5 using Ccfl “ 0.9 on grid Gp4q.

In the present work, the computational domain in two dimensions consists of the region exterior
to a cylinder of radius R “ 0.5 and interior to a surrounding square occupying the region r´2, 2s2.
The composite overlapping grid for this computational domain consists of a thin boundary-fitted
annular grid, which cuts a hole in a Cartesian background grid. A coarse version of this composite
grid is shown in Figure 13. The computational domain in three dimensions is taken to be the
region inside the cube r´2, 2s3 and exterior to a sphere of radius R “ 1 centered at the origin. The
composite overlapping grid for this geometry has one Cartesian background grid, and a series of grids
to represent the boundary of the sphere. The grids near the sphere (see Figure 14) consist of three
boundary-fitted patches, a spherical polar patch covering most of the sphere and two orthographic
patches over the two polar regions, thus covering the polar singularities in the spherical polar
patch. Additional details of the grids used here can be found in [7]. As before, we let Gpjq denote
the grid with grid spacing approximately equal to hj “ 1{p10jq. The boundaries are taken as PEC
boundary conditions on the cylinder (respectively, the sphere) while the exact solution is given on
the far-field boundaries of the square. The incident field is a dispersive plane-wave propagating in
the x-direction, and given by EI “ p0, eikx´st, 0q. The wave number in all cases is taken as k “ 2π,
and s is determined from the dispersion relation (20) with ck “ 2π and GDM parameters SND from
Table 1.

GDM roots for the PEC cylinder and sphere

ck 2π

sR .9885130705264i

sN 6.356198511198i

Table 7: GDM roots of the dispersion relation corresponding to set SND of GDM parameters shown in Table 1 for
for scattering from a PEC cylinder or sphere.

The roots of the dispersion relation corresponding to resonant and non-resonant modes are
shown in Table 7. The exact Mie series solution for the dispersive case is determined following

36



h

10
-1

10
0

m
a

x
 e

rr
o

r

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

h
2 ref

h
4 ref

E, mode R O(h2)
P, mode R O(h2)
E, mode R O(h4)
P, mode R O(h4)
E, mode N O(h2)
P, mode N O(h2)
E, mode N O(h4)
P, mode N O(h4)

h

10
-1

10
0

m
a

x
 e

rr
o

r

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

h
2 ref

h
4 ref

E, mode R O(h2)
P, mode R O(h2)
E, mode R O(h4)
P, mode R O(h4)
E, mode N O(h2)
P, mode N O(h2)
E, mode N O(h4)
P, mode N O(h4)

scattering from a 2D PEC disk scattering from a 3D PEC sphere

Figure 15: Convergence study in }E}8 and }P}8 for electromagnetic scattering from a perfect electrical cylinder (left),
and a perfect electrical conducting sphere (right) using the second- and fourth-order schemes. All computations use
the SND parameter set from Table 1, with corresponding resonant and non-resonant roots of the dispersion relation
given in Table 7.

the process discussed in Section 6.1, and the computations determine the scattered field directly
by subtracting out the incident plane wave. This adds right-hand side forcing terms to the PEC
boundary conditions. In all cases the time step is chosen using Ccfl “ 0.9.

Computations are performed for the SND parameter set, which yields a purely dispersive wave
(i.e. the mode does not decay in time). This choice is made for physical reasons, since the problem
is set up to correspond to a wave coming from the far field and interacting with a scatterer. In
addition to a coarse version of the grid, Figure 13 shows the shaded contours of the computed Ey
field as well as the error in Ey for the problem of scattering from a PEC cylinder. The computed
solution from the fourth-order accurate scheme at t “ 1, and the error reveals the smoothness of
computed approximation and its error. Similarly, Figure 14 shows a coarse version of the composite
grid used for scattering from a PEC sphere, as well as shaded contours of Ey at t “ 0.5. More
quantitative information about the performance of the second- and fourth-order schemes is given
in Figure 15, which shows results of max-norm convergence studies for both the two- and three-
dimensional cases. The observed convergence rates are in very good agreement with the expected
rate for both second- and fourth-order schemes.

6.6. GDM scattering from multiple bodies

As a final example, we consider the scattering of a dispersive TE-z plane wave from a collection
of embedded bodies with different shapes as shown in Figure 16. This case demonstrates the
flexibility of the code to handle general complex geometries and provides an interesting comparison
between an incident resonant and non-resonant mode. The exact solution is not known in this case
and so computed solutions are compared on medium and fine resolution grids to illustrate grid
convergence. The composite grid for the problem is shown in Figure 16. The grid, denoted by

Gpjqmb with target grid spacing ∆sj “ 1{p20jq, covers the domain exterior to a collection of twelve
bodies. A boundary fitted grid is formed around each of the bodies. These are enclosed in an inner
background Cartesian grid of dimensions r´3, 5.5s ˆ r´3.5, 3.5s, which itself in enclosed in a larger
and coarser Cartesian grid with dimensions r´7, 9.5s ˆ r´7.5, 7.5s with double the grid spacing.
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Figure 16: Left: configuration for scattering of a plane dispersive wave from a collection of bodies. Middle and
right: the composite grid Gp4qmb (coarsened for plotting purposes). A boundary fitted grid is generated near each body
and enclosed within a background Cartesian grid (blue) of similar grid spacing which itself is enclosed in a larger
background Cartesian grid (green) with double the grid spacing.

For this problem we take a dispersive material using parameter set SND from Table 2. The
incident wave travels in the positive x-direction with kx “ 4π. The non-resonant mode has s «
´12.602356 i and resonant mode has s « ´.99714456 i. The boundary conditions on the bodies are
taken as perfect electrical conductors. The scattered field from an incident dispersive plane wave
is computed directly, in the usual way, by subtracting the incident field and adjusting the PEC
boundary conditions to be inhomogeneous. Far-field boundary conditions of Engquist-Majda type
are applied on the outer boundary; these are designed for non-dispersive materials and thus are not
as effective for the GDM material. Therefore the outer boundary is placed at a sufficient distance
away so that any errors from the far-field do not affect the solution near the scatters for the times
considered.

Figure 17 shows contours of the computed solution comparing a non-resonant and resonant

mode. The solution is computed using the fourth-order accurate algorithm on grid Gp4qmb and shown
at times t “ 1 and t “ 5. The character of the resonant mode is clearly very different from the
non-resonant mode. Due to the complex geometry, the reflected waves are a combination of many
wave numbers and eigenmodes. The incident wave number k “ 4π is the same for both cases but
the resonant mode has a much slower variation in time and it excites different modes of the system.

To assess grid convergence, Figure 18 compares the computed solution at time t “ 5 on grid Gp4qmb

with results for the finer grid Gp8qmb using the fourth-order accurate scheme. The results are nearly
indistinguishable.

7. Conclusions

Second-order and fourth-order accurate schemes have been developed for the solution of Maxwell’s
equations in second-order form with a generalized dispersion model (GDM). The dispersion model
has been treated in the time domain by augmenting Maxwell’s equations with a set of auxiliary
differential equations (ADE) for a set of polarization vectors. An analysis of the dispersion relation
for the ADE-GDM equations has been given, and the results of the analysis provides sufficient
conditions on the coefficients in the GDM model to ensure that solutions do not grow in time.
The numerical schemes are both three-level single-stage in time based on a Taylor time-stepping
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Figure 17: Non-resonant and resonant modes for scattering from a collection of PEC inclusions in a GDM material.
The solutions on grid Gp4qmb are compared at times t “ 1 and t “ 5. Results are from the fourth-order accurate scheme.
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Figure 18: A comparison between solutions computed on grid Gp4qmb, and the finer grid Gp8qmb, for the non-resonant
mode at time t “ 5. Results are from the fourth-order accurate scheme. The two solutions are seen to be nearly
indistinguishable.

approach. Finite-difference approximations are used in space, and composite overlapping grids
are used to represent complex geometry. The stability of the schemes are analyzed with a von
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Neumann analysis. The maximum stable time-step for both the second- and fourth-order accurate
schemes are shown to be essentially the same “CFL-one” condition as for the non-dispersive case.
Exact solutions to the ADE-GDM equations have been developed for eigenmodes of rectangular
and cylindrical domains as well as for scattering from a PEC cylinder and sphere. Numerical results
have been presented to confirm the accuracy and stability of the schemes for various geometries,
where overlapping grids were used to deal with general curvilinear boundaries. High-order accurate
treatment of interfaces between dispersive materials will be discussed in a future paper.

Appendix A. Properties of the GDM dispersion relation.

In this section we provide more details to the discussion in Section 2.2, regarding the conditions
on the GDM parameters for which there are no roots of the dispersion relation with <psq ą 0,
corresponding to growing modes in time. The dispersion relation (20) is simplified as a quartic of
the form

fpsq “ s4 `Bs3 ` Cs2 `Ds` E “ 0, (A.1)

where

B “ b1 ` a1,

C “ pckq2 ` b0 ` a0,

D “ pckq2b1,

E “ pckq2b0.

To determine if there are roots with positive <psq of the polynomial (A.1), we can use the argument
principle from complex analysis to directly count the number of roots in the right-half plane10

indicates that the number of roots N with <psq ą 0 satisfies the equation

2πiN “

˛
C

f 1psq

fpsq
ds,

where the contour C encompasses the right half-plane. For simplicity, we take C to be the semi-circle
s “ Reiθ for θ P r´π{2, π{2s followed by the line s “ ´iy for y P r´R,Rs, and subsequently take
the limit RÑ8. For the general polynomial (A.1) with real coefficients, this yields the equation

2N “ 4´ sgnpBq
“

1´ sgnpB2E ´BCD `D2q
‰

´ sgnpBC ´Dq
“

1´ sgnpB2E ´BCD `D2q sgnpEq
‰

.

10A method based on this principle [53] that has been recently used in a rapid eigen-decomposition scheme [54].

40



The necessary and sufficient conditions for all roots to have negative real parts are

B ą 0, (A.2)

E ą 0, (A.3)

BC ´D ą 0, (A.4)

´B2E `BCD ´D2 ą 0. (A.5)

In the present situation, we have assumed non-negative constants a0, a1 b0, and b1, which implies
non-negative B and E. In addition, the condition (A.4) leads to the inequality

a0a
2
1 `

 

rb0 ` pckq
2sa1 ` a0b1

(

` b0b1 ą 0,

which is clearly always satisfied since the parameters are all non-negative and so we have a sum of
non-negative terms. Finally, the condition (A.5) leads to the inequality

pckq2
“

pa1 ` b1qpa0b1 ´ a1b0q ` a1b1pckq
2
‰

ą 0,

which can clearly be violated if a1b0 is sufficiently large. Therefore, a practical sufficient, but not
necessary, condition to avoid growing solutions is

a0b1 ą a1b0. (A.6)

Let us revisit this analysis using the Routh-Hurwitz theory [48]. We again investigate the
general polynomial equation (2.2), for which the direct application of the Routh-Hurwitz theory
yields the following necessary and sufficient conditions for all roots to have negative real parts

B ą 0,

E ą 0,

C ´
D

B
ą 0,

D ´
BE

C ´ D
B

ą 0.

Using the first two conditions, the latter two conditions can be reduced, and the result is that the
roots have negative real part if and only if

B ą 0,

E ą 0,

BC ´D ą 0,

´D2 `BCD ´B2E ą 0.

This result is in agreement with the result derived previously via contour integration, but with
these mechanics it is easier to derive conditions for the case of multiple polarization vectors. We
have not found a simple condition on the GDM coefficients to ensure no growth for Np ą 1, but the
Routh-Hurwitz conditions can always be checked numerically to determine if a given set of GDM
coefficients leads to roots with <psq ą 0.
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Appendix B. Fitting material properties using the GDM model

The Padé approximant is the best approximation to a given function (dielectric permittivity as
a function of frequency in our case) by a rational function,

ε̂psq “
f0 ` f1s` f2s

2 ` . . . fMs
M

g0 ` g1s` g2s2 ` . . . gNsN
, (B.1)

and such approximations are often superior to polynomial approximations especially when the
function has poles or near poles (that correspond to resonances or near resonances in the physical
problem). Assuming real coefficients fj and gj with M ď N , the rational function in (B.1) can
be written as a sum of terms (partial fraction decomposition) involving simpler rational functions
that takes the form of the GDM approximation

ε̂psq “ ε0 `

Np
ÿ

m“1

a0,m ` s a1,m

b0,m ` s b1,m ` s2
. (B.2)

The form (B.2) could be further reduced to a sum of terms with single poles, α0,m{pβ0,m`sq, but this
would, in general, involve the introduction of complex coefficients for α0,m and β0,m that we wish
to avoid. The Debye, Drude, Lorentz, Sellmeier, and critical point (CP) models (or combinations
thereof) are all special cases of the GDM model,

ε̂Debyepsq “
a1

b1 ` s
, ε̂Drudepsq “

a0

b1s` s2
, ε̂Lorentzpsq “

a0

b0 ` b1s` s2
,

ε̂Sellmeierpsq “
a0

b0 ` s2
, ε̂Critical-Pointpsq “

α

s´ β
`

ᾱ

s´ β̄
“

a0 ` s a1

b0 ` s b1 ` s2
, (α, β P C).

Choosing the coefficients in the GDM approximation to fit experimentally or numerically obtained
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Figure B.19: A comparsion of different model fits for the dieletric permittivity of gold compared to experimental
data [55]. The ERM model [56], which consists of one Drude and two critical-point terms is shown to provide a good
approximation over the wavelengths considered.

ellipsometry data is not a purely mathematical exercise. The fit should consider not only the
mathematical approximation error, but also the desired frequency range of interest and the phys-
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ical properties of the material,11 see [56], for example. Unfortunately, the purely mathematical
approach, where one simply fits the permittivity data with enough terms to get a prescribed error,
but without accounting for the physics, is potentially fraught with problems. The terms in such
a mathematical fit may, for example, introduce combinations of gain terms in a physically lossy
material. This situation may lead to numerical solutions that can grow in time when physically
they should decay, not to mention an unnecessary increase in computational costs. This explains
why it is important to know the mathematical properties of the GDM model so that constraints
can be placed on the coefficients to, for example, preclude growth in time when there should be
none; the constraints derived in Appendix A can be used for this purpose.

Experimental data for the permittivity of various materials along with theoretical fits can be
conveniently viewed and downloaded using the PhontonicsDB tool [57] on the nanoHUB [58].
Figure B.19, for example, show fits of the permittivity ε̂ for gold, as a function of wavelength,
compared to experimental data from Johnson and Christy [55]. Shown are the results for a Drude,
Drude plus one Lorentz term, and the ERM model [56] which consists of one Drude and two critical-
point terms. The ERM model provides a reasonably good approximation over the wavelengths
considered. We also note that the GDM model has been used to directly fit theoretical models for
the dielectric function of graphene [59]. The theoretical models involve principal value integrals
that would be very difficult to treat directly in the time domain.

Appendix C. Algorithms for the second- and fourth-order accurate ADE-GDM schemes

In the following sections, we provide details of our efficient implementations of the second-
and fourth-order accurate schemes outlined in Sections 3.1 and 3.2, respectively. These algorithms
employ decoupled solutions of the linear operators in (28), (34) and (41) so that the updates of the
components of electric field and Np polarization vectors are performed explicitly.

Appendix C.1. Algorithm for the second-order accurate ADE-GDM scheme

The implementation of the second-order accurate ADE-GDM scheme given in Section 3.1 is
provided in Algorithm 1.

The solutions for E0
j and P0

m,j at the start, n “ 0, are determined from the initial conditions,
while the solutions at the first time step, n “ 1, (lines 3 and 6) are evaluated using a Taylor series
in time. In the time-stepping loop (lines 10–20), the second-order accurate explicit updates for
En`1

j and Pn`1
m, are determined in lines 15 and 17, respectively. To obtain the formulas for these

updates, we note that (23b) can be solved for Pn`1
m,j in terms of En`1

j and a remainder,

Pn`1
m, j “

∆t

2
ǎ1,m βmEn`1

j ` βmRm, (C.1)

where βm and Rm are defined on lines 7 and 12, respectively. Equation (C.1) can be summed
over m to determine Pn`1

j in terms of En`1
j and another remainder. This equation for Pn`1

j is

substituted into (23a) and subsequently solved for En`1
j (line 15). Given En`1

j , the values of Pn`1
m,j

are found from (C.1) (line 17).

11It is known, for example, that gold has at least two interband transitions in the violet/near-ultra-violet region
that should generally be included in the dielectric model.
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Algorithm 1 Second-order accurate ADE-GDM algorithm.
1: t “ 0, n “ 0;
2: E0

j “ E0
pxjq; Ź Initialize E0

j using Epxj, 0q “ E0
pxjq

3: E1
j “ E0

pxjq `E1
pxjq∆t; Ź Initialize E1

j using Epxj, 0q “ E0
pxjq, BtEpxj, 0q “ E1

pxjq

4: for m “ 1, . . . , Np do
5: P0

m, j “ P0
mpxjq; Ź Initialize P0

m, j using Pmpxj, 0q “ P0
mpxjq

6: P1
m, j “ P0

mpxjq `P1
mpxjq∆t; Ź Initialize P1

m, j using Pmpxj, 0q “ P0
mpxjq, BtPmxj, 0q “ P1

mpxjq

7: βm “ p1`
∆t
2
b1,mq

´1;
8: end for
9: β “ ∆t

2

ř

m ǎ1,m βm;
10: while t ă tfinal do
11: for m “ 1, . . . , Np do
12: Rm “ 2Pn

m,j ´Pn´1
m,j `

∆t
2
b1,mPn´1

m,j ´∆t2 b0,mPn
m,j `∆t2 ǎ0,mEn

j ´
∆t
2
ǎ1,mEn´1

j ;
13: end for
14: R “

ř

m βmRm;

15: En`1
j “ p1` ε´1

0 βq´1
”

2En
j ´En´1

j `∆t2c2∆2hE
n
j ` ε

´1
0

ř

m

!

2Pn
m,j ´Pn´1

m,j

)

´ ε´1
0 R

ı

;

16: for m “ 1, . . . , Np do
17: Pn`1

m,j “
∆t
2
ǎ1,m βm En`1

j ` βm Rm; Ź (C.1)
18: end for
19: t “ t`∆t, n “ n` 1;
20: end while

Appendix C.2. Algorithm for the fourth-order accurate ADE-GDM scheme

The implementation of the fourth-order accurate ADE-GDM scheme given in Section 3.2 is
provided in Algorithm 2.

The numerical solution values at first time-step, n “ 1, (lines 3 and 6), are determined using a
Taylor series in time. These series use higher time-derivatives of the initial conditions that can be
derived by using the governing partial differential equations to replace time derivatives in terms of
known spatial derivatives at t “ 0. For example, the second time-derivative of Pm can be evaluated
at t “ 0 using

Pm,ttpxj, 0q
def
“ a1,mE

1pxjq ` a0,mE
0pxjq ´ b1,mP

1
mpxjq ´ b0,mP

0
mpxjq.

In the time-stepping loop (lines 8–36), temporary second-order accurate updates are computed
first in lines 10–23 (see Appendix C.1), which are then used to compute derived quantities, such
as

“

BtP
˚
m

‰n

j
(line 19). The fourth-order accurate explicit updates for En`1

j and Pn`1
m, are then

performed in lines 31 and 33, respectively, using formulas obtained from (32) and (35) in an
analogous fashion to the second-order updates. In particular, (35) can be solved for Pn`1

m,j in

terms of En`1
j and a remainder,

Pn`1
m,j “

1

γm

„ˆ

a1,m
∆t

2
` a0,m

∆t2

12

˙

En`1
j `Rm



, (C.2)

where γm and Rm are given in lines 26 and 27, respectively. Summing (C.2) over m leads to an
equation for Pn`1

j in terms of En`1
j , and then substituting this equation into (32) and solving

for En`1
j leads to the update on line 31. Given En`1

j , the values for Pn`1
m,j can then be evaluated

from (C.2) which gives the update on line 33.
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Algorithm 2 Fourth-order accurate ADE-GDM algorithm.
1: t “ 0, n “ 0;
2: for m “ 1, . . . , Np do

3: P0
m, j “ P0

mpxjq; P1
m, j “ P0

mpxjq `P1
mpxjq∆t`Pm,ttpxj, 0q

∆t2

2
`Pm,tttpxj, 0q

∆t3

6
; Ź Init. P0

m, j and P1
m, j

4: βm “ p1`
∆t
2
b1,mq

´1;
5: end for
6: E0

j “ E0
pxjq; E1

j “ E0
pxjq `E1

pxjq∆t`Ettpxj, 0q
∆t2

2
`Etttpxj, 0q

∆t3

6
; Ź Init. E0

j and E1
j

7: β “ p∆t{2q
ř

m ǎ1,m βm;
8: while t ă tfinal do
9: // Evaluate second-order accurate predictions E˚

n`1
j and P˚

n`1
m, j

10: for m “ 1, . . . , Np do
11: Rm “ 2Pn

m,j ´Pn´1
m,j `

∆t
2
b1,mPn´1

m,j ´∆t2 b0,mPn
m,j `∆t2 ǎ0,mEn

j ´
∆t
2
ǎ1,mEn´1

j ;
12: end for
13: R “

ř

m βmRm; Ź Full right-hand side for polarization prediction P˚
n`1

14: E˚
n`1
j “ p1` ε´1

0 βq´1
”

2En
j ´En´1

j `∆t2c2∆2hE
n
j ` ε

´1
0

ř

m

!

2Pn
m,j ´Pn´1

m,j

)

´ ε´1
0 R

ı

;

15:
“

BtE
˚
‰n

j
“ pE˚

n`1
j ´En´1

j q{p2∆tq;
“

B
2
tE

˚
s
n
j “ pE

˚n`1
j ´ 2En

j `En´1
j q{∆t2;

16:
“

∆2hBtE
˚
‰n

j
“ ∆2hpE

˚n`1
j ´En´1

j q{p2∆tq;

17: for m “ 1, . . . , Np do
18: P˚

n`1
m, j “

∆t
2
ǎ1,m βm E˚

n`1
j ` βm Rm; Ź Second-order accurate prediction (C.1) for P˚

n`1
m, j

19:
“

BtP
˚
m

‰n

j
“ pP˚

n`1
m, j ´Pn´1

m, j q{p2∆tq;

20:
“

B
3
tP

˚
m

‰n

j
“ b

p3q
1,m

“

BtP
˚
m

‰n

j
` b

p3q
0,mPm, j ` ǎ

p3q
0,mEj ` ǎ

p3q
1,m

“

BtE
˚
‰n

j
` ǎ

p3q
2,m

“

B
2
tE

˚
s
n
j ;

21: end for
22: P˚

n`1
j “

ř

m P˚
n`1
m, j ;

23:
“

∆2hB
2
tP

˚
‰n

j
“ ∆2hpP

˚n`1
j ´ 2Pn

j `Pn´1
j q{∆t2;

“

B
3
tE

˚
‰n

j
“ c2

“

∆2hBtE
˚
‰n

j
´ ε´1

0

“

B
3
tP

˚
‰n

j
;

24: // Evaluate fourth-order accurate updates.
25: for m “ 1, . . . , Np do

26: γm “ 1` b1,m
∆t
2
` b0,m

∆t2

12
;

27: Rm “

´

1` b1,m
∆t2

12

¯´

2Pn
m,j ´Pn´1

m,j

¯

` ∆t
2
b1,mPn´1

m,j ´∆t2 b0,mPn
m,j `∆t2 ǎ0,mEn

j

´∆t
2
ǎ1,mEn´1

j ´ ǎ0,m
∆t2

12

´

2En
j ´En´1

j

¯

` b1,m
∆t2

12

“

B
3
tP

˚
m

‰n

j
´ ǎ1,m

∆t2

12

“

B
3
tE

˚
‰n

j
;

28: end for
29: γE “

ř

m

´

´a1,m
∆t
2
´ a0,m

∆t2

12

¯

{γm; RP “
ř

m Rm{γm;

30: RE “ 2En
j ´En´1

j `∆t2c2∆2hE
n
j ` ε

´1
0

ř

m

!

2Pn
m,j ´Pn´1

m,j

)

` ∆t2

12

´

pc2∆2hq
2En

j ´ ε
´1
0 c2

“

∆2hB
2
tP

˚
‰n

j

¯

31: En`1
j “ pγERP ´REq {pε

´1
0 γE ´ 1q ;

32: for m “ 1, . . . , Np do

33: Pn`1
m, j “ γ´1

m Rm ` γ
´1
m

´

a1,m
∆t
2
` a0,m

∆t2

12

¯

En`1
j ;

34: end for
35: t “ t`∆t, n “ n` 1;
36: end while
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