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Abstract

A high-order accurate scheme for solving the time-domain dispersive Maxwell’s equations and
material interfaces is described. Maxwell’s equations are solved in second-order form for the electric
field. A generalized dispersive material (GDM) model is used to represent a general class of linear
dispersive materials and this model is implemented in the time-domain with the auxiliary differen-
tial equation (ADE) approach. The interior updates use our recently developed second-order and
fourth-order accurate single-stage three-level space-time finite-difference schemes, and this paper
extends these schemes to treat interfaces between different dispersive materials. Composite over-
lapping grids are used to treat complex geometry with Cartesian grids generally covering most of
the domain and local conforming grids representing curved boundaries and interfaces. Compati-
bility conditions derived from the interface jump conditions and governing equations are used to
derive accurate numerical interface conditions that define values at ghost points. Although some
compatibility conditions couple the equations for the ghost points in tangential directions due to
mixed-derivatives, it is shown how to decouple the equations to avoid solving a larger system of
equations for all ghost points on the interface. The stability of the interface approximations is
studied with mode analysis and it is shown that the schemes retain close to a CFL-one time-step
restriction. Numerical results are presented in two and three space dimensions to confirm the ac-
curacy and stability of the schemes. The schemes are verified using exact solutions for a planar
interface, a disk in two-dimensions, and a solid sphere in three-dimensions.
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1. Introduction

The accurate numerical modeling of the optical response of an electromagnetic pulse incident
on a temporally and spatially dispersive medium (e.g., an optical metamaterial or metasurface)
is currently a central and challenging problem in computational nanophotonics. For example, the
dynamics of optical pulses propagating in dispersive optical elements is of critical importance in
many engineering applications, including fiber and integrated optics [1–3], optical computing [4–
6], advanced time-resolved near-field microscopy [7, 8] and nanofocusing [9, 10] systems. Recent
progress in using digitally-coded microwave signals for controlling ultrashort optical pulses and
employing nanostructured metal-dielectric composites for strong localization of light emphasizes
the importance of reducing the influence of numerical dispersion artifacts on the actual causal
physical effects of local and non-local temporal dispersion in such systems.

In this article, we address this challenging problem by presenting a unified approach to the
numerical modeling of electromagnetic wave propagation in linear, causally dispersive media using
a high-order accurate finite-difference time-domain scheme on overset grids with novel boundary
conditions at material interfaces. Our approach blends significant contributions in the areas of com-
putational electromagnetics, optical materials science, and numerical analysis. Key algorithms are
developed for the field of optics, where temporal dispersion of the dielectric permittivity (electric
conductivity) in a piece-wise homogeneous medium is considered, while the magnetic permeability
remains constant and equal to that of vacuum. The focus of the current work is on the develop-
ment, numerical analysis, and verification of novel approximations at material interfaces between
dispersive materials. Extension of the approach to electromagnetic scenarios where the magnetic
permeability is also dispersive, or to general dispersive bianisotropic medium is left to future work.

A generalized dispersive material (GDM) model [11] is used to represent dielectric functions in
frequency space using rational functions. These rational approximations can represent a general
class of linear dispersive effects for optical materials. In the time domain the GDM model is
represented as a collection of ordinary differential equations using the so-called auxiliary differential
equation (ADE) approach. Different materials may have different number of ADEs to approximate
the rich and diverse physics of light-matter interaction. Maxwell’s equations are solved in second-
order form for the electric field and these are coupled to the ADEs. The solution in the interior is
advanced using the recently developed high-order accurate schemes described in [12]. These high-
order accurate finite difference schemes are single-stage schemes that use only three solution levels
in time and have the same order of accuracy in space and time. Using only three time-levels is
useful to avoid excessive storage requirements especially when there are many ADEs, corresponding
to many terms in the rational representations in the GDM model.

Composite overlapping grids are used to accurately treat complex geometry with boundary con-
forming grids. Figure 1 shows some sample simulations using the new scheme on various geometrical
configurations. Since most of the domain is usually covered by Cartesian grids, the schemes are
very efficient. This paper extends the schemes from [12] to treat interfaces between different dis-
persive and/or non-dispersive materials. The interface is represented with conforming grids which
enables high-order accuracy to be achieved even in the presence of jumps in material parameters
and dispersive models. High-order accurate interface approximations are developed that retain the
compact three-level approach. A novel hierarchical approach is developed to solve the interface
equations that avoids the need to solve a large coupled set of equations along the interface.

The interface approximations are based on compatibility conditions derived from the interface
jump conditions and the governing equations. For example, time-derivatives of the fundamental

3



|E| |E| |E|

Figure 1: Scattering of a Gaussian plane wave from various material objects computed using the high-order time-
stepping scheme with new high-order accurate interface approximations. These representative solutions illustrate the
ability of the approach to treat complex interfaces.

interface conditions can be transformed using the governing equations into jump conditions on
higher space derivatives of the solutions. These conditions provide centered approximations to
determine the ghost point values adjacent to each side of the interface. The use of compatibility
conditions tends to be more stable and accurate than using one-sided approximations. In addition,
there is no reduction in the stable CFL-one time-step due to the boundary or interface treatement
(one-sided approximations may reduce the stable time-step).

An important new development presented in this article concerns the solution to the discrete
interface equations that result from application of the compatibility conditions. The new approach
we describe here decouples the interface equations in the tangential direction; this is important for
efficiency to avoid the solution of a coupled set of equations along the interface. This new decoupling
approach will be useful more generally for other applications when compatbility conditions are used
to discretrize interfaces or boundary conditions.

The stability of the interface approximations is examined using mode analysis. For example, it
is shown with a model problem analysis, that the numerical scheme for a coupled problem with two
materials remains stable provided the scheme for each materials in isolation is stable. Numerical
results are presented in two and three space dimensions to confirm the accuracy and stability of
the schemes. Exact solutions are derived for scattering from a disk in two dimensions and sphere in
three dimensions when the materials inside and outside the bodies are modeled using GDM models.

The literature on time-domain schemes for Maxwell’s equations is extensive. The Yee FDTD
scheme [13] and its variants are among some of the most widely used in practice. There are
also many other methods available based on finite difference, spectral, pseudo-spectral, finite-
element, and discontinuous Galerkin methods, among others. The literature is very broad, and
good overviews can be found in the review by Hestaven [14], or the references books by Taflove [15]
and Cohen [16]. Typically, interfaces between materials are treated with an embedded boundary
(EB) type approach or a conforming boundary (CB) approach. In its simplest form, the EB ap-
proach is straightforward to implement and uses a stair-step approximation to the interface with
material properties changing discontinuously in cells adjacent to the interface; this results in a
large local error in the solution (since certain solution components are discontinuous) but that on
average may be between first and second-order accurate away from the interface. With extra effort,
embedded boundary approximations can be made high-order accurate (see for example [17]), but
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it may be difficult to maintain the stability of the scheme. The CB approach requires conforming
grids which may use unstructured or structured grids but this generally requires more effort to
generate the grid compared to the EB approach. The CB approach can maintain multi-valued
solutions on the interface and this makes it easier to design high-order accurate approximations.

The remainder of the article is organized as follows. In Section 2 the governing equations for
the ADE-GDM model are presented together with the appropriate interface conditions. Section 3
introduces the time-stepping schemes and their discretization on overset grids. The numerical
interface conditions are derived and discretized in Section 4. The stability of the numerical schemes
is considered in Section 5. Numerical results are presented in Section 6 while conclusions are given
in Section 7.

2. Governing Equations

We consider the solution to the time-domain Maxwell’s equations in a domain Ω in nd space
dimensions consisting of N material sub-domains Ωk,

Ω “
N
ď

k“1

Ωk,

see Figure 2. Each sub-domain is assumed to be a linear dispersive material, in general, so that
Maxwell’s equations in first-order form are given by

BtD “ ∇ˆH, x P Ωk, (1a)

µ0BtH “ ´∇ˆE, x P Ωk, (1b)

∇ ¨D “ 0, ∇ ¨H “ 0, x P Ωk, (1c)

D “ ε0E`P, (1d)

where D “ Dpx, tq is the displacement vector, E “ Epx, tq is the electric field, H “ Hpx, tq is the
magnetic field, P “ Ppx, tq is the (total) electric polarization vector, and ε0 and µ0 are, respectively,
the vacuum permittivity and permeability. We have assumed negligible magnetic polarization so
that B “ µ0H, where B is the magnetic flux density. For dispersive materials, D is assumed to be
related to E through a convolution,

Dpx, tq “ εptq ˚Epx, tq “

ˆ 8
´8

εpτqEpx, t´ τq dτ,

where εptq is the electric permittivity (assumed spatially constant in each sub-domain Ωd). The
Fourier transform in time of a variable is denoted with a “hat” and we use the convention

D̂px, ωq “

ˆ 8
´8

eiωt Dpx, tq dt, Dpx, tq “
1

2π

ˆ 8
´8

e´iωt D̂px, ωq dω.

In the frequency domain, D̂ and Ê are related by

D̂ “ ε̂ Ê “ ε0 Ê` P̂ “ ε0
`

1` χp´iωq
˘

Ê,

P̂ “ ε0χp´iωq Ê,
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where ε̂ is the electric permittivity in the frequency domain and χ is the electric susceptibility.
Dispersive effects are modeled with a generalized dispersive material (GDM) model [11]. The
GDM model takes the form of a rational approximation to the electric susceptibility,

χpsq
def
“

Np
ÿ

m“1

a0,m ` s a1,m

b0,m ` s b1,m ` s2
, (2)

where the coefficients pa0,m, a1,m, b0,m, b1,mq are taken to be spatially constant over each separate
material domain Ωk. (This spatial dependence of the GDM coefficients has been suppressed here
for notational convenience.)

Following [12], we consider the system in (1) in second-order form and use an auxiliary differen-
tial equation (ADE) approach to describe the evolution of the polarization vector. These equations
have the form

B2
tE “ c2∆E´ ε´1

0 B2
tP, x P Ωk (3a)

B2
tPm ` b1,mBtPm ` b0,mPm “ ε0

“

a0,mE` a1,mBtE
‰

, x P Ωk, m “ 1, 2, . . . , Np, (3b)

P
def
“

Np
ÿ

m“1

Pm. (3c)

where c2 “ 1{pε0µ0q is the nominal wave speed. The total polarization vector is governed by a
generalized dispersive material (GDM) model, which consists of a sum ofNp component polarization
vectors Pm, each satisfying a second-order ordinary differential equation with coefficients from (2).
The number of component vectors and the coefficients are chosen to fit a given dispersion model
or spectroscopic data (see [12] for further details). We note that the material in Ωk may be non-
dispersive in which case P “ 0 for that sub-domain.

Figure 2: Left: A composite grid used for a multi-material scattering problem showing different material domains
Ωd. Right: contours of |E| for scattering of a Gaussian traveling wave; see Section 6.4 for more details.

The second-order system in (3) requires appropriate initial conditions, boundary conditions and
interface conditions. Initial conditions for E and Pm are

Epx, 0q “ E0pxq, BtEpx, 0q “ E1pxq, x P Ωk (4a)
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Pmpx, 0q “ P0
mpxq, BtPmpx, 0q “ P1

mpxq, x P Ωk m “ 1, 2, . . . , Np, (4b)

where E0pxq, E1pxq, P0
mpxq and P1

mpxq are given functions. Let Γk denote the boundary of Ωk. A
portion of Ωk may be a physical boundary, such as a PEC boundary, or an interface with another
sub-domain. At a PEC boundary, for example, the tangential components of E are zero, which can
be expressed as

nˆE “ 0, x P BΓPEC, (5)

where n is a unit normal to ΓPEC. The second-order form of Maxwell’s equations in (3a) requires
another boundary condition for E, and the appropriate condition is to specify the divergence of the
field to be zero

∇ ¨E “ 0, x P BΓPEC. (6)

Note that no boundary conditions are needed for Pm since its evolution is determined by the ODE
in (3b).

At an interface, Γ, between materials Ωk1 and Ωk2 (dispersive or not), the primary jump con-
ditions for the first-order system in (1) are

rnˆEsI “ 0, x P Γ, (7a)

rn ¨DsI “ 0, x P Γ, (7b)

rnˆHsI “ 0, x P Γ, (7c)

rµ0 n ¨HsI “ 0, x P Γ, (7d)

where r¨sI denotes the jump across the interface [18]. For the second-order form of the dispersive
Maxwell’s equations in (3), the primary jump conditions become

rnˆEsI “ 0, x P Γ, (8a)

rn ¨ pε0E`PqsI “ 0, x P Γ, (8b)
“

µ´1
0 nˆ∇ˆE

‰

I
“ 0, x P Γ, (8c)

r∇ ¨EsI “ 0, x P Γ. (8d)

The condition in (8b) follows from the definition of D in (1d), while (8c) follows by taking the time
derivative of (7c). The final condition in (8d) is taken to ensure that ∇ ¨D “ ∇ ¨E “ ∇ ¨P “ 0.

3. Time-stepping schemes on overlapping grids

A principal aim of this article is to describe second and fourth-order accurate implementations
of the jump conditions in (8) that can be used in the time-stepping schemes for the dispersive
Maxwell’s equations discussed previously in [12]. To this end, we summarize briefly the second and
fourth-order accurate time-stepping schemes in Section 3.1 and the discretization on overlapping
grids in Section 3.2. Further details can be found in [12].
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3.1. Second and fourth-order accurate time-stepping schemes

Let xj P Rnd denote the grid points on a structured grid, where j “ pj1, . . . , jdq P Znd is a multi-
index of integers. Let En

j and Pn
m,j denote grid functions that approximate Epxj, t

nq and Pmpxj, t
nq,

respectively, at time level tn “ n∆t. A second-order accurate approximation to (3a)–(3b) is given
by

D`tD´tE
n
j “ c2∆2hE

n
j ´ ε

´1
0 D`tD´tP

n
j , (9a)

D`tD´tP
n
m,j ` b1,mD0tP

n
m,j ` b0,mPn

m,j “ ã0,mEn
j ` ã1,mD0tE

n
j , m “ 1, 2, . . . , Np (9b)

where

Pn
j

def
“

Np
ÿ

m“1

Pn
m,j, (10)

and

ã0,m
def
“ ε0 a0,m, ã1,m

def
“ ε0 a1,m, m “ 1, 2, . . . , Np,

are scaled GDM parameters. Here, ∆2h denotes a second-order accurate approximation to the
Laplace operator, while D`t, D´t, and D0t denote the usual forward, backward, and central divided
difference approximations of the first-derivative operator with respect to time, defined by

D`tW
n
j

def
“

Wn`1
j ´Wn

j

∆t
, D´tW

n
j

def
“

Wn
j ´Wn´1

j

∆t
, D0tW

n
j

def
“

Wn`1
j ´Wn´1

j

2∆t
,

for some generic grid function Wn
j . Thus, D`tD´t is a centered approximation of the second-

derivative operator with respect to time. The approximation in (9) is a compact, three-level time-
stepping scheme, which leads to explicit formulas for En`1

j and Pn`1
m,j .

Algorithm 1 Second-order accurate ADE-GDM algorithm.
1: t “ 0, n “ 0;

2: E0
j “ E0

pxjq, E1
j “ E0

pxjq `∆tE1
pxjq `

∆t2

2
B

2
tEpxj , 0q; Ź Initialize E0

j , E1
j

3: for m “ 1, . . . , Np do

4: P0
m, j “ P0

mpxjq, P1
m, j “ P0

mpxjq `P1
mpxjq∆t`

∆t2

2
B

2
tPmpxj , 0q; Ź Inititialize P0

m, j, P1
m, j

5: βm “ p1`
∆t
2
b1,mq

´1;
6: end for
7: β “ ∆t

2

ř

m ã1,m βm;
8: while t ă tfinal do Ź Begin time-stepping loop
9: for m “ 1, . . . , Np do

10: Rm “ 2Pn
m,j ´Pn´1

m,j `
∆t
2
b1,mPn´1

m,j ´∆t2 b0,mPn
m,j `∆t2 ã0,mEnj ´

∆t
2
ã1,mEn´1

j ;
11: end for
12: R “

ř

m βmRm;

13: En`1
j “ p1` ε´1

0 βq´1
”

2Enj ´En´1
j `∆t2c2∆2hE

n
j ` ε

´1
0

ř

m

!

2Pn
m,j ´Pn´1

m,j

)

´ ε´1
0 R

ı

;

14: for m “ 1, . . . , Np do
15: Pn`1

m,j “
∆t
2
ã1,m βmEn`1

j ` βmRm;
16: end for
17: t “ t`∆t, n “ n` 1;
18: Apply boundary and interface conditions.
19: end while Ź End time-stepping loop
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The implementation of the second-order accurate time-stepping scheme is given in Algorithm 1.
The grid functions, E0

j and P0
m,j, at time level t0 “ 0 are determined from the initial conditions,

while the grid functions at the first time step, t1 “ ∆t, are evaluated using a Taylor series in time.
(Note that some typographic errors appeared in the original second and fourth-order accurate
algorithms given in [12]. These errors are corrected in Algorithms 1 and 2 given here.) In the
time-stepping loop (lines 8–19), the second-order accurate explicit updates for En`1

j and Pn`1
m, are

determined in lines 13 and 15, respectively. To obtain the formulas for these updates, we note
that (9b) can be solved for Pn`1

m,j in terms of En`1
j and a remainder,

Pn`1
m, j “

∆t

2
ã1,m βm En`1

j ` βm Rm, (11)

where βm and Rm are defined on lines 5 and 10, respectively. Equation (11) can be summed over m
to determine Pn`1

j in terms of En`1
j and another remainder. This equation for Pn`1

j is substituted

into (9a) and subsequently solved for En`1
j . Given En`1

j , the values of Pn`1
m,j are found from (11).

An important step in Algorithm 1 occurs at line 18, marked in blue, where the boundary and
interface conditions are applied. A detailed discussion of this step of the algorithm for an interface
separating two materials is new and given in Section 4.1.

A fourth-order accurate time-stepping scheme can be constructed using a modified equation
approach starting with the second-order accurate scheme in (9). A key step involves Taylor series
expansions of the form

D`tD´tWpx, tq “ B2
tW `

2∆t2

4!
B4
tW `Op∆t4q, (12)

where W represents either E or P. The governing equations in (3), and their time derivatives,
are then used to express (12) in the form of a three-level time-stepping scheme. The resulting
fourth-order accurate scheme is

D`tD´tE
n
j “ c2∆4hE

n
j ´ ε

´1
0 D`tD´tP

n
j

`
∆t2

12

´

pc2∆2hq
2En

j ´ ε
´1
0 c2 ∆2hB

2
tP

˚
ˇ

ˇ

n

j

¯

, (13a)

D`tD´tP
n
m, j “ ´b1,m

´

D0tP
n
m, j ´

∆t2

6
B3
tP

˚
m

ˇ

ˇ

n

j

¯

´ b0,mPn
m, j

` ã0,mEn
j ` ã1,m

´

D0tE
n
j ´

∆t2

6
B3
tE

˚
ˇ

ˇ

n

j

¯

`
∆t2

12

´

´ b1,m B
3
tP

˚
m

ˇ

ˇ

n

j
´ b0,mD`tD´tP

n
m, j

` ã0,mD`tD´tE
n
j ` ã1,m B

3
tE

˚
ˇ

ˇ

n

j

¯

, (13b)

where ∆4h is a fourth-order accurate approximation of the Laplacian operator, Pn
j is given in (10),

and B3
tE

˚
ˇ

ˇ

n

j
, B3

tP
˚
m

ˇ

ˇ

n

j
and ∆2hB

2
tP

˚
ˇ

ˇ

n

j
are second-order accurate approximations. Note that the

terms highlighted in blue (here and elsewhere) indicate second-order accurate approxmations and
the asterisk is used to denote terms in (13) that are computed using the second-order accurate
time-stepping scheme.

Algorithm 2 describes the implementation of the fourth-order accurate time-stepping scheme.
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Algorithm 2 Fourth-order accurate ADE-GDM algorithm.
1: t “ 0, n “ 0;
2: E0

j “ E0
pxjq; Ź Initialize E0

j , E1
j

3: E1
j “ E0

pxjq `∆tE1
pxjq `

∆t2

2
B

2
tEpxj, 0q `

∆t3

3!
B

3
tEpxj, 0q `

∆t4

4!
B

4
tEpxj, 0q;

4: for m “ 1, . . . , Np do
5: P0

m, j “ P0
mpxjq; Ź Inititialize P0

m, j, P1
m, j

6: P1
m, j “ P0

mpxjq `∆tP1
mpxjq `

∆t2

2
B

2
tPmpxj, 0q `

∆t3

3!
B

3
tPmpxj, 0q `

∆t4

4!
B

4
tPmpxj, 0q;

7: βm “ p1`
∆t
2
b1,mq

´1;
8: end for
9: β “ p∆t{2q

ř

m ã1,m βm;
10: while t ă tfinal do
11: for m “ 1, . . . , Np do Ź Evaluate second-order accurate predictions E˚

n`1
j , P˚

n`1
m, j

12: Rm “ 2Pn
m,j ´Pn´1

m,j `
∆t
2
b1,mPn´1

m,j ´∆t2 b0,mPn
m,j `∆t2 ã0,mEnj ´

∆t
2
ã1,mEn´1

j ;
13: end for
14: R “

ř

m βmRm;

15: E˚
n`1
j “ p1` ε´1

0 βq´1
”

2Enj ´En´1
j `∆t2c2∆2hE

n
j ` ε

´1
0

ř

m

!

2Pn
m,j ´Pn´1

m,j

)

´ ε´1
0 R

ı

;

16: BtE
˚
ˇ

ˇ

n

j
“ pE˚

n`1
j ´En´1

j q{p2∆tq; B
2
tE

˚
ˇ

ˇ

n

j
“ pE˚

n`1
j ´ 2Enj `En´1

j q{∆t2;

17: ∆2hBtE
˚
ˇ

ˇ

n

j
“ ∆2hpE

˚n`1
j ´En´1

j q{p2∆tq;

18: for m “ 1, . . . , Np do
19: P˚

n`1
m, j “

∆t
2
ã1,m βmE˚

n`1
j ` βmRm;

20: BtP
˚
m

ˇ

ˇ

n

j
“ pP˚

n`1
m, j ´Pn´1

m, j q{p2∆tq;

21: B
3
tP

˚
m

ˇ

ˇ

n

j
“ b

p3q
1,m BtP

˚
m

ˇ

ˇ

n

j
` b

p3q
0,mPm, j ` ã

p3q
0,mEj ` ã

p3q
1,m BtE

˚
ˇ

ˇ

n

j
` ã

p3q
2,m B

2
tE

˚
ˇ

ˇ

n

j
;

22: end for
23: P˚

n`1
j “

ř

mP˚
n`1
m, j ;

24: ∆2hB
2
tP

˚
ˇ

ˇ

n

j
“ ∆2hpP

˚n`1
j ´ 2Pn

j `Pn´1
j q{∆t2; B

3
tE

˚
ˇ

ˇ

n

j
“ c2 ∆2hBtE

˚
ˇ

ˇ

n

j
´ ε´1

0 B
3
tP

˚
ˇ

ˇ

n

j
;

25: for m “ 1, . . . , Np do Ź Evaluate fourth-order accurate updates En`1
j , Pn`1

m, j

26: γm “ 1` b1,m
∆t
2
` b0,m

∆t2

12
;

27: Rm “

´

1` b1,m
∆t2

12

¯´

2Pn
m,j ´Pn´1

m,j

¯

` ∆t
2
b1,mPn´1

m,j ´∆t2 b0,mPn
m,j `∆t2 ã0,mEnj

´∆t
2
ã1,mEn´1

j ´ ã0,m
∆t2

12

´

2Enj ´En´1
j

¯

` b1,m
∆t4

12
B

3
tP

˚
m

ˇ

ˇ

n

j
´ ã1,m

∆t4

12
B

3
tE

˚
ˇ

ˇ

n

j
;

28: end for
29: γE “

ř

m
1
γm

´

´a1,m
∆t
2
´ a0,m

∆t2

12

¯

; RP “
ř

m
1
γm

Rm;

30: RE “ 2Enj ´En´1
j ` pc∆tq2∆4hE

n
j ` ε

´1
0

ř

m

!

2Pn
m,j ´Pn´1

m,j

)

` ∆t4

12

´

pc2∆2hq
2Enj ´ ε

´1
0 c2 ∆2hB

2
tP

˚
ˇ

ˇ

n

j

¯

31: En`1
j “

`

ε´1
0 RP ´RE

˘

{pε´1
0 γE ´ 1q ;

32: for m “ 1, . . . , Np do

33: Pn`1
m, j “

1
γm

”´

a1,m
∆t
2
` a0,m

∆t2

12

¯

En`1
j `Rm

ı

;

34: end for
35: t “ t`∆t, n “ n` 1;
36: Apply boundary and interface conditions.
37: end while

10



The numerical solution values at the first time step, n “ 1 (lines 3 and 6), are determined using
a Taylor series in time. The higher derivatives in these series are obtained using the governing
equations evaluated at t “ 0. For example, the second derivative of Pm at t “ 0 can be obtained
using (3b) and the initial conditions in (4) as

B2
tPmpxj, 0q

def
“ ã1,mE1pxjq ` ã0,mE0pxjq ´ b1,mP1

mpxjq ´ b0,mP0
mpxjq.

In the time-stepping loop (lines 10–37), temporary second-order accurate updates are computed
first in lines 11–24, which are then used to compute derived quantities, such as BtP

˚
m|
n
j (line 20).

The fourth-order accurate explicit updates for En`1
j and Pn`1

m, are then performed in lines 31
and 33, respectively, using formulas obtained from (13a) and (13b) in an analogous fashion to
the second-order updates. In particular, (13b) can be solved for Pn`1

m,j in terms of En`1
j and a

remainder,

Pn`1
m,j “

1

γm

„ˆ

a1,m
∆t

2
` a0,m

∆t2

12

˙

En`1
j `Rm



, (14)

where γm and Rm are given in lines 26 and 27, respectively. Summing (14) for m “ 1, 2, . . . , Np

leads to an equation for Pn`1
j in terms of En`1

j , and then substituting this equation into (13a)

and solving for En`1
j leads to the update on line 31. Given En`1

j , the values for Pn`1
m,j can then be

evaluated from (14) which gives the update on line 33. As in the second-order scheme, an important
step involves the application of interface conditions separating two materials, and this is new and
discussed in detail in Section 4.2 for the fourth-order accurate scheme.

3.2. Discretization on overlapping grids

Each material sub-domain Ωk in the computational domain is discretized with a composite
overlapping grid (also known as an overset grid) as shown, for example, in Figures 2, 9, and 13.
Composite grids allow the use of efficient finite-difference schemes on structured grids for complex
geometry while maintaining high-order accuracy at curved boundaries and interfaces.

G1

G2

G1

interpolation
ghost

unused

G2

Figure 3: Left: an overlapping grid consisting of two structured curvilinear component grids, x “ G1prq and x “
G2prq. Middle and right: component grids for the square and annular grids in the unit square parameter space r.
Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to
apply boundary conditions.

A composite overlapping grid for the sub-domain Ωk, denoted as G, consists of a set of component
grids Gg, g “ 1, . . . ,Nk, that cover Ωk. A simple composite grid in two dimensions is illustrated in

11



Figure 3. Each component grid, Gg, is a logically rectangular, curvilinear grid defined by a smooth
mapping from a unit square (or unit cube) parameter space r to physical space x,

x “ Ggprq, r P r0, 1snd , x P Rnd . (15)

Grid points are classified as discretization points (where the PDE or boundary/interface condi-
tions are applied), interpolation points (where solutions are interpolated from other component
grids) or unused points. Ghost points are use to implement boundary and interface conditions.
The overlapping grid generator Ogen [19] from the Overture framework is used to construct the
overlapping grid information. By a change of independent variables (i.e. x to r), the governing
equations are transformed to the unit square coordinates; this can be done in either conservative
or non-conservative form [20]. The dependent variables (e.g. E) remain in Cartesian coordinates.
Solution values at interpolation points are evaluated using tensor-product Lagrange interpolation
in the parameter space of the mapping Gg. This is straightforward to accomplish given the unit
square (or cube) coordinates of an interpolation point in the parameter space of the donor grid.
For the second-order accurate scheme the interpolation uses a three-point stencil in each direction,
while a five-point stencil is used for the fourth-order scheme as required to maintain accuracy [21].
A high-order upwind dissipation [12, 22] for wave equations in second-order form [23] is used to
maintain stability on overlapping grids.

4. Numerical interface approximations

In this section, interface conditions are derived which can be used with the second and fourth-
order accurate time-stepping schemes. These conditions are applied after the solution has been
updated in the interior by the schemes described in Algorithms 1 and 2 for the second and fourth-
order cases, respectively. It is thus assumed that the grid values in En

j and Pn
m,j are known in the

interior and on the interface at the new time tn, as well as being known at all points at the old
time tn´1. The goal is to assign values in the ghost points for the grid functions adjacent to the
interface at time tn; compact two-level (in time) update equations are derived to do this that make
use of the solutions at times tn´1 and tn. As the expressions in the update formulae can be quite
complex, the precise definitions for some of the coefficients are omitted. The discussion instead
focuses on a high-level description of the procedure that determines the coefficients with Maple
scripts that generate the full expressions available as part of the CgMx software distribution5.

4.1. Second-order accurate interface approximations

The primary interface conditions for the dispersive Maxwell’s equations in second-order form
are given in (8). Following [20], additional compatibility interface conditions can be derived from (8)
by taking even derivatives with respect to time, and then using the governing equations in (3) to
replace time derivatives by space derivatives. This is useful for specifying formulas that set ghost
points. For example, taking two time derivatives of (8a) and using (3a) leads to the interface
compatibility condition

“

nˆ B2
tE

‰

I
“ 0 ùñ

”

nˆ
´

c2∆E´ ε´1
0 B2

tP
¯ı

I
“ 0, x P Γ. (16a)

5CgMx is available from overtureFramework.org.
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Likewise, taking two time derivatives of (8b) and using (3a) and (3b) gives

“

n ¨ pε0B
2
tE` B

2
tPq

‰

I
“ 0 ùñ

“

µ´1
0 n ¨∆E

‰

I
“ 0, x P Γ. (16b)

The two compatability conditions in (16a) and (16b), along with the remaining two primary in-
terface conditions in (8c) and (8d), form the set of interface conditions used in the second-order
accurate scheme to determine the ghost values for E on either side of the interface. In particular,
the conditions in (16a) and (8c) can be thought of as determining the tangential components of E
in the ghost points, while the conditions in (16b) and (8d) can be regarded as determining the
normal components.

The set of interface conditions are approximated to second-order accuracy in space to give

”

nˆ
´

c2∆2hE
n
j ´ ε

´1
0 B2

tP
ˇ

ˇ

n

j

¯ı

I
“ 0, j P Γh, (17a)

“

µ´1
0 n ¨∆2hE

n
j

‰

I
“ 0, j P Γh, (17b)

“

µ´1
0 nˆ∇2h ˆEn

j

‰

I
“ 0, j P Γh, (17c)

“

∇2h ¨E
n
j

‰

I
“ 0, j P Γh, (17d)

where ∇2h and ∆2h denote second-order accurate approximations (with a three-point stencil in each
coordinate direction) to the gradient and Laplace operators, respectively. The approximate set of
interface conditions in (17) can be used to determine the ghost-point values for En

j on both sides

of the interface once a second-order accurate approximation to B2
tP

ˇ

ˇ

n

j
in (17a) is defined. (Note

that here and elsewhere the blue highlighted terms indicate second-order accurate approximations
of terms involving temporal derivatives of either E or P.) One approach to approximating B2

tP
ˇ

ˇ

n

j
would be to use a second-order accurate backward difference formula

B2
tP

ˇ

ˇ

n

j
«

2Pn
j ´ 5Pn´1

j ` 4Pn´2
j ´Pn´3

j

∆t2
. (18)

This approach could be used although it requires storage for an additional time-level, Pn´3
j , on

the interface. In addition, the stability bound for the time-stepping scheme with this one-sided
approximation would likely be worse than a corresponding scheme with a centered, compact ap-
proximation, thus leading to a smaller time step. Instead, our approach is to obtain an expression
for B2

tP
ˇ

ˇ

n

j
involving a linear combination of ∆2hE

n
j (which uses a centered, compact approximation)

and the known values En
j , En´1

j , Pn
m,j and Pn´1

m,j on the interface. Such an expression has the form

B2
tP

ˇ

ˇ

n

j
“ K

B2
tP

0 ∆2hE
n
j ` c0 En

j ` c1 En´1
j `

Np
ÿ

m“1

´

d0,m Pn
m,j ` d1,m Pn´1

m,j

¯

, (19)

where K
B2
tP

0 , tc0, c1u and td0,m, d1,mu, m “ 1, 2, . . . , Np, are constants. Note that the term ∆2hE
n
j

in (19), which involves the ghost points associated with the interface, modifies the coefficient of
∆2hE

n
j in (17a), and thus the corresponding coefficients in the linear system that determines the

values at the ghost points.
To derive an expression for B2

tP
ˇ

ˇ

n

j
in the form of (19), we start by considering the second-order

accurate approximations of the governing equations in (9) with (10) for j on the interface, j P Γh.
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Upon multiplication by ∆t2, these equations take the form

En`1
j `

1

ε0
Pn`1

j “ pc∆tq2∆2hE
n
j ` R.T., j P Γh, (20a)

´
ã1,m∆t

2
En`1

j `

ˆ

1`
b1,m∆t

2

˙

Pn`1
m, j “ R.T., j P Γh, (20b)

where R.T. denotes a generic remainder term involving a linear combination of the known values
En

j , En´1
j , Pn

m,j and Pn´1
m,j on the interface. Solving (20b) for Pn`1

m, j and summing over m gives

Pn`1
j “ βEn`1

j ` R.T., j P Γh, (21)

where β is defined in lines 5 and 7 of Algorithm 1. Eliminating Pn`1
j from (20a) gives

En`1
j “

ˆ

pc∆tq2

1` βε´1
0

˙

∆2hE
n
j ` R.T., j P Γh, (22)

and this result for En`1
j can be used in (20b) to give

Pn`1
m, j “

ã1,m∆t{2

1` b1,m∆t{2

ˆ

pc∆tq2

1` βε´1
0

˙

∆2hE
n
j ` R.T., j P Γh, (23)

Second-order accurate approximations for the first derivatives of E and Pm are

BtE
ˇ

ˇ

n

j
“ D0tE

n
j “

∆t

2

ˆ

c2

1` βε´1
0

˙

∆2hE
n
j ` R.T., j P Γh, (24a)

BtPm

ˇ

ˇ

n

j
“ D0tP

n
m, j “

∆t

2

ã1,m∆t{2

1` b1,m∆t{2

ˆ

c2

1` βε´1
0

˙

∆2hE
n
j ` R.T., j P Γh, (24b)

using the expressions for En`1
j and Pn`1

m, j in (22) and (23), respectively. A second-order accurate
approximation of the governing equation for Pm in (3b) at time tn is

B2
tPm

ˇ

ˇ

n

j
“ ´b1,mBtPm

ˇ

ˇ

n

j
´ b0,mPn

m, j ` ã0,mEn
j ` ã1,mBtE

ˇ

ˇ

n

j
, j P Γh, (25)

Using the approximations in (24) for the first deriatives of E and Pm in (25), and then summing
over m, gives

B2
tP

ˇ

ˇ

n

j
“

ˆ

βc2

1` βε´1
0

˙

∆2hE
n
j ` R.T., j P Γh, (26)

which has the form of (19) with K
B2
tP

0 “ βc2{p1` βε´1
0 q.

Summary: The ghost point values at the interface for the second-order accurate scheme are
determined by the solution to the following equations:

”

nˆ
´

c2∆2hE
n
j ´ ε

´1
0 KB2

tP∆2hE
n
j

¯ı

I
“ rR.T.sI , j P Γh, (27a)

“

µ´1
0 n ¨∆2hE

n
j

‰

I
“ 0, j P Γh, (27b)
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“

µ´1
0 nˆ∇2h ˆEn

j

‰

I
“ 0, j P Γh, (27c)

“

∇2h ¨E
n
j

‰

I
“ 0, j P Γh, (27d)

where K
B2
tP

0 is defined in (26) and rR.T.sI in (27a) is given by

rR.T.sI “

«

nˆ ε´1
0

#

c0 En
j ` c1 En´1

j `

Np
ÿ

m“1

´

d0,m Pn
m,j ` d1,m Pn´1

m,j

¯

+ff

I

, (28)

for the constants tc0, c1u and td0,m, d1,mu, m “ 1, 2, . . . , Np, in (19) defined on either side of the
interface (and given in the CgMx distribution).

4.2. Fourth-order accurate interface approximations

The fourth-order accurate time-stepping scheme in (13) requires two ghost points on each side of
the interface, and so additional compatability equations are needed on top of the ones used for the
second-order scheme. The starting point for the derivation of the new conditions is the previous
set of interface conditions given by the derived conditions in (16a) and (16b) and the primary
interface conditions in (8c) and (8d). Taking two derivatives with respect to time of each of these
four conditions, and using derivatives of the governing equations in (3), leads to four additional
interface conditions given by

“

nˆ
`

c4∆2E´ c2ε´1
0 ∆B2

tP´ ε
´1
0 B4

tP
˘‰

I
“ 0, x P Γ, (29a)

“

µ´1
0 n ¨

`

c2∆2E´ ε´1
0 ∆B2

tP
˘‰

I
“ 0, x P Γ, (29b)

“

µ´1
0 nˆ∇ˆ

`

c2∆E´ ε´1
0 B2

tP
˘‰

I
“ 0, x P Γ, (29c)

“

c2∇ ¨ p∆Eq
‰

I
“ 0, x P Γ. (29d)

Note that ∇ ¨P “ 0 has been used in the derivation of (29d).
Approximations of the original four interface conditions, and the four new conditions in (29),

suitable for the fourth-order accurate time-stepping scheme are given by

”

nˆ
´

c2∆4hE
n
j ´ ε

´1
0 B2

tP
ˇ

ˇ

n

j

¯ı

I
“ 0, j P Γh, (30a)

“

µ´1
0 n ¨∆4hE

n
j

‰

I
“ 0, j P Γh, (30b)

”

µ´1
0 nˆ

´

∇4h ˆEn
j

¯ı

I
“ 0, j P Γh, (30c)

“

∇4h ¨E
n
j

‰

I
“ 0, j P Γh, (30d)

”

nˆ
´

c4∆2
2hE

n
j ´ c

2ε´1
0 ∆2hB

2
tP

˚
ˇ

ˇ

n

j
´ ε´1

0 B4
tP

˚
ˇ

ˇ

n

j

¯ı

I
“ 0, j P Γh, (30e)

”

µ´1
0 n ¨

´

c2∆2
2hE

n
j ´ ε

´1
0 ∆2hB

2
tP

˚
ˇ

ˇ

n

j

¯ı

I
“ 0, j P Γh, (30f)

”

µ´1
0 nˆ

´

c2∇2h ˆ∆2hE
n
j ´ ε

´1
0 ∇2h ˆ B

2
tP

˚
ˇ

ˇ

n

j

¯ı

I
“ 0, j P Γh, (30g)

“

c2∇2h ¨
`

∆2hE
n
j

˘‰

I
“ 0, j P Γh, (30h)

where ∇4h and ∆4h denote fourth-order accurate approximations (with a five-point stencil in each
coordinate direction) to the gradient and Laplace operators, respectively. Note that the compatibil-
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ity conditions in (29) involve third and fourth-order spatial derivatives, whereas the original set of
interface conditions involve only first and second-order derivatives. The corresponding approxima-
tions of these higher derivatives in (30e)–(30h) require only second-order accurate approximations,
whereas fourth-order accurate approximation are used in (30a)–(30d). This is a typical approach in
the approximation of compatibility conditions, and it results here in a fourth-order approximation
of the overall time-stepping scheme. A general rule of thumb is that the discrete approximations
at an interface and/or boundary of the grid should never require a larger stencil than the basic
scheme used in the interior.

It remains to describe approximations for the terms involving the temporal derivatives of P
in (30). In keeping with the aforementioned rule of thumb, a fourth-order accurate approximation
is needed for B2

tP
ˇ

ˇ

n

j
in (30a), while only second-order accurate approximations are required for

∆2hB
2
tP

˚
ˇ

ˇ

n

j
, ∇2h ˆ B

2
tP

˚
ˇ

ˇ

n

j
and B4

tP
˚
ˇ

ˇ

n

j
in (30e)–(30g). (Magenta is used to highlight terms that

are fourth-order accurate, while blue is still used to highlight second-order accurate terms with
the asterisk indicating terms that are obtained from the imbedded second-order accurate scheme
in Algorithm 2.) As before, we seek expressions for all of these terms as linear combinations of
approximations of spatial derivatives of En

j (which involve the one or two ghost values of interest)

together with known values for En
j , En´1

j , Pn
m,j and Pn´1

m,j on the interface, and perhaps approxi-
mations of other spatial derivatives which are also considered to be known. For example, a suitable
formula for B2

tP
ˇ

ˇ

n

j
takes the form

B2
tP

ˇ

ˇ

n

j
“ K

B2
tP

1 ∆2hE
n
j `K

B2
tP

2 ∆2
2hE

n
j `K

B2
tP

4 ∆4hE
n
j ` c0 En

j ` c1 En´1
j ` c2 ∆4hE

n´1
j

`

Np
ÿ

m“1

´

d0,m Pn
m,j ` d1,m Pn´1

m,j ` d2,m ∆4hP
n
m,j ` d3,m ∆4hP

n´1
m,j

¯

, (31)

where K
B2
tP

1 , K
B2
tP

2 , K
B2
tP

4 , tc0, c1, c2u and td0,m, d1,m, d2,m, d3,mu, m “ 1, 2, . . . , Np, are constants.
Note that the expression in (31) requires ∆4hP

n
m,j and ∆4hP

n´1
m,j on the interface. Since there are

no explicit interface conditions on P, these spatial derivatives are approximated using one-sided
finite-difference formulas. As in the previous case, we focus our attention on the dependence of
∆2hE

n
j , ∆2

2hE
n
j and ∆4hE

n
j (which involve ghost points) and lump the other (known) terms into a

remainder term, so that (31) becomes

B2
tP

ˇ

ˇ

n

j
“ K

B2
tP

1 ∆2hE
n
j `K

B2
tP

2 ∆2
2hE

n
j `K

B2
tP

4 ∆4hE
n
j ` R.T., (32)

for ease of discussion.
A fourth-order accurate formula for B2

tP
ˇ

ˇ

n

j
, in the form of (32), can be found by following steps

similar to the ones taken to determine the second-order accurate formula in (26). Here, we consider
the fourth-order accurate approximations of the governing equations in (13) for j P Γh. Upon
multiplication by ∆t2, these equations take the form

En`1
j `

1

ε0
Pn`1

j “ K11∆2hE
n
j `K12∆2

2hE
n
j ` pc∆tq

2∆4hE
n
j ` R.T., (33a)

´
ã1,m∆t

2
En`1

j `

ˆ

1`
b1,m∆t

2

˙

Pn`1
m, j “ K21,m∆2hE

n
j `K22,m∆2

2hE
n
j ` R.T., (33b)
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where K11, K12, K21,m and K22,m are constants. The system in (33) for En`1
j and Pn`1

m, j is similar
to the one in (20) for the second-order case, but it has additional terms on the right-hand side
involving ∆2hE

n
j and ∆2

2hE
n
j that arise from approximations of the blue-highlighted terms in (13)

as described below. As before, we solve (33b) for Pn`1
m, j and then sum over m to give

Pn`1
j “ βEn`1

j `K21∆2hE
n
j `K22∆2

2hE
n
j ` R.T., (34)

where K21 and K22 are constants (related to K21,m and K22,m above) and β is the same constant
appearing in (21). Equation (34) can be used to eliminate Pn`1

j in (33a), and then the system

in (33) can be solved for En`1
j and Pn`1

m, j . Expressions for these quantities have the form

En`1
j “ K̃11∆2hE

n
j ` K̃12∆2

2hE
n
j ` K̃14∆4hE

n
j ` R.T., (35a)

Pn`1
m, j “ K̃21,m∆2hE

n
j ` K̃22,m∆2

2hE
n
j ` K̃24,m∆4hE

n
j ` R.T., (35b)

where K̃q1, K̃q2 and K̃q4, q “ 1, 2, are constants. Fourth-order accurate approximations for the
first derivatives of E and Pm are given by

BtE
ˇ

ˇ

n

j
“ D0tE

n
j ´

∆t2

3!
B3
tE

˚
ˇ

ˇ

n

j
, (36a)

BtPm

ˇ

ˇ

n

j
“ D0tP

n
m, j ´

∆t2

3!
B3
tP

˚
m

ˇ

ˇ

n

j
, (36b)

where D0t is the centered first divided difference operator, and B3
tE

˚
ˇ

ˇ

n

j
and B3

tP
˚
m

ˇ

ˇ

n

j
are second-

order accurate approximations for the third derivatives of E and Pm, respectively. The expressions
for En`1

j and Pn`1
m, j in (35), along with known values at tn´1, can be used to evaluate the divided

differences in (36), while approximations for the third derivatives can be obtained from the governing
equations in (3) upon differentiation with respect to time. For example, taking the derivative
of (3b), and using (3a) and (3b) to eliminate the second derivatives of E and Pm, respectively,
gives

B3
tPm “ ´b1,m

`

´b1,mBtPm ´ b0,mP` ã0,mE` ã1,mBtE
˘

´ b0,mBtPm

` ã0,mBtE` ã1,m

´

c2∆E´ ε´1
0

ÿ

m

`

´b1,mBtPm ´ b0,mPm ` ã0,mE` ã1,mBtE
˘

¯

. (37)

Using (24) to approximate the first derivatives of E and Pm in (37), and a similar expression for
B3
tE, and using a second-order accurate approximation for the Laplacian, leads to formulas for the

third derivatives of the form

B3
tE

˚
ˇ

ˇ

n

j
“ KB3

tE∆2hE
n
j ` R.T., (38a)

B3
tP

˚
m

ˇ

ˇ

n

j
“ KB3

tPm∆2hE
n
j ` R.T., (38b)

where KB3
tE and KB3

tPm are constants. The approximations in (38) are used in (36), along with
the first divided differences of E and Pm, to give the fourth-order accurate approximations

BtE
ˇ

ˇ

n

j
“ KBtE

1 ∆2hE
n
j `K

BtE
2 ∆2

2hE
n
j `K

BtE
4 ∆4hE

n
j ` R.T. (39a)
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BtPm

ˇ

ˇ

n

j
“ KBtPm

1 ∆2hE
n
j `K

BtPm
2 ∆2

2hE
n
j `K

BtPm
4 ∆4hE

n
j ` R.T., (39b)

Following the steps before, we use the governing equation for Pm and the approximations of the
first derivatives in (39) to obtain a fourth-order accurate approximation for B2

tPm. Summing this
approximation over m gives an expression of the form

B2
tP

ˇ

ˇ

n

j
“ K

B2
tP

1 ∆2hE
n
j `K

B2
tP

2 ∆2
2hE

n
j `K

B2
tP

4 ∆4hE
n
j ` R.T., (40)

where K
B2
tP

1 , K
B2
tP

2 and K
B2
tP

4 are constants.
We next derive formulas for the second-order accurate terms ∆2hB

2
tP

˚
ˇ

ˇ

n

j
and ∇2h ˆ B

2
tP

˚
ˇ

ˇ

n

j
.

We recall that the fourth-order accurate time-stepping scheme in Algorithm 2 uses second-order
accurate approximations for E and P at tn`1, denoted with star superscripts, as a means to
evaluate the blue highlighted terms in the fourth-order accurate approximations of the governing
equations in (13). In terms of the linear combinations of interest, we note that a second-order
accurate expression for B2

tP
ˇ

ˇ

n

j
appeared before in (26). Using this expression, we apply the discrete

Laplacian and curl operators to give

∆2hB
2
tP

˚
ˇ

ˇ

n

j
“ K

B2
tP

0 ∆2
2hE

n
j `K

∆B2
tP

1 ∆2hE
n
j ` R.T., (41a)

∇2h ˆ B
2
tP

˚
ˇ

ˇ

n

j
“ K

B2
tP

0 ∇2h ˆ∆2hE
n
j `K

∇ˆB2
tP

1 ∇2h ˆEn
j ` R.T., (41b)

where K
B2
tP

0 , K
∆B2

tP
1 and K

∇ˆB2
tP

1 are constants and j P Γh. Note that the coefficient, K
B2
tP

0 , of
the leading terms in (41a) and (41b) is the same one in (26), and that the terms with coefficients,

K
∆B2

tP
1 and K

∇ˆB2
tP

1 , arise from the discrete Laplacian and curl operators applied to the term
involving En

j in the remainder term of (26).

The last task involves the derivation of a formula for B4
tP

˚
ˇ

ˇ

n

j
, which is needed by the interface

condition in (30e). A formula for this term can obtained by using the governing equations in (3)
to write B4

tPm in terms of the E, BtE, Pm and BtPm, and their spatial derivatives. Using the
second-order accurate approximations for the first derivatives in (24) leads to an expression for
B4
tP

˚
m

ˇ

ˇ

n

j
of the form

B4
tP

˚
m

ˇ

ˇ

n

j
“ K

B4
tPm

1 ∆2hE
n
j `K

B4
tPm

2 ∆2
2hE

n
j ` R.T., (42)

where K
B4
tPm

1 and K
B4
tPm

2 are constants. Summing the expression in (42) over m gives the required
result

B4
tP

˚
ˇ

ˇ

n

j
“ K

B4
tP

1 ∆2hE
n
j `K

B4
tP

2 ∆2
2hE

n
j ` R.T., (43)

where K
B4
tP
q “

ř

mK
B4
tPm
q , q “ 1 and 2.

Summary: The ghost point values at the interface for the fourth-order accurate scheme are
determined by the solution of the jump conditions in (30), where B2

tP
ˇ

ˇ

n

j
, ∆2hB

2
tP

˚
ˇ

ˇ

n

j
, ∇2h ˆ B

2
tP

˚
ˇ

ˇ

n

j

and B4
tP

˚
ˇ

ˇ

n

j
are determined by the formulas given in (40), (41a), (41b) and (43), respectively, which

are linear combinations of spatial approximations (involving the ghost points) and known grid
values at time levels tn and tn´1.
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4.3. Decoupling the interface equations in tangential directions

We now describe an efficient approach to approximately solve the interface equations in (17) for
the second-order accurate scheme, or in (30) for the fourth-order accurate scheme. This approach
approximately eliminates any coupling in the tangential directions, and thus avoids the solution
to a large system of equations at each time step involving the solution values at all ghost points
adjacent to the interface. Only small systems of equations involving the solution components at
ghost points adjacent to each interface point need be solved.

To better understand the issue of tangential coupling, let us start by considering the form of
∆2hE

n
j that appears in the interface conditions in (17) for the second-order accurate scheme. In

general curvilinear coordinates x “ Gprq in two dimensions, the Laplace operator can be written
using the chain rule in non-conservative form as (similar issues occur for the conservative form)

∆u “ c11pr, sq B
2
rU ` c12pr, sq BrBsU ` c22pr, sq B

2
sU ` c1pr, sq BrU ` c2pr, sq BsU, (44)

where r “ pr, sq, and upx, yq “ Upr, sq represents a component of E. For an interface comforming
grid let us assume the interface is at r “ 0 and that s varies in the tangential direction to the
interface. The problematic term in (44) that introduces coupling in the tangential direction is the
mixed-derivative term c12pr, sqBrBsU , which at second-order is approximated using

BrBsU « D0rD0sUj “
1

4∆r∆s

”

Uj1`1,j2`1 ´ Uj1´1,j2`1 ´ Uj1`1,j2´1 ` Uj1´1,j2´1

ı

,

where D0r and D0s are the central difference operators in the r and s directions, respectively. On
an orthogonal grid, c12 “ 0, and there is no mixed-derivative term and subsequently no tangential
coupling. When the grid is not orthogonal, however, c12 ‰ 0 and the mixed-derivative term is
present, and coupling in the tangential direction occurs. To avoid dealing with the coupling arising
from this term, we assume the grid close to the boundary is nearly orthogonal (this is an advisable
grid generation rule of thumb), and thus c12 is assumed to be small as compared to c11. In this
case the mixed derivative terms are treated with one-sided difference approximations, which can
be implemented in practice by first extrapolating the ghost point values and then evaluating the
centered difference approximation to BrBsU . This approach is always accurate and thus the only
concern with this approximation is whether the scheme remains stable. In practice this approach
has worked well over a wide range of cases.

The interface equations in (30) for the fourth-order accurate scheme also have mixed-derivative
terms in ∆4hE

n
j , for example, that can be approximated to fourth-order accuracy using one-sided

difference approximations. However, the fourth-order accurate interface conditions also have higher-
order mixed-derivative terms such as the term B2

xB
2
yE that appears in ∆2E as

∆2E “ B4
xE` 2B2

xB
2
yE` B

4
yE,

for the case of two dimensions. For this derivative, there is a mixed-derivative term with a coefficient
that is not small (as in the case of the mapped Laplacian for a nearly orthogonal grid). Fortunately
this term need only be approximated to second-order accuracy. We have found that an effective way
to approximate these mixed-derivative terms is to first apply the second-order accurate interface
conditions from Section 4.1 to obtain predicted values for the first line of ghost points adjacent to
the interface. These predicted values can subsequently be used to approximate the mixed-derivative
term B2

xB
2
yE to second-order accuracy.
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For curvilinear grids, all mixed-derivative terms that appear in the curvilinear coordinate ap-
proximations to (30) are thus approximated to either fourth-order or second-order accuracy using
one-side approximations or predicted values from the second-order accurate interface conditions.
As a result, the solution values at ghost points are decoupled in the tangential direction and thus
the ghost-point values at the interface can be evaluated using local approximations that require the
solution to small systems of equations involving 4nd unknowns (4 total ghost points values of E for
fourth-order accuracy) at each interface point.

We make a final remark that one should generally always use the decoupling procedure when
solving the fourth-order interface equations as there appears to be cases when the solution of the
original coupled equations lead to an unstable scheme in time. The problematic situation seems to
be when there are tall grid cells at the interface (i.e. cells where the grid-spacing ∆r is larger than
the grid spacing ∆s in the tangential direction). A more detailed analysis of this issue is left to a
future paper.

4.4. Interface projection

The primary interface jump conditions in (8a) and (8b) are not imposed explicitly when solving
for the ghost point values at the interface, only the second time derivative of these conditions are
imposed as in (16a) and (16b). If the primary conditions are satisfied initially, then they would
be satisfied for all time in the exact solution by imposing (16a) and (16b). At a discrete level,
however, the primary conditions would only be satisfied approximately. To strictly enforce the
primary interface jump conditions at a discrete level, we apply an interface projection at each
time-step before assigning the ghost values.

We consider the solution of a Riemann problem centered at the interface in a direction normal
to the interface to define the projection. The initial condition for the Riemann problem, taken
at a pseudo-time t “ 0, consists of a constant left state for x ă 0 and a constant right state for
x ą 0, where x measures distance normal to the interface. The values for these left and right states
are given by the predicted interface values coming from the left and right interior updates on the
interface. The central state in the solution of the Riemann problem at x “ 0 and at an infinitesimal
positive time t “ 0` is taken as the projected interface state.

To derive the form of the projected state, it is sufficient to consider Maxwell’s equations in two
dimensions for a TE-z polarized wave. Taking u “ Expx, tq, v “ Eypx, tq and w “ Hzpx, tq, we
consider the system

Bt
`

ε0u` p
˘

“ Byw, (45a)

Bt
`

ε0v ` q
˘

“ ´Bxw, (45b)

µ0Btw “ Byu´ Bxv, (45c)

where the polarization variables p and q are assumed to satisfy scalar versions of the auxiliary
differential equations in (3b). Considering the system in (45) in the x-direction (normal direction)
gives

Bt
`

ε0u` p
˘

“ 0, (46a)

Bt
`

ε0v ` q
˘

“ ´Bxw, (46b)

µ0Btw “ ´Bxv. (46c)
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Equation (46a) is already in characteristic form and this is used to obtain a projected value for u
as described below. It is straightforward to show that the polarization variable q in (46b) acts as a
lower-order term, which can be neglected in a characteristic analysis since we are only interested in
the solution at t “ 0`. Under this assumption, the characteristic equations corresponding to (46b)
and (46c) are

d

dt

`

v ˘ ηw
˘

“ 0, on
dx

dt
“ ˘c, (47)

where c “ 1{
?
ε0µ0 is the wave speed and η “ µ0c is the electric impedance. Let subscripts L

and R denote quantities in the left and right states, respectively. Solving the Riemman problem
with the interface jump conditions

rvsI “ rwsI “ 0,

leads to the central state, denoted by pvI , wIq, given by

vI “
η´1
L vL ` η

´1
R vR

η´1
R ` η´1

L

´
wR ´ wL

η´1
R ` η´1

L

, (48a)

wI “
ηR wR ` ηLwL

ηR ` ηL
´
vR ´ vL
ηR ` ηL

. (48b)

The terms in (48) involving the differences of v and w in the left and right states can be neglected
since they are usually proportional to the truncation error. With these terms omitted, we observe
that vI is given by an inverse impedance average, while wI is given by an impedance average.

The interface treatment of the normal component of the electric displacement, n ¨D, taken here
as ε0u` p is less straightforward since its characteristic equation (46a) is parallel to the interface.

For this case, we propose a heuristic projection. Given left state DL
def
“ ε0,LuL ` pL and right

state DR
def
“ ε0,RuR ` pR, we set the interface value DI to be the state with corresponding smaller

permittivity,

DI “

#

DL, if ε0,L ď ε0,R,

DR, if ε0,R ă ε0,L.
(49)

Thus, if ε0,L ď ε0,R, we take DI “ DL, which implies uIL “ uL and

uIR “
DI ´ pR
ε0,R

“

ˆ

ε0,L
ε0,R

˙

uL `
pL ´ pR
ε0,R

. (50a)

Otherwise, DI “ DR, which implies uIR “ uR and

uIL “
DI ´ pL
ε0,L

“

ˆ

ε0,R
ε0,L

˙

uR `
pR ´ pL
ε0,L

. (50b)

The intuition for this choice is based on a numerical stability argument. If ε0,L ď ε0,R, then
the interface value given by uIR in (50a) is not amplified by a perturbation to uL Ñ uL ` δ
(e.g. round-off errors) since pε0,L{ε0,Rq ď 1. Likewise, the modification to uIL in (50b) does not
amplify perturbations in uR since pε0,R{ε0,Lq ă 1.

Summary. The tangential components of the electric field are projected using an inverse impedance
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weighted average,

pnˆEqI “
η´1
L pnˆEqL ` η

´1
R pnˆEqR

η´1
L ` η´1

R

,

where ηξ “
a

µ0,ξ{ε0,ξ. The normal component of the field is projected using

pn ¨EqIξ “
DI ´ pn ¨Pqξ

ε0,ξ
, ξ “ L,R,

where DI is defined by (49).

5. Stability and accuracy of the ADE-GDM interface approximations

In this section, the stability and accuracy of the ADE-GDM time-stepping schemes for model
problems with and without interfaces are analyzed. We consider a one-dimensional model problem
with an arbitrary number of polarization states and first show the stability of solutions for the
continuous case. We then consider a second-order accurate semi-discretization in which spatial
derivatives are discrete, while the time dependence remains continuous, and show stability for this
case. Finally, the implications of the results for the fully discrete system for both second and
fourth-order accuracy are investigated using a matrix stability approach in which the spectrum of
the update operator is computed directly.

We recall that the stability6 of the ADE-GDM scheme for a material with a single polarization
state, and without interfaces, was considered previously in [12]. There it was shown that the
second and fourth-order accurate schemes, with time step ∆t and grid spacing hl in each coordinate
direction, are stable under the time-step restriction

∆t ă
Ccfl

b

c2
řd
l“1 h

´2
l

, (51)

where Ccfl “ 1´Op∆t2q, provided that a sufficient condition on the GDM parameters for stability
of the continuous problem is satisfied, namely a0 ě 0, a1 ě 0, b0 ě 0, b1 ě 0, and a0b1 ´ a1b0 ě 0.
Thus, the stability analysis presented here generalizes the previous results to multiple polarization
states and to problems with interfaces.

5.1. Stability for a GDM material with multiple polarization states

We consider the following model problem in one space dimension for one component of the
electric field coupled to multiple polarization states

B2
tE “ c2B2

xE ´ ε
´1
0 B2

tP, P
def
“

Np
ÿ

m“1

Pm, (52a)

6Here we use the term stability to indicate a lack of exponential growth in time. In particular, even bounded
exponential growth at a fixed final time is forbidden.
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B2
tPm “ ε0pa1,mBtE ` a0,mEq ´ b1,mBtPm ´ b0,mPm, (52b)

where Epx, tq and Pmpx, tq are scalar functions. For the pure initial-value problem (IVP) on the
infinite domain ´8 ă x ă 8 (Cauchy problem), or the IVP for a periodic problem on a finite
domain, the model in (52) admits separable plane-wave solutions of the form E “ Aesteikx, with
Pm “ Bme

steikx, if the real-valued wave number k and the dual Laplace-transform variable s satisfy
the dispersion relation

s2
`

1` χpsq
˘

“ ´c2k2, (53)

where the susceptibility χ is given by

χpsq “

Np
ÿ

m“1

χmpsq “

Np
ÿ

m“1

a0,m ` a1,ms

b0,m ` b1,ms` s2
. (54)

For the periodic problem, k must also be chosen so that the solution has the appropriate periodicity.
For our purposes here we define stability (a stronger condition than well posedness) of the continuous
Cauchy problem or periodic IVP as follows:

Definition 1. The initial-value problem for (52) is said to be stable provided there are no solutions
of the dispersion relation (53) with Repsq ą 0.

We note that this definition prohibits exponential growth in time, but does allow algebraic growth
in time if there are multiple roots of the dispersion relation with Repsq “ 0.

We now derive conditions on χpsq so that there are no plane-wave solutions that have exponential
grow in time. We note that these conditions, given below in Assumptions 1 and 2, and Theorem 1,
do not depend on the particular form for χpsq given by (54), and thus are applicable to a more
general class of susceptibility functions.

Let s be a solution to the dispersion relation in (53). Let s and χ be written in terms of their
real and imaginary parts as

s “ sr ` isi,

χ “ χr ` iχi,

where there should be no confusion between χr and χi with the component susceptibilities χm, and
it should be remembered that χ is a function of s. With these definitions, the real and imaginary
parts of (53) yield the two real equations

ps2
r ´ s

2
i qp1` χrq ´ 2srsiχi “ ´c

2k2, (55a)

ps2
r ´ s

2
i qχi ` 2srsip1` χrq “ 0. (55b)

Before presenting a fundamental result regarding the stability of plane-wave solutions to the
initial value problem for (52), we consider some special cases. The first special case is when k “ 0.
This is the constant mode in space, and the system in (52) reduces to ODEs. From (53) we must
have s2 “ 0 or χpsq “ ´1. In the former case, there is a double root at s “ 0, at least, which
means there can be algebraic growth in time like t (or worse if s “ 0 is also root of 1 ` χ). This
linear growth in time is a standard disease of the wave equation and is usually not a problem in
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practice if one is aware of the issue. More seriously there could be roots of χpsq ` 1 “ 0 that lead
to algebraic or exponential growth, and these we restrict by the following assumption.

Assumption 1. We assume all roots to χpsq ` 1 “ 0 satisfy Repsq ď 0, and there are no roots at
s “ 0.

Note that the conditions in Assumption 1 can be determined by Routh-Hurwitz theory.

The second special case is when k ‰ 0 but χi “ Impχq “ 0. In this situtation 1 ` χ P R, and
from (55b) it follows that sr “ 0, si “ 0 or 1 ` χrpsq “ 0. The case, 1 ` χrpsq “ 0, is covered
by Assumption 1 and need not be considered. If sr “ Repsq “ 0, then the solution is bounded. If
si “ 0, then (55a) implies

s2
r p1` χrpsrqq “ ´c

2k2. (56)

The real equation in (56) has real solutions with sr ą 0 only if 1` χr ă 0.

Assumption 2. When k ‰ 0 and χi “ 0, there are no real roots to equation (56) with sr ą 0 and
1` χr ă 0.

Having dealt with the two special cases, we are now ready to state our key result.

Theorem 1. Plane-wave solutions of (52) with wave number k and Laplace variable s satisfying
the dispersion relation (53), as well as the conditions Impχq ‰ 0 and k ‰ 0, satisfy the condition

Repsq Impsq Impχq ą 0.

Thus, solutions decay exponentially in time (i.e. have Repsq ă 0), if

Impsq Impχq ă 0,

and grow exponentially in time (i.e. have Repsq ą 0), if

Impsq Impχq ą 0.

Proof. Dividing (55b) by χi ‰ 0 gives

s2
r ´ s

2
i “ ´

2srsi
χi

p1` χrq,

and substituting this expression for s2
r ´ s

2
i into (55a) leads to

2sr si χi

”

p1` χrq
2 ` χ2

i

ı

“ χ2
i c

2k2. (57)

Since χi ‰ 0, c ‰ 0 and k ‰ 0, (57) implies sr ‰ 0 and si ‰ 0. We thus have the main result that

sr si χi ą 0.

If siχi “ Impsq Impχq ă 0, then sr “ Repsq ă 0 and solutions are decay exponentially. If, on the
other hand, siχi ą 0, then sr ą 0 and solutions are grow exponentially. This completes the proof.

l
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We now provide sufficient conditions on the coefficients a0,m, a1,m, b0,m and b1,m of the compo-
nent susceptibilties, χm, m “ 1, 2, . . . , Np, in (54) so that there are no solutions that grow in time
for k ‰ 0. For k “ 0, we still need Assumption 1, but we conjecture that the conditions in (58)
below are sufficient to prevent roots with Repsq ą 0 when k “ 0.

Theorem 2. If the coefficients of the GDM model satisfy

a0,m ě 0, a1,m ě 0, b0,m ě 0, b1,m ě 0, (58a)

a0,mb1,m ´ a1,mb0,m ě 0, (58b)

for m “ 1, . . . , Np, and if ε0 ą 0 and k ‰ 0, then plane-wave solutions of the GDM model in (52)
with susceptibility given in (54) do not grow in time.

Proof. In addition to the conditions in (58a) we may assume that a0,m ą 0 or a1,m ą 0, otherwise
χm “ 0 and this is an uninteresting case since Pm is uncoupled from E. We also note that if
Np “ 1, then Assumption 1 holds. Now addressing Assumption 2, if the conditions in (58a) hold
and if a0,m ą 0 or a1,m ą 0, then s “ sr ą 0 implies 1` χpsrq ą 0 since

χ “

Np
ÿ

m“1

χm “

Np
ÿ

m“1

a0,m ` a1,msr
b0,m ` b1,msr ` s2

r

ą 0,

and thus Assumption 2 holds. We thus assume χi ‰ 0.
The imaginary part of χm is given by

Impχmq “ ´

“

a1,m|s|
2 ` pa0,mb1,m ´ a1,mb0,mq

‰

si ` 2a0,msrsi

dm
, (59)

where
dm “

ˇ

ˇ b0,m ` b1,ms` s
2
ˇ

ˇ

2
ě 0.

We note that if b0,m ě 0 and b1,m ě 0, then there are no solutions to dm “ 0 with Repsq ą 0.
From (57) it follows that

sr si “ χi
c2k2

2|1` χ|2
“
α2

2
χi, α

def
“

|ck|

|1` χ|
ą 0. (60)

Note that since χi ‰ 0 and k ‰ 0 by assumption, (60) implies sr ‰ 0 and si ‰ 0. Using (60) to
replace srsi in (59) and summing over m gives

χi “

Np
ÿ

m“1

Impχmq “ ´si

Np
ÿ

m“1

a1,m|s|
2 ` pa0,mb1,m ´ a1,mb0,mq

dm
´ χi α

2
Np
ÿ

m“1

a0,m

dm
, (61)

and solving for χi implies

χi “ ´si

«

Np
ÿ

m“1

a1,m|s|
2 ` pa0,mb1,m ´ a1,mb0,mq

dm

ff«

1` α2
Np
ÿ

m“1

a0,m

dm

ff´1

. (62)
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In view of the conditions on a0,m, a1,m, b0,m and b1,m in (58) together with a0,m ą 0 or a1,m ą 0,
the form of χi in (62) implies

χi “ ´si β
2, (63)

where β2 ą 0 is defined from (62), and therefore the product of the imaginary part of s times the
imaginary part of χ is negative, i.e.

si χi “ ´s
2
iβ

2 ă 0.

From Theorem 1 it follows that there are no solutions with Repsq ą 0 that grow in time. This
completes the proof. l

We note that the conditions in (58) for Np “ 1 are the Routh-Hurwitz stability conditions
corresponding to just one component susceptability, χ “ χ1. Thereom 2 then states that a sufficient
condition for stability when k ‰ 0 is that each individual χm satisfies the single-term Routh-Hurwitz
stability conditions.

5.2. Stability of the continuous two-domain problem

Consider now the initial value problem for the continuous two-domain problem in one space
dimension with ELpx, tq and PL,mpx, tq satisfying equations of the form in (52) with positive para-
maeters pcL, ε0,L, µ0,Lq for x ă 0, and ERpx, tq, PR,mpx, tq satisfying similar equations with positive
parameters pcR, ε0,R, µ0,Rq for x ą 0. Note that the solution in each domain has Npξ polarization
states, ξ “ L, R, defined by the GDM coefficients aξ,0,m, aξ,1,m, bξ,0,m and bξ,1,m. (Throughout this
section, the symbol ξ indicates L or R.) For this two-domain model problem, solutions satisfy the
jump conditions

ELp0, tq “ ERp0, tq, (64a)

1

µ0,L
BxELp0, tq “

1

µ0,R
BxERp0, tq, (64b)

and they are assumed to be bounded as xÑ ˘8. Recall that the Cauchy problem for each material
separately is stable provided there are no solutions to the dispersion relation

s2
`

1` χξpsq
˘

“ ´c2
ξk

2, (65)

with Repsq ą 0 and k P R. The next thereom states that the coupled problem is stable provided
each material is stable in isolation.

Theorem 3. If the Cauchy problem for each material separately is stable, then solutions to the
two-domain problem with interface conditions (64) are also stable, i.e. there are no solutions with
Repsq ą 0.

Proof. The proof proceeds by showing there are no unstable solutions with Repsq ą 0 of the form

Eξpx, tq “ est pEξpxq, Pξ,mpx, tq “ est pPξ,mpxq. (66)
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Note that in order to satisfy the interface conditions, it is necessary that the time factors are the
same for the solutions in the left and right domains, i.e. s has the same value for ξ “ L and R.
An implication of this is that solutions on the left and right are either both stable or unstable.
Substituting (66) into the governing equations and interface/boundary conditions, and eliminating
pPξ,mpxq, we find that pEξpxq solves the ODEs

c2
ξ
pE2ξ ´ s

2
`

1` χξpsq
˘

pEξ “ 0, ξ “ L, R, (67)

subject to the interface conditions

pELp0q “ pERp0q, (68a)

1

µ0,L

pE1Lp0q “
1

µ0,R

pE1Rp0q, (68b)

and the requirement that solutions are bounded as x Ñ ˘8. General solutions of (67) have the
form

pEξpxq “ Aξe
λξx `Bξe

´λξx, (69)

where Aξ and Bξ are constants, and λξ is a function of s satisfying

c2
ξλ

2
ξ ´ s

2p1` χξpsqq “ 0, ξ “ L, R. (70)

We now look for unstable solutions with Repsq ą 0. We first rule out the case Repλξq “ 0. If
Repλξq “ 0 for ξ “ L or R so that λξ “ ikξ, then (70) takes the form

s2p1` χξpsqq “ ´c
2
ξk

2
ξ , (71)

for some kξ P R, which has the same form as (65). Since the Cauchy problem is stable by assumption,
the roots of (71) must have Repsq ď 0. Therefore, any unstable solutions with Repsq ą 0 cannot
have Repλξq “ 0 in either domain (since both sides have the same value for s).

It remains to check stability for the case when RepλLq ‰ 0 and RepλRq ‰ 0. Suppose RepλLq ą 0
and RepλRq ą 0 without loss of generality, so that bounded solutions are

pELpxq “ ALe
λLx, x ď 0,

pERpxq “ BRe
´λRx, x ě 0.

The interface conditions in (68) yield the two linear equations

AL “ BR,

AL

ˆ

λL
µ0,L

˙

“ ´BR

ˆ

λR
µ0,R

˙

.

Nontrivial solutions of these equations imply

λL
µ0,L

“ ´
λR
µ0,R

. (72)
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There are, however, no solutions to (72) when Repλξq ą 0, since the real part of the left-hand side
is positive while the real part of the right-hand side is negative. Thus, we have shown that there
are no solutions to the two-domain problem with Repsq ą 0, and this completes the proof. l

5.3. Stability of the semidiscrete model problem

We now discretize the model problem in (52) using a second-order accurate approximation in
space while keeping time continuous,

B2
tEξ,j “ c2

ξ D`xD´xEξ,j ´ ε0,ξ

Np,ξ
ÿ

m“1

B2
tPξ,m,j , (73a)

`

B2
t ` bξ,1,mBt ` bξ,0,m

˘

Pξ,m,j “ ε0,ξ paξ,1,mBt ` aξ,0,mqEξ,j , (73b)

for ξ “ L,R. Here, D`x and D´x are, respectively, forward and backward divided difference
operators in the x direction with grid spacing hξ. For the infinite-domain initial-value problem
(Cauchy problem) the eigen-solutions of (73) have the same form as those for the continuous case,
e.g., Eξ,j “ Aesteikξxj , xj “ jhξ, where s P C and kξ P R now satisfy

s2 p1` χξpsqq “ ´c
2 4 sin2pkξhξ{2q

h2
ξ

, (74)

noting that

D`xD´xe
ikξxj “ ´

4 sin2pkξhξ{2q

h2
ξ

eikξxj .

Equation (74) is a discrete analog of the continuous dispersion relation in (53). As in the continuous
case, the Cauchy problem is stable provided there are no roots to (74) with Repsq ą 0. Since
sin2pkξhξ{2q ě 0 we note that the discrete Cauchy problem is stable provided the corresponding
continuous problem is stable.

The two-domain problem is now discretized using (73) as follows:

B2
tEL,j “ c2

LD`xD´xEL,j ´ ε
´1
0,L

Np,L
ÿ

m“1

B2
tPL,m,j , j “ . . . ,´2,´1, 0, (75a)

`

B2
t ` bL,1,mBt ` bL,0,m

˘

PL,m,j “ ε0,L paL,1,mBt ` aL,0,mqEL,j , j “ . . . ,´2,´1, 0, (75b)

B2
tER,j “ c2

RD`xD´xER,j ´ ε
´1
0,R

Np,R
ÿ

m“1

B2
tPR,m,j , j “ 0, 1, 2, 3, . . . , (75c)

`

B2
t ` bR,1,mBt ` bR,0,m

˘

PR,m,j “ ε0,R paR,1,mBt ` aR,0,mqER,j , j “ 0, 1, 2, 3, . . . , (75d)

Here, we note that ghost points are introduced on either side of the interface at j “ 0 (x “ 0), and
the interface conditions are used determine their values. Following the discussion in Section 4.1, the
governing equation in (52a) is used with the interface condition in (64a) to generate a compatibility
condition involving the second derivative of Eξ with respect to x (as well as time derivatives of
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Pξ,m), which is then discretized in space. This leads to the discrete interface conditions

c2
LD`xD´xEL,0 ´ ε

´1
0,L

Np,L
ÿ

m“1

B2
tPL,m,0 “ c2

RD`xD´xER,0 ´ ε
´1
0,R

Np.R
ÿ

m“1

B2
tPR,m,0, (76a)

µ´1
0,LD0xEL,0 “ µ´1

0,RD0xE0,R, (76b)

where D0x is the centered divided difference operator in the x direction. We also impose conditions
that the solutions remain bounded as j Ñ ˘8,

|EL,j | ď CL, j Ñ ´8, (77a)

|ER,j | ď CR, j Ñ `8, (77b)

where CL and CR are constants. These equations are augmented with appropriate initial conditions.
Stability of this discrete approximation is encapsulated in the following theorem.

Theorem 4. The initial boundary-value problem for the discretization (75), with interface condi-
tions (76) and boundary conditions (77), does not admit exponentially growing solutions provided
the Cauchy problem for each semi-discretization in isolation has no growing modes and the param-
eters in the GDM model satisfy conditions (58).

Proof. As before, we consider separable solutions of the form

Eξ,jptq “ est pEξ,j , Pξ,m,jptq “ est pPξ,m,j , (78)

and show that no solutions exist with Repsq ą 0. Substituting the forms in (78) into the discrete
equations in (75) and (76), and eliminating pPξ,m,j , gives

c2
LD`xD´x

pEL,j ´ s
2
`

1` χLpsq
˘

pEL,j “ 0, j “ . . . ,´2,´1, 0, (79a)

c2
RD`xD´x

pER,j ´ s
2
`

1` χRpsq
˘

pER,j “ 0, j “ 0, 1, 2, 3, . . . , (79b)

with interface conditions

c2
LD`xD´x

pEL,0 ´ s
2χLpsq pEL,0 “ c2

RD`xD´x
pER,0 ´ s

2χRpsq pER,0, (80a)

µ´1
0,LD0x

pEL,0 “ µ´1
0,RD0x

pER,0. (80b)

General solutions of the difference equations in (79) have the form

pEξ,j “ Aξκ
j
ξ,` `Bξκ

j
ξ,´, (81)

where Aξ and Bξ are constants, and κξ,˘ are roots of the characteristic polynomial

κ2 ´ 2

ˆ

1`
1

2
zξ

˙

κ` 1 “ 0. (82)
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The parameter zξ in (82) is given by

zξ
def
“ λ2

ξh
2
ξ “

h2
ξ

c2
ξ

s2p1` χξpsqq, (83)

where λξ, defined previously in (70), depends on s.
As in the continuous two-domain model problem, we can use (83), (74), and stability of the

Cauchy problems to rule out the case when RepλLq “ 0 or RepλRq “ 0, and focus the analysis on
the case when Repλξq ‰ 0. For this latter case, roots of (82) can be defined such that one root has
magnitude greater than one, while the other has magnitude less than one. (Note that the product
of the roots is one.) This property is helpful to identify solutions in (81) that decay or grow as
j Ñ ˘8. For this purpose, it is convenient to express the roots of (82) in the form

κξ,˘ “ 1`
1

2
zξ ˘

?
zξ

c

1`
1

4
zξ , (84)

where the principal branch of the square root functions are assumed. Figure 4 shows the behavior
of |κξ,˘| as a function of the real and imaginary parts of zξ. We observe that |κξ,˘| “ 1 if and
only if zξ is real and ´4 ď zξ ď 0. Note that zξ defined in (83) cannot be real with zξ ď 0 since
Repλξq ‰ 0. Thus, |κξ,`| ą 1 and |κξ,´| ă 1, and bounded solutions of the difference equations in
the left and right domains from (81) are

pEL,j “ ALκ
j
L,`,

pER,j “ BRκ
j
R,´. (85)

The discrete interface condition in (80a), together with the difference equations in (79) at j “ 0,
imply

s2
pEL,0 “ s2

pER,0,

and thus AL “ BR as in the continuous problem. Note that we have assumed implicitly that the
initial conditions for Eξ and BtEξ satisfy the primary jump condition ELp0, tq “ ERp0, tq. The
second interface condition in (80b) then requires

µ´1
0,L

˜

κL,` ´ κ
´1
L,`

2hL

¸

“ ´µ´1
0,R

˜

κR,´ ´ κ
´1
R,´

2hR

¸

,

for nontrivial solutions to exist. Substituting for κL,` and κR,´, and using κξ,`κξ,´ “ 1, gives

?
zL

a

1` zL{4

µ0,L hL
“ ´

?
zR

a

1` zR{4

µ0,R hR
. (86)

The condition in (86) is a discrete analog of (72), and if it can be shown that there are no solutions
of (86) with Repsq ą 0, then the proof is complete. For the discrete case, this last step of the proof
involves technical details involving bounds on the terms in (86), which make use of the conditions
in (58) on the GDM parameters. These details are provided in Appendix A to complete the proof.

l

30



1
1

1.5

2

2.5

3

Im(z)

0
20

Re(z)

-2-4-1 -6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

10.2
-6

0.4

0.6

Im(z)

-4 0

0.8

Re(z)

-2

1

0
-12

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Surface plots of |κ`| and |κ´| versus z, κ˘ “ 1` z{2˘
?
z
a

1` z{4.

5.4. Matrix stability analysis of the ADE-GDM schemes

To further investigate the properties of the interface approximations, a matrix stability analysis
is performed for fully discrete second-order and fourth-order accurate approximations of the system
in (52) for a two-domain problem. In this approach, the eigenvalues of the time-stepping matrix are
checked to determine whether the schemes admit growing solutions in time. It is shown numerically
that the time-stepping schemes with ADE-GDM interface conditions are stable over a range of GDM
parameters provided these parameters are chosen to satisfy the Routh-Hurwitz stability conditions
in each domain as in (58).

We consider the solution to a two-domain problem in one space dimension using fully discrete
ADE-GDM space-time schemes. The second-order accurate version of the scheme takes the form

D`tD´tE
n
j “ c2D`xD´xE

n
j ´ ε

´1
0 D`tD´tP

n
j , (87a)

D`tD´tP
n
j ` b1D0tP

n
j ` b0P

n
j “ a0E

n
j ` a1D0tE

n
j , (87b)

for a range of j on each material domain, and assuming a single polarization state. Here, Enj
corresponds to a tangential component of the field to be consistent with the interface conditions
given below. We use two material domains, denoted by left and right. Dirichlet boundary conditions
are imposed on the far left and far right boundaries. At the interface between the two material
domains the discrete interface conditions take the form

“

µ´1
0 D0xE

n
j

‰

I
“ 0, (88a)

”

pc2 ´ ε´1
0 KqD`xD´xE

n
j ` c0E

n
j ` c1E

n´1
j ` d0P

n
j ` d1P

n´1
j

ı

I
“ 0, (88b)

for constants K, tc0, c1u and td0, d1u, whose values can be determined following the approach
described in Section 4.1 and summarized in (27) and (28) for the second-order case.

We first verify the accuracy of the second-order accurate scheme in (87) and (88), and the
corresponding fourth-order scheme, by performing a grid refinement study. The left and right
domains are taken to be x P r´π, 0s and x P r0, πs, respectively, with x “ 0 being the position of
the interface. The material parameters for each domain are
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Material ε0 Np a0 a1 b0 b1

left 1 1 2 0.6 0.4 0.9

right 4 1 1.1 0.7 0.8 1.2

with µ0 “ 1 on both sides. An exact solution can found to the scattering problem with incident
field

Epiqpx, tq “ e´iωteikx,

where ω “ 5 and the wave number k P C chosen to satisfy the dispersion relation in the left domain.
The initial conditions and boundary conditions for the numerical schemes are taken from the exact
solution.

Figure 5: Maximum errors versus grid spacing for the one-dimensional ADE-GDM test code for interfaces. The
legend indicates “O2” for the second-order scheme and “O4” for the fourth-order scheme.

Figure 5 shows the max-norm errors of the solutions of the second-order and fourth-order
accurate schemes versus grid spacing for the one-dimensional two-domain problem. The time step
for each grid with mesh spacing h is chosen to satisfy the CFL condition

max
ξ“L,R

tcξu
∆t

h
“ Ccfl,

where cξ “ 1{
?
ε0,ξµ0,ξ, ξ “ L,R, are the wave speeds in the left and right domains, and Ccfl “ 0.9.

The errors shown in the figure indicate that the fully discrete time-stepping schemes with interface
approximations are converging at their expected rates.

Having verified the convergence of the schemes for one set of GDM parameters, we now consider
their stability for a range of parameters. The second and fourth-order schemes are both three-level
schemes in time, and can be written in matrix form as

„

qn`1

qn



“ A

„

qn

qn´1



, A
def
“

„

A11 A12

I 0



.

Here, qn is a vector that holds the discrete values for Enj and Pnj on both domains, and A is the time-
stepping matrix. The scheme is stable, by which we mean no growth in time, if all eigenvalues λ of A
have magnitude less than or equal to one, |λ| ď 1, and there are no defective multiple eigenvalues
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with |λ| “ 1. For example, for the non-dissipative case we expect all eigenvalues to satisfy |λ| “ 1.
More generally one could allow bounded exponential growth in time for which |λ| ď 1`Op∆tq.

The entries in the time-stepping matrix are evaluated directly from the time-stepping code
using a discrete delta-function approach, which is implemented as follows. Consider a generic
linear system Ax “ b, with A P Rmˆm, x P Rm and b P Rm, for which we only know how to
compute the residual

rpyq “ Ay ´ b, (89)

for a given vector y P Rm. The entries in column i of A, denoted by ai, are then found by evaluating
the residual using

ai “ rpeiq ´ rp0q,

where ei is the unit vector (discrete delta function) with a one at position “i” and zeros elsewhere.
This approach is implemented easily, and it also helps to ensure that the time-stepping matrix
agrees with the time-stepping code. We note that some care must be taken to deal with constraint
equations, such as the interface and boundary conditions, since we have found it easiest to evaluate
the eigenvalues if these constraint equations and their associated unknowns (e.g. ghost point values)
have been eliminated.

Figure 6 shows matrix stability results for the second-order and fourth-order accurate schemes
as a function of a0 and b0 on the left domain. The figures are created by computing the spectral
radius

ρpAq “ max |λipAq|,

of the time-stepping matrix for different discrete values of the parameters a0 and b0 in the left
domain. There are always some eigenvalues with modulus very near one, and thus the contours
of ρpAq in the stable region are very close to one. The figures show that the scheme is stable in
the region of parameter space where the Routh-Hurwitz condition a1b0 ă a0b1, is satisfied. For
comparsion, the stability regions were generated for two different grid spacings of ∆x “ π{N with
N “ 10 and N “ 20. The regions are very similiar for the two grid spacings.

6. Numerical results

This section presents results to verify the accuracy and stablility of the new interface conditions.
The first test case considers scattering of a dispersive plane wave from a planar interface between
two dispersive media. This simple geometry acts as a benchmark for more complex configurations.
The second test case looks at scattering of a plane wave from a two-dimensional cylinder (disk)
in which the regions interior and exterior to the disk are dispersive. Scattering from a dispersive
sphere is evaluated as a third verification. A final more complex example shows scattering from a
collection of dispersive objects to demonstrate the flexibility of the approach.

6.1. Scattering from a planar interface between two dispersive materials

This section considers the scattering of a plane wave from the flat interface between two disper-
sive materials; this is a simple but fundamental test of the new interface conditions. The incident
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Figure 6: Matrix stability results for the second-order accurate interface scheme (left) and fourth-order accurate
interface scheme (right). Regions of stability (no growth in time) varying a0 and b0 on the left side of the interface.
Contours of the spectral radius, ρpAq, are plotted (not shown when ρpAq ą 1` ε, where ε “ 10´5). Top: h “ π{20,
bottom: h “ π{10.

wave, originating in the left domain, is taken in the form of a plane wave,

Epiq “ a est eik¨x, (90)

where s P C, k is the incident wave-number vector, and a is an amplitude vector satisfying kTa “ 0
(since ∇¨Epiq “ 0). The exact solution for dispersive materials has the same form as the well-known
solution for non-dispersive materials [18]. The exact solution is defined in terms of a root s to the
dispersion relation for the left domain which depends on k and the GDM parameters in the left
domain. There are multiple roots to this dispersion relation, corresponding to multiple fundamental
modes, and we choose either a non-resonant (NR) mode, which is a pertubation of a root to the
non-dispersive equations (i.e. s « ´ic|k|), or a resonant (R) mode, which is a new dispersive root.
See [12] for further details on resonant and non-resonant modes.

The second and fourth-order accurate time-stepping schemes described in Algorithms 1 and 2,
respectively, are used to compute approximate solutions. The initial conditions and boundary
conditions for the time-stepping schemes are assigned from the exact solution, and the second
and fourth-order accurate interface conditions described in Section 4 are used to assign ghost
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points adjacent to the interface. The computational grids, denoted by Gp`q, have a target grid
spacing approximately equal to ∆sp`q “ 1{p10`q. In two dimensions, the left domain is the square
r´1, 0s ˆ r0, 1s, while the right domain is the adjacent square r0, 1s ˆ r0, 1s. In three dimensions,
the left domain is the box r´1, 0s ˆ r0, .5s ˆ r0, .5s, while the right domain is the adjacent box
r0, 1s ˆ r0, .5s ˆ r0, .5s. In three dimensions, the grid spacing in the x-direction (normal to the
interface) is smaller by a factor of 0.75 to avoid the tall-cell interface issue as discussed in Section 4.3.

In two dimensions, we take GDM materials with three polarization vectors on the left and two
on the right, and consider the case of an incident wave hitting the interface at an oblique angle.
The relavent parameters are:

Material ε0 Np a0,m a1,m b0,m b1,m

left 3 3 r1, 1.5, 2s r.1, .07, .05s r1, 1.5, 2s r.2, .1, .05s

right 2 2 r1.2, 1.4s r.1, .15s r.8, 1.2s r.05, .09s

NR-mode: s « p´.113635,´10.1600q

R-mode: s « p´.098328,´.989946q

with

k “ 2π
r2, 1, 0sT
?

22 ` 12
, a “

r´1, 2, 0sT
?

12 ` 22
.

In three dimensions, we take GDM materials with two polarization vectors on the left and one
on the right, and again consider an incident wave hitting the interface at an oblique angle. The
relavent parameters are:

Material ε0 Np a0,m a1,m b0,m b1,m

left 1 2 r1, 1.5s r.1, .125s r1, 1.5s r.2, .1s

right 2 1 r1s r.1s r1s r.2s

NR-mode: s “ p´.114013,´14.4821q

R-mode: s “ p´.0992613,´.9926566q

with

k “ 2π
r2, 1, 0.5sT

?
22 ` 12 ` 0.52

, a “
r´1, 2, 0sT
?

12 ` 22
.

Figure 7 shows contours on cutting planes for the solution component Ez and the error in Ez.
Note that Ez has only scattered and transmitted field components. The solution and the error are
seen to be smooth in each domain, which indicates there are no visible spurious effects caused by
the discrete interface conditions.

Figure 8 shows graphs of the max-norm errors at time t “ 0.5 as a function of grid-spacing for
the second-order accurate scheme (blue lines) and fourth-order accurate scheme (red lines). Results
are shown in two and three dimensions for a resonant (R) and non-resonant (NR) mode. Errors
reported for a vector such as E denote the maximum error over all its components and over all
grid points. The graphs clearly show that the numerical schemes are converging at very close to
the expected rates for both E and P. As expected the errors in the fourth-order accurate scheme
become much smaller than those for the second-order accurate scheme as the mesh is refined.
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Figure 7: Scattering at a planar interface between two dispersive material in three dimensions. Contours of the
solution component Ez (left) and the error in Ez (right) are shown on selected cutting planes at time t “ 0.5. The
solution was computed on grid Gp8q (coarsened grid lines on the boundary are shown).

Figure 8: Maximum errors versus grid spacing for scattering of a dispersive plane wave from an planar interface.
Left: two dimensions. Right: three dimensions. The legends indicate “O2” for the second-order scheme and “O4”
for the fourth-order, while “N” denotes the non-resonant mode and “R” the resonant mode.

6.2. Scattering from a two-dimensional dispersive dielectric disk

Consider a two-dimensional circular disk of one dispersive material embedded in a second disper-
sive material. The solution to the scattering of a TE-z plane wave in the outer domain impinging on
the disk can be determined as a Mie series in the same manner as for non-dispersive materials [24]
except that the series involves Bessel functions with complex arguments. The incident electric field
takes the form

Hz “ aze
st eikx, Ey “ ´az

ik

sε̂opsq
est eikx,

where az defines the amplitude of the wave and ε̂opsq is the permittivity in the outer domain. For
a given wave number k, s P C is chosen as a root of the dispersion relation in the outer domain. As
noted in the previous section, there are multiple possible roots to the dispersion relation. When the
outer domain is dispersive there are both resonant and non-resonant modes, and we show results
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and grid convergence for both types of fundamental modes.

Ey
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Ey-err
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Figure 9: Left: A coarse grid representation of the composite grid Gp2q for the dielectric disk. Middle: The Ey field
for the NR-mode on grid Gp16q at t “ 0.3 computed using the fourth-order accurate ADE-GDM scheme. Right: The
the error in the computed Ey field.

The geometry of the problem consists of a disk of radius rd “ 0.4 enclosed in a larger square
domain with dimensions r´2, 2sˆr´2, 2s. The composite grid for the domain, of resolution factor `,

is denoted by Gp`qd and has grid spacing approximately equal to ∆sp`q “ 1{p20`q. The composite
grid, as shown in the left plot of Figure 9, consists of four component grids. The region outside
the disk is covered with a blue Cartesian grid and a green interface-fitted grid. The region inside
the disk is covered with a red Cartesian grid and a pink interface-fitted grid. The region interior
to the disk is covered by an annular interface-fitted grid and an interior Cartesian grid. The outer
domain also consists of an annular interface-fitted grid and a background Cartesian grid.

The boundary conditions on the outer square are taken from the exact solution. The initial
conditions are also assigned from the exact solution. The interface is treated using our new discrete
conditions. The outer domain is taken as a dispersive material with one polarization vector, while
the region inside the disk is a dispersive material with two polarization vectors. The exact solution
is defined for k “ 3p2πq and az “ 1, and the remaining parameters are given as follows:

Material ε0 Np a0,m a1,m b0,m b1,m

outer 1 1 r1s r0.1s r1s r0.2s

inner 0.25 2 r1.2, 1.4s r0.1, 0.15s r0.8, 1.2s r0.05, 0.09s

NR-mode: s “ p´0.050417,´18.8755q

R-mode: s “ p´0.099583,´0.993642q

Figure 9 shows contours of the solution component Ey and the error in Ey. The solution and
the error are seen to be quite smooth in each domain near the interface (the error can jump at
the interface since the solution can also jump) which indicates there are no visible spurious effects
caused by the discrete interface conditions. There is a small visible change in the contour lines of
the error near the interpolation points (note that the contours are independently plotted twice in
the overlap region), but this is not unusual.
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Figure 10: Left: Resonant (R) and non-resonant (NR) modes for scattering from a disk. Contours of the solution at

t “ 0.3 on grid Gp8qd . Right: Max-norm errors as a function of grid spacing for a resonant(R) and non-resonant (NR)
modes.

Figure 10 compares contours of the solution components between the non-resonant (NR) and
resonant (R) modes. The wave numbers of the two modes are chosen to be the same, but the
variations in time, as determined by a root s of the dispersion relation, are significantly different.
The R mode moves more slowly than the NR mode and is more strongly damped in time. The
resonant mode, which is more strongly damped within the disk, exhibits a strong shadow region
behind the disk.

Figure 10 also shows graphs of the max-norm errors at time t “ 0.5 as a function of the
grid-spacing for the second-order accurate and fourth-order accurate schemes. Results are shown
for R and NR modes. Errors reported for a vector such as E denote the maximum error over all
components of E and over all grid-points. The graphs clearly show that the numerical solutions
are converging at very close to the predicted rates for both E and P. As expected, the errors in
the fourth-order accurate solution become much smaller than those for the second-order accurate
solution as the mesh is refined.

6.3. Scattering from a dispersive dielectric sphere

In this section we compute the solution to the scattering of a plane wave passing through
one dispersive material and scattering from a sphere of a different dispersive material. The exact
solution has the same form as for non-dispersive materials [24] except that the series solution
involves spherical Bessel functions with complex arguments.

The computational domain for the problem, as shown in Figure 11, is taken to be the region
interior to the cube r´2, 2s3, and it includes a spherical interface separating the two different
dispersive materials. The spherical interface is centered at the origin and has radius equal to one.

38



Ey

-1.5 1.7

Ey-err

-1.3e-5 1.4e-5

z

y

x

x

y

z

x

y

z

Figure 11: Left: a portion of the composite grid for scattering from a dispersive dielectric sphere. The region
adjacent to the sphere is covered by three overlapping patches exterior to the sphere and another three on the interior
(not shown). Middle and right: Contours of Ey and the error in Ey from the computed solution on grid Gp8qs at
t “ 0.5. Coarsened versions of the grids on the surface of the sphere are also shown for reference.

The composite overlapping grid for this geometry consists of eight component grids. There are four
grids in the region exterior to the spherical interface: a background Cartesian grid together with
three interface-fitted patches that form a spherical shell. These later three component grids consist
of a spherical polar patch covering most of the sphere and two orthographic patches over the two
polar regions (see left plot of Figure 11). The orthographic patches remove the singularities at the
two coordinate poles of the spherical-polar grid patch. The region inside the sphere is similarly
covered with four component grids: an interior Cartesian grid togther with three patches that form
a spherical shell fitted to the interior side of the interface.

The boundary conditions on the outer boundary are taken from the exact solution. The initial
conditions are also assigned from the exact solution. The ghost points on either side of the spherical
interface treated using our new discrete interface conditions. The outer domain is taken as a
dispersive material with one polarization vector, while region inside the sphere is a dispersive
material with two polarization vectors. The relevant parameters for the exact solution are k “ 2π
and

Material ε0 Np a0,m a1,m b0,m b1,m

outer 1 1 r1s r0.1s r1s r0.2s

inner 2 2 r1.2, 1.4s r0.1, 0.15s r0.8, 1.2s r0.05, 0.09s

NR-mode: s “ p´0.053776,´6.36236q

R-mode: s “ p´0.0982242,´0.982812q

Figure 11 shows contours of the computed solution for Ey at t “ 0.5 for the resonant mode. It is
noted that the tangential components of the electric field are continuous at the interface while the
normal components jump, and thus Ey is discontinuous at the interface except where the surface
of the sphere is tangent to the y-axis. The errors in Ey are also plotted and these are small and
reasonably smooth in each domain indicating no obvious artifacts from either the interface condi-
tions or interpolation between component grids. A grid resolution study is performed on a sequence
of composite grids of increasing resolution. The composite grid with grid spacing approximately

equal to ∆sp`q “ 1{p10`q is denoted by Gp`qs . Maximum-norm error convergence results are shown
in Figure 12 for the second-order accurate and fourth-order accurate approximations. Results are
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Figure 12: Maximum errors versus grid spacing for scattering of a dispersive plane wave from a dispersive solid
sphere. Results are shown for the second-order acccurate scheme (in blue) and the fourth-order accurate scheme (in
red). Errors for a non-resonant mode (N) and a resonant mode (R) are given.

shown for a resonant (R) and non-resonant (NR) mode. The graphs clearly show that the numerical
solutions are converging at close to the predicted rates for both E and P. As before, the errors in
the fourth-order accurate solution become much smaller than those for the second-order accurate
solution as the mesh is refined.

6.4. Scattering from a multi-material disk

To demonstrate the accuracy, flexibility and robustness of the CgMx simulation code with the
new interface approximations, we consider a scattering problem involving several different dispersive
materials separated by numerous curved interfaces as shown in Figure 13. A traveling wave with
Gaussian cross-section moves from left to right, and it scatters from a collection of dispersive disks.
A self-convergence study is performed to show the estimated convergence rates for solutions of this
complex problem at different grid resolutions.

R4

R3

R1

R2

r2

r1

´2

2

´2 2

Figure 13: Left: Geometry for the multi-domain scattering example. Right: Enlarged view of the composite grid
with different material regions coded by their colours.
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Figure 14: A Gaussian traveling-wave scattering from the multi-disk structure. Contours of |E| at selected times.

The composite grid for the geometry, as shown in Figures 2 and 13, is denoted by Gp`qmd and has

grid spacing approximately equal to ∆sp`q “ 1{p10`q. The material disks are enclosed in a large
rectangle with dimensions r´4, 4sˆr´3, 3s. An inner circular region of radius R2 “ 1 contains eight
small disks each of radius r1 “ 0.2, which are equally spaced around a circle of radius R1 “ 0.7.
An annular region of outer radius R4 “ 2 surrounds the inner disk and contains twelve disks of
radius r2 “ 0.3 arranged along a circle of radius R3 “ 1.5. As shown in Figure 13, each domain has
a background Cartesian grid together with a narrow annular grid fitted to each curved interface.

The initial conditions are taken to match a traveling wave with Gaussian profile, initially cen-
tered at x0 “ ´3, and given by

Hzpx, y, tq “ exp
”

´β
`

kxpx´ x0q ` kypy ´ y0q ´ ωt
˘2
ı

, (91a)

Expx, y, tq “
ky
ε0ω

Hzpx, y, tq, (91b)

Eypx, y, tq “
´kx
ε0ω

Hzpx, y, tq, (91c)

where we take ε0 “ 1, kx “ 0.5, ky “ 0, β “ 120 and ω “ 0.5. The solutions at t “ 0 and t “ ´∆t
are set from (91) as initial conditions for the scheme. The boundary conditions on top and bottom
of the rectangular outer domain are taken as periodic, and far-field boundary conditions are used
on the left and right faces.

The parameters for the material in the outer domain and the materials that make up the
scatterer, identified by the colours of the grids that appear in Figures 2 and 13, are taken as
follows:
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Material ε0 Np a0,m a1,m b0,m b1,m

outer (blue) 1 0

green 2 1 r0.7s r0s r6s r0.2s

red 4 3 r0.9, 0.8, 0.7s r0.1, 0.08, 0.06s r4, 3, 2s r0.05, 0.07, 0.09s

purple 0.5 2 r1.1, 0.6s r0, 0.05s r3, 1.5s r0.1, 0.2s

light blue 0.25 1 r0.8s r0.05s r2s r0.05s

To estimate the accuracy of the computed solution, self-convergence tests for the second-order
and fourth-order accurate schemes are performed and the results are presented in Table 1. Solu-

tions are computed on the composite grids Gp`qmd, ` “ 2, 4 and 8. The maximum error Eκ` in the

solution component κ for grid Gp`qmd, and the corresponding convergence rate, are estimated using
a Richardson extrapolation procedure following the approach described in [25]. The results in the
table show that the max-norm errors are converging at close to second-order for the second-order
accurate scheme and close to fourth-order for the fourth-order accurate scheme.

Multiple disks, second-order

∆sp`q EpEsq

` r EpEyq

` r

1/20 2.6e-2 2.8e-2

1/40 6.2e-3 4.1 6.6e-3 4.3

1/80 1.5e-3 4.1 1.5e-3 4.3

rate 2.05 2.11

Multiple disks, fourth-order

∆sp`q EpEsq

` r EpEyq

` r

1/20 3.5e-4 5.0e-4

1/40 2.0e-5 17.3 3.0e-5 16.6

1/80 1.2e-6 17.3 1.8e-6 16.6

rate 4.11 4.05

Table 1: Max-norm self-convergence results for scattering from multiple disks at t “ 3. The column labeled “r” denotes
the ratio of the errors. The convergence rates estimated by Richardson extrapolation are close to the expected rates.

7. Conclusions

A high-order accurate finite-difference scheme for solving the dispersive time-domain Maxwell’s
equations with a generalized and material interfaces was described. A generalized dispersion ma-
terial model (GDM) was used to model general linear dispersive effects together with auxilary
differential equations (ADE) to model the polarization vectors. Composite overlapping grids were
used to treat complex geometry with boundary and interface conforming grids. The time-stepping
was based on three-level single-stage schemes for Maxwell’s equations in second-order form, which
achieve high-order accuracy in space and equal-order accuracy in time. Interface conditions based
on compatibility conditions were developed for second-order accurate and fourth-order accurate
versions of the scheme. An interface projection based on a Riemann problem was developed. This
approach to interfaces was found to retain the large CFL-one time-step restriction associated with
the interior schemes. One key result of the paper was showing how to treat the polarization terms
that appear in the interface compatibility conditions so as to retain the three-level and centered na-
ture of the approximation. The approach was based on taking a virtual step on the interface to the
next time. The second-order scheme was embedded in a hierarchial fashion within the fourth-order
scheme. A second key result, applicable to a more general class of problems, was a showing how
to solve the resulting coupled interface conditions for the fourth-order scheme in a locally decou-
pled manner and thus avoiding the solution of large coupled system of equations on the interface.
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Here the second-order accurate scheme was used to approximate some mixed derivative terms that
appear in the fourth-order accurate interface conditions.

The stability of the new schemes were studied using model problem analysis. A semi-discrete
analysis of a one-dimensional interface problem (discretized in space with time kept continuous)
showed that the coupled problem for the second-order accurate scheme with discrete interface
conditions was stable provided the schemes on each sub-domain were stable. A matrix stability
analysis confirmed the stability of the second-order accurate and fourth-order accurate schemes for
the fully-discrete model problem .

The new schemes were carefully verified for the case of a planar interface between dispersive
materials in two and three space dimensions, the scattering from two-dimensional disk and the
scattering from a three-dimensional sphere. Exact solutions for the dispersive Maxwell equations
were developed for all these cases. The schemes were found to be accurate and stable. A final
complex example showed the scattering of a Gaussian travelling wave from a collection of many
materials regions. A self-convergence grid-refinement study confirmed the accuracy of the schemes.

Appendix A. Details required to complete the proof of Theorem 4

We prove that, under the assumptions of Theorem 4, there are no solutions to (86) for Repsq ą 0.

Using zξ “ λ2
ξh

2
ξ “

h2
ξ

c2ξ
s2p1 ` χξq from (83) and substituting into the factors

?
zξ in (86) leads to

the equivalent condition

1

cLµ0,L

a

1` χL
a

1` zL{4 “ ´
1

cRµ0,R

a

1` χR
a

1` zR{4, (A.1)

after cancelling factors of s on both sides. Our focus now is on showing that (A.1) has no solutions
for Repsq ą 0. We start with a lemma.

Lemma 1. If the GDM coefficients satisfy (58) and if Repsq ą 0, then

Impsq Impχq ď 0.

Proof. From (59), the imaginary parts of χm and s satisfy

ImpsqImpχmq “ ´
´

a1,m|s|
2 ` pa0,mb1,m ´ a1,mb0,mq ` 2a0,mRepsq

¯ Impsq2

dm
. (A.2)

Thus, if the conditions in (58) hold and Repsq ą 0, then (A.2) implies

Impsq Impχmq ď 0. (A.3)

Summing (A.3) gives

Impsq Impχq ď 0,

which completes the proof of the lemma. l

The proof that (A.1) has no solutions for Repsq ą 0 is split into different cases, and in each case
we show that the argument of the complex variable on the left-hand side of (A.1) cannot equal that
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on the right-hand side. The first major choice is on the sign of Impsq so that we may use Lemma 1.
We first choose Impsq ě 0 which implies Impχξpsqq ď 0 from Lemma 1. The proof for the second
major choice of Impsq ď 0 and Impχξpsqq ě 0 follows in a similar way to that given below, and is
not given here.

Introduce the polar form for the complex quantities s,
a

1` χξ and zξ, and use Repsq ą 0,
Impsq ě 0, Impχξpsqq ď 0 and Repλξq ‰ 0 to define bounds on their arguments. We have

s “ reiθ, 0 ď θ ă π{2, (A.4a)
a

1` χξ “ ρξe
iφξ , ´π{2 ď φξ ď 0, (A.4b)

zξ “
h2
ξ

c2
ξ

λ2
ξ “

h2
ξ

c2
ξ

s2p1` χξq “ R̃ξe
i 2pθ`φξq, ´π ă 2pθ ` φξq ă π, (A.4c)

where r, ρξ and R̃ξ are their respective magnitudes, and θ, φξ and Argpzξq “ 2pθ ` φξq are their
arguments. Here, Argpwq denotes the principal value of the argument of the generic complex
variable w. Note that we exlude Argpzξq “ π in (A.4c), since Repλξq ‰ 0. Also, it should be kept
in mind that the prinicpal branch is used for all square root functions.

Define

Hξ
def
“

1

cξ µ0,ξ

a

1` χξ

b

1` zξ{4,

which is the quantity that appears on the left and right-hand sides of (A.1). Our goal, then,
is to show there are no solutions of HL “ ´HR for Repsq ą 0. There is a special case, where
HL “ HR “ 0, which implies χξ “ ´1 or zξ “ ´4. When zξ “ ´4, λξ is pure imaginary which
contradicts our assumption Repλξq ‰ 0. When χξ “ ´1, λξ “ 0 which is again a contradiction.
Therefore we can exclude the case HL “ HR “ 0. For the remaining cases, it is helpful to note that
the argument of

a

1` zξ{4 appearing in (A.1) can be bounded by the argument of
?
zξ as follows:

Argp
b

1` zξ{4q ď Argp
?
zξq, for 0 ď Argpzξq ă π,

Argp
b

1` zξ{4q ě Argp
?
zξq, for ´π ă Argpzξq ď 0.

The remainder of the proof is divided into three cases depending on the sign of Impzξq.

Case I: Assume Impzξq ě 0 for ξ “ L,R, so that 0 ď 2pθ ` φξq ă π, then

b

1` zξ{4 “ R̂ξe
iθ̂ξ , 0 ď θ̂ξ ď θ ` φξ ă π{2,

which implies

a

1` χξ

b

1` zξ{4 “ ρξR̂ξe
ipφξ`θ̂ξq, ´π{2 ď φξ ` θ̂ξ ď θ ` 2φξ ă π{2.

Thus, ´π{2 ď ArgpHξq ă π{2 and Hξ lies in the right-half plane (excluding the positive imaginary
axis) for ξ “ L,R, which implies that the only way for HL “ ´HR to hold is for Hξ “ 0, but we
have shown this is not possible either. Therefore there are no solutions to (A.1) for Case I.
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Case II: Assume Impzξq ď 0 for ξ “ L,R, so that ´π ă 2pθ ` φξq ď 0, then

b

1` zξ{4 “ R̂ξe
iθ̂ξ , ´π{2 ă θ ` φξ ď θ̂ξ ă 0,

which implies

a

1` χξ

b

1` zξ{4 “ ρξR̂ξe
ipφξ`θ̂ξq, ´π ă θ ` 2φξ ď φξ ` θ̂ξ ď 0.

Thus, ´π ă ArgpHξq ď 0 and Hξ lies in the lower half plane (excluding the negative real axis) for
ξ “ L,R which again implies (A.1) has no solutions.

Case III: The third case is when ImpzLq and ImpzRq are of opposite signs. Without loss of
generality we may take ImpzLq ě 0 and ImpzRq ă 0. Note that from the polar form for zξ in (A.4c)
we must have φR ă φL for this case to apply. From ImpzLq ě 0 and ImpzRq ă 0, and using the
results from Cases I and II, it follows that

a

1` χL
a

1` zL{4 “ ρLR̂Le
ipφL`θ̂Lq, ´ π{2 ď φL ` θ̂L ď θ ` 2φL ă π{2, (A.5a)

a

1` χR
a

1` zR{4 “ ρRR̂Re
ipφR`θ̂Rq, ´ π ă θ ` 2φR ď φR ` θ̂R ď 0.

Multiplying the second expression by ´1 “ eiπ adds π to the angle, so that

´
a

1` χR
a

1` zR{4 “ ρRR̂Re
ipφR`θ̂R`πq, 0 ă θ ` 2φR ` π ď φR ` θ̂R ` π ď π (A.5b)

Unfortunately, the ranges for ArgpHLq and Argp´HRq given in (A.5) overlap and so we need a
more refined argument. Note that from ´π{2 ď φξ ď 0 and φR ă φL, it follows that

0 ď φL ´ φR ď π{2,

which implies

θ ` 2φL ď θ ` 2φR ` π. (A.6)

Since ArgpHLq “ φL ` θ̂L and Argp´HRq “ φR ` θ̂R ` π, it now follows from (A.5) and (A.6) that

ArgpHLq “ φL ` θ̂L ď θ ` 2φL ď θ ` 2φR ` π ď Argp´HRq “ φR ` θ̂R ` π. (A.7)

Therefore ArgpHLq ď Argp´HRq. We must rule out the case ArgpHLq “ Argp´HRq. By assump-
tion, ImpzRq ă 0 so that ´π ă ArgpzRq ă 0, which implies Argp

a

1` zR{4q is strictly greater than
Argp

?
zRq. This implies θ` 2φR` π ă Argp´HRq in (A.7). Therefore, ArgpHLq ă Argp´HRq and

so HL “ ´HR is not possible.

We have thus shown that there are no solutions to the discrete interface condition in (86) with
Repsq ą 0, which completes the proof of Theorem 4.
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