
JOURNAL OF COMPUTATIONAL PHYSICS 90, 14 (1990) 

Composite Overlapping Meshes for 
the Solution of Partial Differential Equations 

G. CHESHIRE AND W. D. HENSHAW 

IBM Research Division, Thomas J. Watson Research Centre, 
Yorktown Heights, New York l&598 

Received January 24, 1989; revised September 6, 1989 

We discuss the generation of curvilinear composite overlapping grids and the numerical 
solution of partial differential equations on them. A composite overlapping grid consists of a 
set of curvilinear component grids that cover a region and overlap where they meet. 
Continuity conditions (interpolation) are imposed at the overlapping boundaries. The 
principal advantage of composite grids is in the generation of grids for regions with 
complicated geometries. The grid construction program CMPGRD is used to create 
composite grids with any number of component grids. We describe some techniques for the 
solution of elliptic and time-dependent PDEs on composite meshes. Applications to the 
solution of the compressible Navier-Stokes equations are presented. 0 1990 Academic Press, Inc. 
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1. INTRODUCTION 

We consider the solution of partial differential equations on composite overlap- 
ping grids. For the purposes of this article the term composite (overlapping) grid or 
composite mesh will have a particular meaning described briefly as follows. A 
composite grid is a set of component grids. Each component gid is a logically 
rectangular curvilinear grid. The union of the component grids covers the region on 
which the PDE is to be solved. The component grids overlap where they meet and 
functions defined on the grids are matched by interpolation. One of the principal 
advantages of composite grids is the generation of grids on regions of complicated 
geometry. We are primarily interested in the solution of PDEs by finite difference 
methods on such regions. Since each component grid is logically a rectangle, 
composite grids are well suited to finite difference applications, although in 
principle a composite mesh can be triangulated and used with finite element or 
finite volume methods. We use the grid generation program CMPGRD [13] to 
construct our composite grids. CMPGRD, which is written in standard Fortran, 
implements an algorithm for the creation of very general composite meshes. In 
Fig. 1 we show various composite grids which have been generated by CMPGRD. 
CMPGRD has recently been extended to construct three-dimensional composite 
grids. This paper, however, will only consider two-dimensional grids although much 
of what we say applies in three dimensions. We will give a brief description of some 
of the features of CMPGRD and we will discuss some of the principles of grid 
generation. We also give a short description of the data structure we use to store 
the composite grid data. A set of Fortran utility programs, known collectively as 
the DSK package, has been written to manage this and other similar data 
structures. Further information regarding CMPGRD and the DSK package can be 
found in “Getting Started with CMPGRD, Introductory User’s Guide and 
Reference Manual” [ 111, “Composite Grid Data: An explanation of the CMPGRD 
composite grid data structure” [lo], and “The DSK Package, A Data Structure for 
Efficient Fortran Array Storage (Reference Guide for the DSK Package)” [ 143. 

After beginning with an overview of grid generation methods, Section 2, we 
proceed to discuss the creation of composite overlapping grids with CMPGRD in 
Sections 3 and 4. Next we give a brief description of some techniques for the solu- 
tion of time dependent and elliptic partial differential equations on composite 
meshes, Section 5. We describe how to interpolate between grids and how to choose 
the order of interpolation. Finally, Section 6, we show results from solving the 
compressible Navier-Stokes equations on general two-dimensional regions. We use 
second-order finite differences combined with implicit-explicit time stepping to 
discretize the equations. Examples are shown of supersonic flow past a cylinder, 
flow around an airfoil with multiple flaps, and the flow around the read-write head 
of a magnetic storage device. 
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FIG. 1. Sample composite grids generated with CMPGRD. 
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2. APPROACHES TO GRID GENERATION 

Before proceeding to discuss our work, let us first give some background on some 
of the techniques that exist for generating grids for the numerical solution of partial 
differential equations. The emphasis here will tend to be towards grids which are 
suitable for fluid dynamics computations. Many of these grid generation methods 
can be used within the composite grid setting as a means of generating component 
grids. Although it is more often the case that component grids are generated with 
the more simple techniques, this need not be the case: the Brackbill-Saltzman algo- 
rithm, which we briefly describe later, has been applied to the adaptive construction 
of component grids. More detailed discussions of grid generation can be found, for 
example, in the book of Thompson et al. [34] or the proceedings of the first and 
second international conferences on grid generation in computational fluid 
dynamics [ 19, 281. 

The simplest regions for computing solutions of PDEs in two dimensions are 
rectangular. Grid generation is then particularly easy. At the next level of 
complexity are those regions, D, for which there exists a smooth mapping of a 
rectangle onto D. The mapping can be used to generate a grid for D. In this case 
a single computer code can be written for all such regions since the grid is logically 
equivalent to a rectangle. Many methods have been devised to construct a one-to- 
one transformation from the unit square onto a bounded region D in the plane, 
under which the rectangular grid on the unit square corresponds to a boundary- 
fitted curvilinear grid on D. These methods usually fall into three classes: those 
which construct the transformation as the solution of a PDE (usually elliptic), 
those which construct the transformation algebraically as a weighted sum of points 
on the boundary (and in some cases other points describing curves interior to D), 
and those which construct the transformation from commonly known coordinate 
transformations by the appropriate choice of parameters. The latter methods 
readily provide transformations for such simple regions as a trapezoid or an 
annulus, but lack the versatility to handle regions of general shape. More 
sophisticated examples are the conformal Schwartz-Christoffel transformations for 
general polygonal regions. Generally, as the shape of the region becomes more 
complicated, these methods offer diminishing return for the effort of finding an 
appropriate transformation. Algebraic methods are more versatile in that they can 
provide transformations for regions whose boundaries need not be described in 
terms of simple functions. These methods can handle regions of relatively 
complicated geometries with a minimum of effort and computation. Methods based 
on PDEs are the most versatile and can be used for regions of quite general shape, 
but at the expense of the transformation being slower to compute than the one 
constructed by an algebraic method. Some PDE methods have the advantage of a 
maximum principle that ensures the transformation is one-to one. 

The simplest algebraic method is the shearing transformation 

d(r, s) = (1 - r)c,(s) + rc2(s) 
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FIG. 2. Shearing transformation. 

from the unit square onto the region bounded by the two curves C,= 
{Q(S) : 0 ,< s < 1) and the line segments joining their endpoints at s = 0 and s = 1, 
Fig. 2. A generalization of the shearing transformation is the Coons patch, [ 151, 
also known as tramfinite inrerpolation. The simplest form of the Coons patch is 

d(r,s)=(l-s)c,(r)+scz(r)+(l-r)c3(.r)+rc4(.s) 

which maps the unit square onto the region bounded by the four curves 
C,= {ck(s) :O<s< l}, where it is assumed that c,(O)=c,(O), c,(l)=c4(0), 
~~(0) = c3( l), and c2( 1) = c,( 1 ), Fig. 3. Like the shearing transformation, the Coons 
patch is fast to compute. Its advantage is that it can handle a region whose 
boundary consists of four given curve segments. However, it has trouble with 
regions with convoluted boundaries; the resulting transformation may have folds 
where its Jacobian derivative is singular. 

PDE methods for construction of coordinate transformations from the unit 
square onto a region D are generally more versatile than the algebraic methods in 
that they can handle regions of more complicated shape and that they offer greater 
control over resolution and skewness. This versatility comes at the expense of a 
higher computational cost. The most popular of these methods construct the trans- 
formation as the solution to an elliptic PDE boundary value problem, although 
methods based on hyperbolic and parabolic PDEs also exist. 

The best known elliptic method for construction of a coordinate transformation 
is perhaps the conformal mapping. A conformal mapping can be found for any 
simply-connected region D in two dimensions, as the solution of the 
Cauchy-Riemann equations 
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FIG. 3. Coons patch (transfinite interpolation). 

in the interior of D with boundary geometry (r, i) = !P(.Y, y) specified, where Y is 
a function (to be determined) that maps the boundary of D onto the boundary of 
the unit square. By differentiating and combining the Cauchy-Riemann equations 
we get Laplace’s equation V2( r, s) = 0 in the interior of D. This equation can be 
used in the interior of D provided the Cauchy-Riemann equations are used as extra 
boundary conditions. Conformal maps offer no control over the resolution in the 
interior or on the boundary; grid lines near the boundary of D are more dense 
where the boundary is concave than where it is convex. Conformal maps usually 
have singularities on the boundary of D where the Jacobian derivative becomes 
zero or infinite. Furthermore, conformal mapping methods do not generalize to 
three dimensions. 

As a more useful method for generating coordinate transformations, Winslow 
[36] proposed using Laplace’s equation V2(r, S) = 0, as in the conformal mapping, 
but relaxing the boundary conditions. The boundary condition (r, S) = ul(x, y) is 
imposed, with the function Y specified; the Cauchy-Riemann equations are not 
imposed at the boundary. This approach has the advantage over conformal 
mapping that it allows some control over the transformation near the boundary. 
In particular the boundary conditions can be chosen so that the corners of D 
correspond to corners of the unit square, so the transformation need not have 
singularities. Also, the transformation is faster to compute since it involves solving 

. only a linear problem. An example of a grid generated from an elliptic equation 
(from [22]) is shown in Fig. 4. The method generalizes easily to three dimensions. 
A disadvantage is that the resulting grid is no longer orthogonal. 
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FIG. 4. Grid generated from an elliptic equation. 

The use of elliptic systems for generating coordinate transformations was further 
generalized by Thompson, Thames, and Mastin [33] with the inclusion of forcing 
terms in the elliptic equations and branch cuts to allow for multiply-connected 
regions. The terms f and g in the equations V”(r, s) = (.f, g) allow greater control 
over the density of grid lines, not only near the boundary but also throughout the 
interior. The introduction of more than one branch cut, as necessary for many 
multiply-connected regions, results in a region D with more than four corners. In 
such cases some of the corners of D cannot correspond to corners of the unit 
square, and the transformation must have singularities there. 

Brackbill and Saltzman [S] generate coordinate systems using a variational 
formulation. They find the transformation that maximizes a funtional 
I= Z, + &I,. + &lb, where Z, is a global measure of the smoothness of the transfor- 
mation, I,. is a global measure of resolution, and Zb is a global measure of 
orthogonality. The Euler equation of this variational problem is an elliptic system 
of more complicated structure than that considered by Thompson. This method 
provides systematic global control over the resolution and other properties of the 
grid. This systematic control makes possible the automatic adaptive generation of 
grids. 

There are a number of limitations which apply to the use of a single curvilinear 
grid on a region with a curved boundary. Even on a region with a fairly simple 
geometry it could be that the density of grid lines is forced to be highly nonuniform. 
For example, a curvilinear grid for an oblong region with a narrow waist will 
inevitably have a much higher density of grid lines in the narrow waist than in 
other parts of the region. In addition, with a single transformation any local 
changes to the shape of the region or local changes to the density of grid lines will 
have global effects on the grid. Another limitation is that, if the region is not doubly 
connected, any transformation must have a singularity on the boundary. For 
example, the Jacobian of any transformation from the unit square onto a disc 
(polar coordinates) will be singular at some corners of the square. 
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Thus, despite the many improvements in generating a grid by transforming the 
unit square to the computational domain there appears to be still a need for more 
flexible methods. One form of generalization is to allow for multiple transformations. 
Patchedgrids attempt to grid a region D with multiple curvilinear grids which join 
precisely along some common boundary, see, for example, [35]. Another approach, 
which permits great flexibility, is the use of unstructured triangular or tetrahedral 
grids discretizing with finite volume [25, 23 or finite element methods [ 161. 
However, no matter how the equations are discretized, one of the most important 
points is the generation of a good grid. Whether one uses finite difference or finite 
element methods is then a matter of taste. Whether one method is better than 
another will often come down to details of implementation: how easy is it to 
program, how efficient is the method, can the code be vectorized/parallelized, how 
easy is it to implement higher-order methods or special techniques like upwind 
differencing, and so on. 

The approach we consider here is that of composite overlapping grids (also called 
ouerfaid grids), where multiple grids are allowed to overlap. This approach is 
similar in some ways to the overlapping grids methods developed by Berger [5, 61 
which have been successfully applied to a wide range of problems. The component 
grids in her approach are taken to be rectangles with emphasis on adaptively 
creating finer and liner rectangles in order to locally reline sharp features in the 
solution. In our case, however, the main emphasis is on generating a grid for a 
region with a complicated geometry, using curvilinear grids to generate boundary 
fitted coordinates and putting a smooth grid, without singularities, on multiply 
connected regions. We are also working on adaptive methods in which a curvilinear 
grid is automatically generated in order to resolve a feature such as a shock or 
layer. The idea is that a curvilinear grid can follow a curved shock using fewer grid 
points than a sequence of rectangular grids. Overlapping composite grids are more 
flexible than patched grids, since component grids are permitted to overlap as 
opposed to being forced to align along a particular curve. (A patched grid can in 
some sense be thought of as an overlapping grid with exactly zero overlap.) 

The composite overlapping grid technique has been in use for some time. The 
method has been promoted by Professor Heinz Kreiss for a number of years. For 
example, in 1977, Starius [29], who was a student of Professor Kreiss, looked at 
the convergence of elliptic problems on two overlapping meshes using the Schwartz 
alternating procedure. In a later paper [30] he considered the numerical solution 
of hyperbolic problems. The stability of the Lax-Wendroff method was shown for 
a model problem on a one-dimensional overlapping mesh. Moreover, he solved the 
shallow water equations in a two-dimensional basin, showing that despite the over- 
lap the mass was conserved to within a few percent. In his Ph.D. thesis, Reyna [27] 
obtained further stability results for the method of lines. Reyna gave examples of 
the accuracy of the method in solving the wave equation and also presented some 
calculations of flow in a circular basin where composite meshes were useful in order 
to remove the singularity of a polar coordinate mesh. A method for the construc- 
tion of composite meshes and the solution of hyperbolic PDEs was described by 
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B. Kreiss [23]. The idea for the CMPGRD code came from this original program. 
However, the current version of CMPGRD, with its general algorithm for deter- 
mining the overlapping regions, its interpolation procedures, data structures, and 
interactive graphics, is radically different from the code of B. Kreiss. Part [26] has 
adapted and extended an early version of CMPGRD for finite volume calculations. 
The current version of CMPGRD can also generate grids for finite volume 
computations, where variables are interpolated at the cell centers as opposed to cell 
vertices. Furthermore, there are extended discussions of composite grids in the 
theses of Henshaw [21] and Chesshire [13]. 

Besides the people working with the CMPGRD code there are a number of other 
groups currently working on composite meshes. The review article by Steger and 
Buning reviews some of this work [31]; also see the articles in [ 19, 281. Atta and 
Vadyak [l], describe the use of composite grids for flows about two- and three- 
dimensional aircraft configurations. Steger et al. [ 121 present some very nice 
calculations of the three-dimensional flow around the space shuttle, external 
tank, and solid rocket booster assembly using composite grids which they have 
constructed with their Chimera code [3,4, 12, 321. 

The major distinguishing features between these different approaches to 
composite meshes lie in the grid construction algorithm, the manner of performing 
interpolation, the data structures, and the details of implementation. We have 
attempted, in our implementation, to be very flexible. Besides being able to handle 
any number of component grids, for example, CMPGRD can generate a composite 
grid which can be used for fourth- or higher-order spatial discretizations with the 
appropriate high-order interpolation which is needed at overlapping grid boun- 
daries. Moreover, CMPGRD can automatically generate the sequence of coarser 
and coarser grids needed in the multigrid algorithm as described in “Multigrid on 
Composite Meshes” [20]. The creation of a general code for generating overlap- 
ping grids such as CMPGRD or the Chimera scheme mentioned above is not an 
easy task. The current version of CMPGRD, not including any graphics interface, 
is on the order of lo4 lines long. 

3. COMPOSITE GRID CONSTRUCTION WITH CMPGRD 

3.1. Step I: Creating Component Grids 

The composite grid construction program CMPGRD [13] can be used to 
generate very general composite overlapping grids. A composite grid can consist of 
any number of component grids. Each component grid is a logically rectangular 
curvilinear grid, which is permitted to overlap any other component grid. The idea 
in constructing a composite grid for a region D is to divide the region into simple 
enough subregions, D,, so that each subregion can be easily covered with a compo- 
nent mesh. With CMPGRD the component grid is thought of as a mapping d, 
from the unit (r, s) square onto the physical domain D,, d,: [0, l] x [0, l] + Dk. 
In many applications boundary fitted grids are desirable. Often the first step in 



FIG. 5. Using CMPGRD to construct a composite grid. 

10 
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choosing a set of component meshes is to tit grids along the boundaries, using a 
smooth portion of the boundary as one side of the component grid and extending 
the boundary curve a short way into the interior to form the opposite side of the 
grid. A standard procedure here is to simply use the normals to the boundary to 
define one set of coordinate lines. This will work provided the width of the 
boundary grid is not too large compared to the curvature of the boundary. After 
all boundaries have been handled in this way, the interior part of the region can 
then be covered with a single rectangular grid, meaning that a significant portion 
of many domains can be discretized with a computationally efficient rectangular 
grid. The big advantage of composite grids is that each component grid can be 
generated almost independently of the other component grids. Grid lines on 
boundary fitted grids can be stretched next to the boundary if one anticipates 
needing extra resolution there. Of course, the component grids are not completely 
independent as their union must cover the entire region. Moreover, it is usually 
wise to make sure that where two component grids overlap the grid spacings are 
about the same on each grid. There is little sense in having a very tine grid next to 
a very coarse one, since the numerical solution must be smoothly represented on 
each grid and the line grids points would thus be wasted. 
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Component grids can be specified to CMPGRD in a number of ways. One way 
is to supply a subroutine which defines the component grid. This means that the 
subroutine must supply the transformation which maps the unit (r, s) square to the 
(x, J) domain as well as the first derivatives of this mapping, 8x/&, ax/as, $r/ar, 
and +J&. 

Another way to create component grids is to use facilities supplied by 
CMPGRD. CMPGRD has an advanced graphical interface for interactively 
creating component grids. CMPGRD has been run on the IBM VM/CMS system, 
the CRAY CTSS system, the DEC VMS system, and various UNIX systems. 
Graphics routines have been written for a number of devices including the 
Tektronix 4014 and 4105, the IBM 3279 with GDDM, Sun workstations running 
the SunView window system, and the Apple Macintosh II. In Fig. 5 we show the 
screen of a graphics terminal at three stages in the construction of a composite grid. 
In this case the graphics is being performed on a Sun terminal running the SunView 
window system. There are a number of windows appearing on the screen which are 
used to display messages and plot results. 

In the interactive mode of creating grids one must first create the curves from 
which the sides of the component grid will be constructed. These curves can be 
predefined through a user-supplied subroutine or they can be defined interactively, 
using the cursor to pick out points and a spline to define the curve. In Fig. 5a the 
predelined curves to be used for generating a grid for a converging channel with a 
hole in the middle are shown (lower left window). Some curves are obviously 
needed as they correspond to sides of the region. The other curves are added to 
complete sides of component grids. Each component grid is defined in terms of 
segments of these curves. That is, a portion of a curve will define one side of a 
component grid. The user is prompted, using the cursor, to pick out the segments 
of the curves which correspond to each of the four sides of the component grid, 
Fig. 5a. A pop-up menu indicates the various choices which are available for the 
user at any given time. Once the four sides of a component grid have been chosen 
the grid transformation is defined through a mapping function such as a Coons 
patch (Section 2). At this stage one also chooses the number of grid lines for the 
component grid and any stretching of grid lines, Fig. 5b. CMPGRD permits the 
user to choose from a variety of stretching functions which will cluster grid lines. 
The stretching is performed by first mapping the unit (Y, s) square which has 
uniform grid spacing into another unit square, (t, u), on which the grid lines are 
clustered. For simplicity, the stretched coordinate t is a function of r only, while u 
is a function of s only. This stretched unit square is then mapped by a Coons patch 
to (x, .r) space: 

(r, s) 

The currently available stretching functions are of two types. The first type will 
concentrate points into a line cluster near a given point. This stretching function is 
defined as 
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r= Ui(r)=:tanhb,(r-ci), 

as shown in Fig. 6. Here ai, bi, and ci are parameters which can be chosen to obtain 
suitable concentrations of grid lines. The second type of stretching functions permits 
the transition from one fixed mesh spacing to a second fixed mesh spacing and 
takes the form 

r= V,(t)= 
d-- 1 
J log 

cash ej(t -f,) 

2e, > coshej(t-f,+,,) ’ 

Fig. 7. In general one can choose a combination of these functions: 

NL, 

r=R(t)= t+ C (U,(t)-Uj(O))+ 2 (V,(t)- v,(O)) C,+C,, 
[ i=l ,=I 1 

where C, and C, are chosen so that R(0) = 0 and R( 1) = 1. The function U;(t) is 
a hyperbolic tangent centered at t = ci and asymptoting to -a,/2 or aJ2. As 
bi tends to infinity the function U tends toward a step function. The function V,(t) 
is a smoothed out ramp function with transitions at .c and f,+ L. The slope of the 
ramp is dj- 1. Thus dj indicates the relative slope of the ramp compared to the 
linear term I which appears in R(t). In other words, the grid spacing between-4 and 
r;+1 is approximately dj times the grid spacing in the region where the linear term 
is dominant. By adding a correction, the stretching function R(f) can be made 
suitable for periodic regions. In Fig. 8 we present some examples of stretching func- 
tions. The equally spaced grid in r is marked on the vertical axis while the stretched 
grid points are marked on the horizontal t axis. Some care is required to implement 
the evaluation of stretching functions and their inverses to be efficient and to avoid 
underflows and overflows. 

3.2. Step II: Generation of the Composite Grid 

Once all component meshes have been defined, the next step is the generation of 
the actual composite grid, Fig. 5c. The algorithm for the generation of a composite 

FIG. 6. Stretching function U,. 
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FIG. 7. Stretching function b’,. 

grid must detect regions of overlap and determine the points to be used for inter- 
polation between component grids. In addition, the algorithm should recognize 
regions of grid points which are not needed in the computation. The algorithm we 
present here is fundamentally different from those used by B. Kreiss [23] or Benek 
et al. [3]. We consider this algorithm to be, by far, the most important and most 
difficult result of this paper. 

A valid composite grid G consists of a set of component grids Gk, labelled by 
k, k = 1, . . . . ng. Each component grid is logically rectangular. We will label each 
point of Gk as either (i,j, k), or xiik = (x,,, yijk). or (rijk, siik), depending on whether 
we are considering the indices, the physical space coordinates, or the unit square 
coordinates. The particular composite grid which is generated will depend upon a 
number of parameters including 

(1) the width of the interpolation formula, 
(2) the width of the discretization formula, 
(3) the minimum allowable overlap, 
(4) the ordering of the component grids. 

As the width of the interpolation formula is increased, for example, the amount of 
overlap will also increase, since the interpolation is required to be sufficiently 
centered (Section 5.3). On the other hand, as the width of the discretization formula 
is increased, the amount of overlap increases because the number of lines of inter- 
polation points will increase. A centered difference formula which is three points 
wide will need only one interpolation point while a formula which is five points 
wide will need two points of interpolation. CMPGRD is quite flexible with respect 
to these parameters. For example, the interpolation width parameter, iw(m, k, , k2), 
gives the width, in the r (m = 1) or s (m = 2) direction, of the interpolation formula 
for points on component grid G,, that interpolate from component grid G,,. Of 
course, one normally does not want all this flexibility, so CMPGRD provides 
reasonable default values. 

The algorithm to create a composite grid must start with a set of component 
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grids and a set of constraints defined by the interpolation and discretization 
formulae and find a valid composite grid which satisfies all the constraints. Each 
point (i, j, k) on a valid composite grid must be one of the following: 

(1) Discretization point. A discretization point is either an interior point or a 
boundary point. Point (i, j, k) is called an interior point if it can be discretized, to 
the required order, in terms of points on component grid G, which are interior 
points, boundary points, or interpolation points. The discretization is assumed to 
be centered so that a rectangle of points is required; the width and height of the 
rectangle being specified by the user. Point (i, .j, k) is called a boundary point if it 
lies on the true boundary and can be discretized to the required order in terms of 
points on grid G/i which are interior points, boundary points, or interpolation 
points. (Boundary condition discretizations may be different from interior point 
discretizations.) 

(2) Interpolation point. Point (i, j, k) is an interpolation point if it can be 
interpolated from discretization or interpolation points on another component grid 
Gk, with k’ #k to the required order. (We further require that the interpolation be 
sufficiently centered, see Section 5.2 for details.) 

(3) Exterior or unused point. Point (i, j, k) is an exterior or unused point if 
it is not a discretization or interpolation point. 

It is possible that a given point could belong to more than one of the above 
categories. For example, some discretization points might just as well be interpola- 
tion points. However, for efficiency we try to create a composite grid with a mini- 
mum number of interpolation points. It is possible that the only valid composite 
grid is one consisting entirely of unused points, a null grid. This situation can be 
avoided by having enough overlap between component grids. 

The basic idea in our composite grid construction algorithm is to think of 
ordering the component grids, k = 1, 2, . . . . ng so that higher-numbered grids cover 
over parts of lower-numbered component grids. Points which are removed will be 
in general lie underneath a higher numbered component grid. This is illustrated in 
Fig. 9, where we have shown how changing the ordering of the component grids 
affects the resulting composite grid. In this example one should notice, however, 
that all component grids have lost grid points, including the one that lies on top 
of all other component grids. In fact our algorithm is general enough so that if a 
valid composite grid is created for some ordering of component grids then a valid 
composite grid should result for all orderings of component grids (although we 
have not attempted to prove this). 

We now outline the composite grid algorithm for constructing a composite grid 
from a set of component grids (Fig. 10). We combine an explanation in words with 
brief sections of pseudo-code. The composite grid is described by a flag array, 
kr(i, j, k) (where kr stands for koordinates). This array contains a code for each 
point on the composite grid, indicating whether the point (i, j, k) is a discretization, 



e 

FIG. 9. A composite grid depends 

17 

on the ordering of the grids. 
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FIG. 10. Grid used to describe the composite grid algorithm 

exterior of interpolation point. By the end of the algorithm the values in this array 
will have the following meaning 

kr(i,j, k)= 

i 

k if (i, j, k) is a discretization point 
-k’ if (i, j, k) is interpolated from grid k’ # k 

0 if (i, j, k) is an exterior point. 

The first srep is to initialize each grid point by assigning the number of compo- 
nent grids ng into each point of the flag array. The reason this is done should 
become clear when we describe step 3. 

for k = 1, . . . ng do 
for (i, j, k) E Gk do 

kr( i, j, k) c nR 
end for 

end for 

The second step is to mark non-boundary points that lie close to a boundary side 
of another grid as exterior points, kr(i, j, k) = 0. This is done so that if a grid 
extends outside the region, then those of its gridpoints which lie exterior to the 
computational domain will be marked as exterior, as they should be. Although this 
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procedure will not find all exterior points, in the steps to follow the set of exterior 
points will expand to fill out the exterior regions: 

for k = 1, . . . . ng do 
for every boundary point xb E G, do 

for k’ = 1, . . . . n,andk’#kdo 
if xb E D,) and x(i’, j’, k’) is the closest point of Gk. to xb then 

kr(i’, j’, k’) +- 0 
end if 

end for 
end for 

end for 

The third step is to find which grid, if any, each point on each grid can be inter- 
polated from. Starting from the highest numbered grid and working down to the 
lowest numbered grid, each grid point on Gk is examined to find the highest GkS 
with k’ > k, if any, from which it can be interpolated. If the point cannot be inter- 
polated from a higher grid and is not a valid discretization point then we find the 
highest GkC with k’ < k, if any, from which it can be interpolated. If the point cannot 
be interpolated from a lower grid either, it is marked as an exterior point. At the 
end of this step every point is marked either as an exterior point, kr(i, j, k) = 0, an 
interior point kr(i, j, k) = k, or as interpolating from grid k’, kr(i, j, k) = k’ #k. 

repeat until there are no more changes 
for k = 1, . . . . ng do 

for (i, j, k)EGkdo 
k’ c kr(i, j, k) 
repeat 

if k’ = k then 
if( i, j, k) is not a valid discretization point then 

kr(i, j, k) c kr(i, j, k) - 1 
end if 

elseif (i, j, k) cannot be interpolated from G,, then 
kr(i, j, k) +- kr(i, j, k) - 1 

end if 
k’ t k’ - 1 

until k’ = 0 or (i, j, k) is a valid point 
end for 

end for 
end repeat 

In the fourth step we mark all points on lower grids which are definitely needed 
for interpolation by higher grids. We mark points in this way in preparation for the 
following step when we will be deleting unnecessary interpolation points. An inter- 
polation point is unnecessary if it is not needed by any discretization points on the 
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same grid and it is not needed by any interpolation points on other grids. At the 
end of this step all points needed for interpolation by higher grids are marked as 
kr( i, j, k) < 0. 

for k = 1, . . . . ng do 
for (i,j, k)EGkdo 

if k’ := kr(i, j, k) < k and k’ > 0 then 
(Point (i, j, k) interpolates from Gk.) 
for all points (i’, j’, k’) needed to interpolate (i, j, k) do 

kr(i’, j’, k’) t - (kr(i’, j’, k’)l 
end for 

end if 
end for 

end for 

In thef@h step we start from the lowest grid and proceed to the highest grid. For 
each grid we delete interpolation points which are not needed and change interpola- 
tion points into discretization points if possible. We also mark points on higher 
grids which are needed for interpolation by lower grids. 

for k = 1, . . . . ng do 
for every interpolation point (i, j, k) E Gk do 

if (i, j, k) is not needed then 
kr( i, j, k) + 0 

end if 
end for 
for every interpolation point (i, j, k) E Gk do 

if (i, j, k) can be an interior point then 
kr(i, j, k) t k 

end if 
end for 
for every interpolation point (i, j, k) E G, do 

mark points on upper grids needed for interpolation: 
kr(i’, j’, k’) - (kr(i’, j’, k’)l 

end for 
end for 

At this point the composite mesh has been determined. The sixth step simply 
consists of changing the sign of the entries in the kr array so that discretization 
points are positive and interpolation points are negative: 

for k = 1, . . . . ng do 
for (i, j, k) E Gk do 

if Ikr(i, j, k)l = k then 
(Discretization point) 
kr(i, j, k) + Ikr(i’, j’, k’)l 
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elseif Jkr( i, j, k )) > 0 then 
(Interpolation point) 
kr(i, j, k) + - Ikr(i, j, k)J 

end if 
end for 

end for 

To reiterate, each point is an interior, exterior or interpolation point as indicated 
by 

1 

k if (i, j, k) is a discretization point 

kr(i,j, k)= -k’ if (i, j, k) is interpolated from grid k’ # k 
0 if (i, j, k) is an exterior point. 

As an example we show the actual values in the kr array after each step in the 
composite grid algorithm for the composite grid shown in Fig. 11. 

One of the most important operations which is performed many times in the 
above algorithm is the task of determining whether a given spatial point x can be 
interpolated from a given component grid. More generally if the point x lies some- 
where in the component grid then we need to know the (r, S) coordinates of this 
point; that is, we must invert the transformation, (r, S) = d;‘(x) which defines the 
component grid. It is essential to perform this operation as quickly as possible. The 
algorithm we use is of the form: 

(1) First check if x lies inside a rectangle that bounds the component grid. If 
not then it cannot be interpolated and we are done. 

(2) If x lies in the rectangle then we try to invert the transformation which 
defines the grid. To get an initial guess for this inversion step we first find the 
closest grid point to x. Let us assume we have an initial guess to the closest grid 
point, then check the neighbours of this point to see if any are closer. If a neighbour 
is closer to x than the current guess, make the neighbour the current guess. Con- 
tinue until a local minimum is reached. If the local minimum is on the boundary, 
do a global search of the boundary points to determine the one with minimum 
distance. Now repeat the local search once again. At this point the nearest grid 
point to x will have been found (provided the transformation which defines the grid 
is sufficiently smooth). 

(3) Now determine the (r, S) coordinates of the point by inverting the compo- 
nent grid transformation with a Newton iteration, using the closest point as an 
initial guess. 

We emphasize the above point, since the construction of a composite grid 
requires some computation and it is important to do certain things efficiently. We 
estimate that the number of operations to construct the composite mesh is on the 
order of (n,)‘ZV, where ng is the number of component grids and N is the total 
number of grid points. In the last section we present some timings on the creation 
of the grid compared with the solution of a PDE on the resulting mesh. 
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FIG. 11. kr array during each step of the composite grid algorithm. 
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4. COMPOSITE GRID OUTPUT AND DATA STRUCTURES-THE DSK ROUTINES 

All the information needed to solve PDEs on composite grids is output by 
CMPGRD. This information can be written to a data file or CMPGRD can be 
called as a subroutine and the information returned in an array. The information 
CMPGRD generates includes not only the grid point locations (x(i, j, k), Jfi, j, k)) 
but also the derivatives of the mapping functions, a list of interpolation points and 
their locations, the interpolation and discretization widths, and so on. In order to 
more easily keep track of this information and to aid in the writing of application 
programs we have designed the composite grid data structure. We use standard ideas 
from computer science data structure design. To manage this data structure within 
the confines of Fortran and to efficiently store the large arrays we have developed 
some utility routines. The utility routines simply implement some of the features 
which appear naturally in such languages as Pascal or C. These data management 
routines are known as the DSK package and described in “The DSK Package, a 
Data Structure for Efficient Fortran Array Storage (Reference Guide for the DSK 
Package)” [ 141 and in “Getting Started with CMPGRD, Introductory User’s 
Guide and Reference Manual” [ 111. 

Logically the composite grid data is organized into a directory-file structure. 
The information for a particular component grid, for example, can be found in a 
particular directory, under a particular name. Figure 12 shows part of the 
composite grid data structure. This figure schematically shows how the data 
associated with a composite grid is organized. For example, the variable ng found 
in the directory composite grid indicates the number of component grids found in 

3 c - ci grid 

FIG. 12. Composite grid data structure. 
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this particular composite grid. The directory grid is actually an array of directories, 
which we denote by grid[k], k = 1, 2, . . . . ng. The directory grid[k] would hold the 
variables associated with the kth component grid such as the coordinate locations 
xy or the jacobian derivatives rsxy. 

DSK utility routines permit one to locate items in this directory-file structure, 
add or delete items, and write out items in a convenient way. By item we refer to 
variables or arrays of type integer, real or double precision, as well as directories 
and pointer variables. Physically this data structure all exists on a single large 
array. To give a flavour of what is involved in locating an array in this data struc- 
ture we present a piece of Fortran code which locates an array xy in component 
grid G1 and then calls a subroutine where the xy array is used in a standard 
fashion. One should assume that the DSK initialization routine has already been 
called and that the composite grid data structure has been created. The main point 
of this example is to demonstrate the use of the function dskloc which will return 
a pointer to a variable of a given name. 

subroutine subl( ndra,ndrb,ndsa,ndsb,cgdir,disk 1 
c====‘========================================================= 

C Find the array grid[l]/xy(ndra:ndrb,ndsa:ndsb,2) 
c Assume ue knov : 
C cgdir : “composite grid” directory 
c ndra,ndrb ,ndsa ,ndsb : array dimensions for grid[l] 
c============================================================== 

integer dskloc ,cgdir ,gdir ,pxy 
real disk(*) 

. . . 
c.. .get gdir = pointer to ‘grid’ directory : 

gdir=dskloc( disk,cgdir,‘grid’ ) 
c...get pxy = pointer to ‘xy’ in grid[l] : 

pxy =dskloc( disk,gdir,‘xy’ 1 
call snb2( disk(pxy),ndra,ndrb,ndsa,ndsb ) 

end 
. . . 

subroutine sub2 ( xy ,ndra ,ndrb ,ndsa ,ndsb ) 
c.. .In this subroutine we treat xy as a normal array 

real xy(ndra:ndrb,ndsa:ndsb,2) 
. . a 
urite(b,+) ‘x(i,j) =‘,xy(i,j,l) 
urite(b,+) ‘y(i,j) =‘,xy(i,j,2) 
. . . 
return 
end 
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Of course, one needs a certain amount of experience with these routines to 
become compatible with them. Having all the composite grid data on a single array 
makes it easy to write application routines for general composite grids. The applica- 
tion program need only be given the large array and a pointer to the main directory 
and it can find any information it needs. In the next section we describe some of 
the programs which have been written for solving PDEs on general composite 
meshes, including a solver for systems of second-order elliptic equations. 

5. NUMERICAL SOLUTION OF PDEs ON COMPOSITE MESHES 

The principal use of composite meshes is in discretizing PDE boundary value 
problems. In this section we describe some methods for solving elliptic and time 
dependent problems. The solution of a PDE on a composite mesh can be thought 
of as the solution of a set of transformed PDEs on a set of unit squares. Standard 
discretization techniques are applied on each unit square while a system of inter- 
polation equations couples the solutions on the unit squares. In Section 5.1 we will 
describe one particular way of discretization using finite differences and the mapping 
method. The mapping method simply consists of transforming partial derivatives in 
(x, v) space to partial derivatives in the (r, s) spaces using the derivatives of the 
transformations dk which map the unit square onto the component domains Dk. 
Other discretization techniques are possible such as finite volume methods [26] or 
finite element methods. For the purpose of obtaining accurate solutions of PDEs 
the individual component grids of a composite mesh should be sufficiently smooth. 
The smoothness of the component grids is reflected in the smoothness of the trans- 
formations d,. The mapping method of discretization probably requires more 
smoothness in the transformations than, say, a finite volume approach. However, 
with composite grids there is little difficulty in obtaining the required smoothness. 

The grid function values on different component meshes are matched together 
through interpolation equations. In Sections 5.2 and 5.3 we describe a convenient 
way to perform this interpolation and we make some remarks regarding the order 
of interpolation that should be used. In Section 5.4 we describe some useful techni- 
ques for creating boundary-fitted component grids. We describe the solution of 
elliptic PDEs in Section 5.5 and the solution of time dependent equations in 
Section 5.6. 

5.1. Mapping Method of Discretization 

Consider a PDE boundary value problem 

for (x, r)l) E D, (5.1) 

where F represents the PDE in the interior of D and the boundary conditions on 
the boundary of D, and it is understood that higher derivatives may be involved. 
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For each component grid Gk with function dk which maps the unit square (r, s) 
into the subdomain D, of D we can transform the PDE (5.1) into the coordinates 
of the unit square 

F 
8 ar 8 ds ii ar 8 ds d 
--,--+----,--+----, uk 
dt ax 2r 3.u 3s 13y dr c?y ds for (r, S) E CO, 11 x CO, 11, (5.2) 

where uk(r, s) = u(d,(r, s)). The derivatives of the transformation at the grid points 
are supplied by CMPGRD, 

rx(i, j) = g (x~), sx(i, j) =g (x,), ry(i, A = g (x,1, sy(i, j)=S (Xi,). 
?v 

These equations (5.2) can now be easily discretized with standard methods for 
rectangular grids. For example, the following second-order centered difference 
approximations may be used for many problems. For first derivatives we use the 
approximations 

2~ c?r au asau -=--.-+-- 
ax itx ar ax as 

au -b Ui+ lj - U;- lj 
dr 2h, ’ 

while for second derivatives we have 

a% dr i% ah ;; *!k++-- as ?a% a$ au a% au -= - 
a.2 ( > awY ax ar as + z asZ+a.t-2z+dxZiis ( 1 

a% ui+,j-2u,i+~jp,, 
-z 
at-* hf 

rXi+ lj-IX- lj 

2h, ’ 

Utility routines are available to generate the discrete coefficients corresponding to 
the above formulae. 

5.2. Interpolation-CGINT and CGINTE 

Grid function values at points on interior boundaries of component grids are 
obtained by interpolation from other component grids. CMPGRD provides all the 
information needed to make this interpolation step particularly easy. Consider the 
situation depicted in Fig. 13 in which the point xQk = (x,,, yijk) is to be interpolated 
from component grid k’. CMPGRD supplies the (r’, s’, k’) coordinates of the point 
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Zijk= d,, (T’) 

FIG. 13. Interpolation is performed in (r, s) coordinates. 

(I’, j, k): r’ = (r’, s’) = d, ‘(x,,). Therefore it is only necessary to know how to inter- 
polate a point from a rectangular grid. Moreover, CMPGRD also supplies the 
information indicating the set of points (i’, j’, k’) from which the interpolation 
should be performed. In particular, an interpolation formula would be of the form 

I 

u,(i, j) z i g cc(i’, j’, i, j)u,.(i’, j’). (5.3) 
i’ = & j’ = & 

CMPGRD supplies the lower left corner of the interpolation stencil, (ib, jb), and 
the stencil widths (iw,, iws), from which (ii, j ‘, ) can be calculated. The interpolation 
weights cr(i’, j’, i, j) can be computed from (r’, s’) using, for example, bi-linear, 
bi-quadratic or, in general, two-dimensional Lagrange interpolation. 

The above approach to interpolation not only permits an easy way of imple- 
menting arbitrary-order interpolation, but also makes the interpolation step less 
prone to error. 

In general the system of interpolation equations will couple interpolation points 
on different component grids. That is, some of the points appearing on the right- 
hand side of the interpolation equation (5.3) will themselves be interpolation points. 
This coupling can be avoided when creating the composite grid by specifying 
e.xplicit interpolation, in which case there will be more overlap between the grids. 

When the equations are coupled a small system of equations must be solved to 
obtain the solution at the interpolation points in terms of the values at other points. 
The routine CGINT has been written to solve these equations using the Yale sparse 
matrix package [ 171. The equations need only be factored once, implying that only 
a back-substitution is required each time the interpolation points are to be updated. 
The advantage of this implicit interpolation is that the amount of overlap is less and 
thus there are fewer grid points. 

The routine CGINTE, on the other hand, solves the interpolation equations 
when they are explicit. This routine is more efficient than the implicit version and 
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can be vectorized more easily. Timing results in the Section 6.5 compare the speed 
of these two methods of interpolation. 

5.3. Accuracy and Order of Interpolation 

An important question to ask when using composite grids is how to choose the 
order of interpolation so that the overall accuracy will be as good as the accuracy 
of the discretization formulae. The answer to this question depends on the order of 
the PDE and the order of accuracy of the discretization formula. Moreover, the 
answer also depends on the behaviour of the region of overlap as the mesh is 
relined. Typically the overlap region will have a width which is approximately a 
constant times h, where h is a measure of the grid spacing. That is, the overlap 
region shrinks as the mesh is relined. Note: we will call an interpolant whose 
accuracy is O(hP) to be a pth-order interpolant. In one dimension the standard 
interpolant on an equally spaced mesh which uses p points is a p th-order inter- 
polant. Thus the standard linear interpolation (two points) is second-order inter- 
polation while quadratic interpolation (three points) is third-order interpolation. 

In Henshaw [21] it was shown that for solving second-order elliptic equations 
to second-order accuracy it is necessary to use third-order interpolation (quadratic 
interpolation) if the overlap between component grids decreases with h as the grids 
are relined. (Second-order interpolation (linear interpolation) is sufficient if the 
overlap remains larger than some constant.) In this section we determine how to 
choose the interpolation for a more general class of problems. We consider the 
model problem of solving a (2p)th-order boundary value problem on a one-dimen- 
sional composite grid. We show that when the overlap d decreases linearly with h, 
d CC h, then the width of the interpolation formula, q, should be 2pr + 1, where 2r 
is the order of acuracy of the discretization. Thus the width of the interpolation 
formula is the same as the width of the discretization formula. If, on the other hand, 
d is a constant independent of h then q = pr + 1. 

To summarize the results of this section, if 

2p: order of PDE (highest spatial derivative) 

2r: order of accuracy of discretization 

4: width of interpolation formula 

d: width of overlap, 

then 

q=2pr+ 1: width of interpolation formula if d ax h 

q=pr+ 1: width of interpolation formula if d = O( 1) 

pr: number interpolation points on each grid 

d+pr(h, + h,): total overlap. 
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In order to see why these results hold we consider a model elliptic problem on 
a one-dimensional composite mesh. The model problem is the following (2p)th- 
order boundary value problem 

.Y E [a, b] 

gJu)=L, j = 0, . ..) p - 1 

s(b) = R.; j = 0, . . . . p - 1. 

(5.4) 

We attempt to solve this problem on a one-dimensional composite mesh which 
consists of the two overlapping grids, Fig. (14) 

G1={xfIxf=a+(i-l&J=1 ,..., N,j 

G2={sf~x;=b-(i-l)h,,i=l ,..., NZ}. 

The points of interpolation are 

.~j=.$.+,+, j= 1, . . ..p 

.Y = *y; 
P+J j= 1, . . . . p. 

We define the overZap d as the distance between the innermost interpolation point 
on GL to the innermost interpolation point on G2, d = xp - xzp. Note that in general 
one wants enough overlap so that d > 0. This means that all interpolation points on 
G’ lie to the right of all interpolation points of G2. This amount of overlap is 
required since the system of interpolation equations becomes singular whenever the 
position of an interpolation point on G’ coincides with the position of an interpola- 
tion point on G2. 

FIG. 14. One-D composite mesh showing grid points s, . k interpolation points x,, and overlap d. 
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We discretize the equations, attempting to achieve second-order accuracy. We 
use q-point interpolation. The discrete system of equations we obtain is 

(D, De)“tf=f; for interior points 

D&‘= L, j=o, . . ..p- 1 

D/Ro;,~--,= R, j = 0, . . . . p - 1 

$ = 1 l+f for interpolation points. 

Here 

and Dl, Di, are some appropriate discrete approximations to the boundary 
conditions in (5.4). The difference between the true solution and the approximate 
solution will be denoted by 

This error function satisfies 

(D+Dmm)Pe;=O(h;) for interior points 

Die,! = O(hf) j=O, . . ..p- 1 

D& -, = O(h:) j = 0, . . . . p - 1 

ef = c ctfiie:’ + O(h;I.) for interpolation points. 

The truncation errors appear as forcing functions in the above equations. We can 
split the above equations into two new problems, one in which the truncation error 
in the interpolation equations is zero and one in which the truncations errors in the 
interior and boundary discretization formulae are zero. The total error will be the 
sum of the solutions of these two problems. We assume that the first of these cases 
(zero truncation in the interpolation equations) is well posed and causes no trouble. 
This was proved in [21] for the case p= 1. We thus consider the problem 

(D, D-)pejr=O for interior points 

Die,! =0 j = 0, . ..) p - 1 

D’,e$-i=O j=o, . . ..p- 1 

e;” = C u:je,“’ + O(hjl.) for interpolation points. 
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To simplify the discussion further, we consider the following continuous problem 
which is related to these discrete equations: 

SZPek 
dx"(x)=O 

$z)=O 

g?(b)=0 

XE [a, b] 

j = 0, . ..) p - 1 

j = 0, . ..) p - 1 
(5.5) 

e”(x,) = 1 a$ek’(xi) + O(h;.) for interpolation points. 

We will now obtain bounds for the size of e1 and e2 as a function of q, hk, and d. 
Both e1 and e2 are polynomials of degree 2p - 1 of the form 

e’(x)=c:(x-u)P+c:(x-u)P+‘+ . . . +cj(x--u)*p-’ 

e’(x) = ~T(b-x)~ + c:(b--x)P+ * + . . + c;(b -x)~P-‘. 
(5.6) 

The interpolation equations will determine the constants, cf, in this last expression. 
Substituting (5.6) into the interpolation equations gives 

e’(x,) = i ct:,je2(xj) + O(h;) 
j=l 

= e2(x,) + O(h;) + O(h;) 

=j~,c,f(h-,~i)p+~~‘+O(h~), i=l,..., p. 

Whence 

i c~(li-~)Pii-l=jf,~~(b-~i)P+~-‘+O(h~), i=l,...,p 
j=l 

and, similarly, 

i Cf(b-X~)~+j-'= f- c,!(x~-u)~~~-‘++(~~), i=p+ 1, ..., 2~. 
j=l j= I 

These equations define a system of linear equations for the coefficients c: which is 
of the form 

AC = O(h4), 
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where h = maxi/z,, h,}, 

and 

A= 

‘(x,-a)” ... (~-a)‘~-~ (b-~,)~ ... (b-,~,)‘~-’ 

(x2 -a)” ... (x,-a)2P-1 (b-~,)~ ... (b-~,)‘~-’ 
. . . . 

,(.xZ,-a)P ... (x,--~)~~~~(~--X~~)~ . . . (b-X;p1 

We wish to determine the asymptotic behaviour for c as hk tends to zero since for 
second-order accuracy c must be O(h’). Now consider solving AC = O(h4) by 
Cramer’s rule. The matrix A is similar in form to the Vandermonde matrix and we 
show that 

det(A) = C(a, 6, p) fi { fi (xi- xj)}, 
i=l jsl 

j#i 

(5.7) 

where C(a, b, p) is independent of xj. This result can be shown as follows. As a 
function of x,, det(A) is a polynomial of degree 2p- 1. Since det(A) =0 when 
xj = xk for k = 1, . . . . j - 1, j + 1, . . . . 2p, it follows that det(A) must be of the form 

det(A) = D(x,, . . . . xj- ,, xj+ i, . . . . xzP, a, b, p) fi (x,-xk), 
k= I 
k#j 

where D is independent of xj. The result (5.7) follows. 
The determinants of the principal submatrices of A are of the same form as the 

determinant of A and hence by Cramer’s rule 

We are thus led to the following conclusions: 

(5.8) 

LEMMA I. Zf the overlap d is greater than or equal to a constant times h, d 2 ch, 
then the solution to the error equations (5.5) is second-order accurate provided the 
width of the interpolation formula, q, satisfies 

q>2p+ 1. 
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LEMMA II. If the overlap d is greater than or equal to a constant independent of 
h, da c, then the solution to the error equations (5.5) is second-order accurate 
provided the width of the interpolation formula, q, satisfies 

gap+ 1. 

ProoJ: To estimate the right-hand side of (5.8) we need 

i 

Ii-jlh, lGi,j<p 

lx;-xx,1 = Ii-jJh, p+l<i, jG2p 

d+(p-i)h,+(j-p-l)h2 16i<pandp+l<j<2p. 

If d >, ch then each factor of (xi - xi) in (5.8) is O(h) and there are (2P; ’ ) terms in 
the product appearing in the numerator and (2?p) terms in the product of the 
denominator. Since (‘,“) - ( 2p; ‘) = 2p - 1, it follows that 

and thus for second-order accuracy we require q B 2p + 1. On the other hand, if d 
is larger than some constant then there are only 2(z) terms of order h in the 
denominator and (4) + (p; ‘) terms of order h in the numerator and, since 
2($)- ((;)+(P;‘)} =p- 1, it follows that we require q>p+ 1. This completes the 
proof of the lemmas. 

Remark 1. The model problem we have considered consisted of solving a 
(2p)th-order boundary value to 2nd-order accuracy. The results can be extended to 
higher order accuracy since, for example, solving a 4th-order equation to Znd-order 
is equivalent to solving a 2nd-order equation to 4th-order. 

Remark 2. We can relate our analysis to the case when the composite grid 
equations degenerate to the standard central-difference approximation for a single 
grid. This situation occurs when h, = h2 = d, in which case the interpolation points 
align exactly with grid points. Our results say that interpolant must be (2p + l)- 
order accurate. However, in this case even a l-point interpolation formula will be 
exact (and thus is (2p + 1)-order accurate) and satisfies the conditions of our result. 

Remark 3. We contrast our conclusions to the theoretical results of Kreiss [24] 
or Gustafsson [lS] which prove that sometimes it is sufficient to use a boundary 
condition of lower order and still achieve the required global accuracy. However, 
in the above work, it is only those non-essential boundary conditions, such as 
conditions for out-going characteristic variables or extra boundary conditions 
which must be added for higher order discretizations, that can be specified to lower 
order. Essential boundary conditions, such as conditions for in-going characteristic 
variables, must be specified to full accuracy. Our results show that the interpolation 
equations cannot be thought of as non-essential boundary conditions. 
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We confirm these theoretical results by numerically solving the discrete system 
and computing the convergence rate. We solve 

(D, D-)%;=f; for interior points 

q! = g,’ j = 0, . ..) p - 1 

$ = g,! j = 0, . . . . p - 1 

1:; = 1 a; joy for interpolation points 

on a one-dimensional composite grid, Fig. 14, on the interval [0, l] for p = 1 and 
p = 2. We choose the right-hand sides fi, gf , and gl! so that the true solution is 

uTRUE = sin(7cx) + cos(nx) + sin(27rx) + cos(2nx). 

We consider the cases of the overlap d being a constant times h, d=OSh, and the 
overlap being a constant independent of h, d = 0.5. We solve the problem with the 
number of grid points on each component grid being (N,, N,) = (10, IO), 
(15, 15), . ..) (130, 130), and make a least squares lit to the convergence rate (T 
assuming that the error is proportional to h”, 

e cc h”. 

When d = OSh we use interpolation with q = 2p and q = 2p + 1. The analytical 
results predict that q must be at least 2p + 1 for second-order accuracy (0 = 2). 
When d= 0.5 we use interpolation with q =p and q =p + 1, with the analytical 
results predicting that q must be at least p + 1 for second-order accuracy. The 
results given in Table I and II confirm our analysis. 

In Section (5.5) we give further results from solving an elliptic problem on two- 
dimensional composite grids generated by CMPGRD. These two-dimensional 
results also confirm our theoretical predictions. 

5.4. On Component Grid Construction for Polygons with Smoothed-out Corners 

In this section we describe some special techniques for the generation of 
component grids. The method we describe is particularly suited to the creation of 
boundary fitted grids along curves which consist of straight lines connected by 

TABLE I 

Computed Order of Accuracy, e x h”. for d=0.5 

d=OS p=l p=2 

q = 2p o= 1.0 0 = 0.79 
q=2p+ 1 o=Z.l c7 = 2.0 
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TABLE II 

Computed Order of accuracy, e a h”, for d = 0.5 

d=0.5 p=l 

4=P D = 0.38 
q=p+l CT= 1.9 

p=2 

o= 1.3 
cT=2.1 

corners. The grids we create will actually smooth out the corners; the degree to 
which the corners are rounded can be varied. The corners are rounded since our 
applications are usually to fluid flows and we do not want to address the problem 
of boundary conditions at singular points such as corners. 

A component mesh Gk is defined by a mapping d, from the unit square (r, s) to 
the physical domain (x, y). The first step in constructing the grid is to define a 
curve x1(s) = (x,(s), y,(s)) which approximates the boundary curve. This curve is 
to approximate the polygon which passes through the points 

x,(i) = (x,(i), Y,(i)), i= 1 , . . . . n, (corners of polygon). 

The curve is parameterized by a pseudo-arclength s, 0 <s < 1, with the value of s 
at corner i being given by 

s(i) = x;Yl Ilxc(~ + 1) - W)ll 
C;‘:,’ II xcu + 1) - W)ll~ 

As a function of s the curves x,(s) and yr(s) should approximate the piecewise 
linear function which passes through the points x,(i) and JJ~(~), respectively. 

Both x,(s) and yl(s) are defined using the same stretching functions that 
CMPGRD uses for clustering grid points, as described in Section 3.1. The curves 
are simply defined using a combination of the ramp functions Vi(s): 

x,(s)= 
[ 
s+ 5 (V,(s)- Vi(O)) c,+c,. 

I=1 1 
By suitable choice of the constants dj, ej, f, which appear in the definition of Vj the 
curve x1(s) can be made to pass exponentially close to the points x,(i), i= 1, . . . . n,, 
while being almost linear in the regions between the points. The curve itself has the 
desirable property of being analytic in s. 

Once the boundary curve has been defined it is necessary to define a boundary 
fitted grid. The approach we take is to define the grid by using lines in the direction 
normal to the curve. The normal at each point on x1(s)= (x,(s), y,(s)) is 

n(s) = (-j*(s), n,(s))/Jm. 
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The grid can thus be defined as 

x(r, s) = x,(s) + rN(s)n(s), 06r< 1, o<s< 1, 

where the scalar function N(s) is used to define the width of the grid in the normal 
direction. Typically one will want to stretch the grid lines in both the r and s direc- 
tions. Grid lines are usually stretched in the s direction to cluster points near 
regions of large curvature, typically near corners. Stretching in the r direction 
would permit a concentration of grid lines near the boundary. Thus we define two 
stretching transformations t(r) and U(S), t: [0, l] + [0, 11, U: [0, l] + [0, I], again 
defined using the stretching functions supplied with CMPGRD. The final grid takes 
the form 

x(f-, s) = ~~(4s)) + t(r)Nu(s))n(@)), O<rbl, 06s61. 

In Fig. 15 we show some grids which have been defined in the manner outlined 
above. 

5.5. Solving Elliptic PDEs-CGEL and CGMG 

For elliptic boundary value problems the composite mesh equations consist of a 
set of equations describing the discrete form of the PDE coupled to a set of inter- 
polation equations which connect the solution between different component grids. 
This set of equations can be solved in many ways; both direct sparse solvers and 
iterative methods can be used. 

For small enough meshes (or big enough computers) the equations can be solved 
in a direct way using a sparse Gaussian elimination routine, for example. In 
particular we have written the Fortran subroutine CGEL to solve systems of linear 
variable coefficient elliptic PDEs of the form 

d2U d’ll 
Cxx(x, I,) s + CXY(4 Y) iix a), -+Cyy(x, ).)$+Cn(J, y)Z 

+ Cy(.u, y) fi+ Cu(x, J’)U - f(x, y) = 0, 
3, 

XED 

with boundary conditions expressed in (x, y) derivatives, 

Bx(x, y) z + By(x, y) au + Bu(x, J)U - g(x, Y) = 0, 
CYJ 

XE~D, 

or in tangential and normal derivatives, 

Bt(x, v) $ + Bn(x, .v) $ + Bu(x, y)u - g(x, y) = 0, XE~D. 

Here u is a vector function with n, components and Cxx, Cxy, . . . . Cu,Bx, By, . . . . Bu 
are n,, x n,. matrices. The routine CGEL will solve elliptic equations using second- 
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FIG. 15. Component grids generated with the stretching functions. 

order or fourth-order difference methods on any CMPGRD composite mesh which 
has been constructed with the appropriate parameters for the widths of the 
discretization and interpolation formulae. Boundary conditions are discretized with 
one-sided derivatives. CGEL calls the Yale sparse matrix package [ 171 to solve the 
composite mesh equations. 

As a simple example we solve the following Poisson equation: 

4-c Y) =g(x, I’), (x, y) E dD. 
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The forcing functions f and g are chosen so that the true solution is 

I.4 true = cos( 271x) cos( 2711’). 

The equations are solved with second-order and fourth-order differences on a 
sequence of successively relined grids. Figure 16 shows the coarsest grids for the 
second-order and the fourth-order methods. Note that the ‘fourth-order method 
uses two lines of interpolation. The liner grids (not shown) have 1.5, 2., and 2.5 
times as many grid points in each direction as the coarsest grid. Denote the maxi- 
mum errors on the four composite grids by e,,, m = 1, . . . . 4. These errors are given 
in Tables III and IV along with an estimate of the convergence rate, CJ. The 
convergence rate is determined by a least squares lit assuming that the error is 
proportional to 12”. 

Recall that the one-dimensional theory of Section 5.3 indicates that, loosely 
speaking, the width of the interpolation formula should be equal to (or greater 
than) the width of the discretization formula in order to achieve an overall accuracy 
equal to the order of discretization. This means that a 3 x 3 interpolation stencil 
(third-order or bi-quadratic interpolation) is required for second-order accuracy 
and a 5 x 5 interpolation stencil (fifth-order interpolation) is needed for a fourth- 
order accuracy. The tables show results for the theoretically suggested order of 
interpolation and for interpolation of one order less. In the latter case the 
convergence rate is seen to drop by one, in agreement with the theory. 

The composite mesh equations generated from an elliptic PDE boundary value 
problem can also be solved using an iterative method such as the multigrid method. 
Multigrid uses a sequence of grids of varying coarseness to accelerate the 
convergence of the iteration. CMPGRD can automatically generate the sequence of 
grids required by the multigrid algorithm. Since CMPGRD is aware of the manner 
in which information is transferred between the different levels (the prolongation 
and restriction operators) the composite grids for multigrid can be optimally 
generated. We have described, in “Multigrid on Composite Meshes” [ZO], how the 
multigrid algorithm can be applied to composite meshes. We have written a 
program, called CGMG, to solve linear, variable coefficient elliptic boundary value 
problems. A wide variety of point and line smoothers are available; the user can 
choose different smoothers on different meshes. It was demonstrated in [ZO] that 
one can obtain convergence rates which are almost as good those obtained on a 
single grid. The grids of Fig. 17 were generated by CMPGRD for use with the 
multigrid algorithm. Note in particular that the liner grids are not just equal to the 
coarser grids with extra lines added. 

5.6. Time-Dependent PDEs 

A time-dependent PDE can be discretized using the method of lines: the partial 
differential equation is first discretized in space resulting in a system of time- 
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Coarse grids for the accuracy tests of the elliptic solver: (a) for second. .order; (b) for 
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TABLE III 

Maximum Errors with Second-Order Discretization 

ih e, e2 e3 e4 0 

2 0.11 0.12 0.053 0.053 0.98 
3 0.048 0.02 1 0.010 0.0074 2.1 

Note. i\t’ = 2: second-order (bi-linear) interpolation, 
iw = 3: third-order (bi-quadratic) interpolation, 0: con- 
vergence rate, e x h”. 

dependent ordinary differential equations. For composite grids this system will be 
of the form 

$u(i,j. k; r)=f(i,j, k;u, t) for interior points (5.9a) 

B(u(i. j, k; t), t) =0 for boundary points (5.9b) 

u(i, j, k; t) = c cr(i’, j’, i, j)u(i’, j’, k; t) for interpolation points. (5.9c) 

Here u denotes the vector of all grid-point values and B denotes the discrete 
operator for the boundary conditions. With an explicit time stepping scheme the 
interior points can be advanced first from Eqs. (5.9a) and then the boundary and 
interpolation points can be updated from Eqs. (5.9b) and (5.9c). For implicit 
methods one must solve the implicit time stepping equations coupled with the inter- 
polation equations. One way to solve these equations is to use the elliptic solver, 
CGEL, described in the previous section. 

It is natural when dealing with composite meshes to consider using different time- 
stepping methods on different component meshes. This technique might be useful 
when some component meshes have much smaller mesh spacings than the other 

in 

TABLE IV 

Maximum Errors with Fourth-Order Discretization 

el e2 e3 e4 0 

4 0.0053 0.0025 0.00023 0.00048 3.2 
5 0.0037 0.0006 1 0.00018 o.OOoO79 4.2 

Note. iw = 4: fourth-order interpolation. iw = 5: fifth-order interpolation, 
6: convergence rate, e JC /z”. 



42 CHESSHIRE AND HENSHAW 

FIG. 17. CMPGRD can generate grids for the multigrid elliptic solver. 

component meshes. In the numerical results presented in the final section we use an 
implicit-zxplicit scheme of the form 

v(n+ 1)-v(n) f,(n+ l)+f,(n) 3 
At = 2 

+jf,(n)-;f,(n- l), (5.10) 

where v(n) denotes the solution at the nth time step and where the right-hand side 
of (5.9a) has been split into two pieces 

f=f,+f, 
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corresponding to the parts of the equation which are to be treated explicitly and 
the parts to be treated implicitly. This splitting can vary from component grid to 
component grid or even from grid point to grid point. Scheme (5.10) is a combina- 
tion of the implicit trapezoidal rule (Crank-Nicolson) with a second-order 
Adams-Bashforth method and is overall second-order accurate in time. In general 
we can devise other higher-order schemes which treat part of an equation explicitly 
and part implicitly. Since such split schemes are not usually presented in standard 
texts we will briefly outline how to create them. We can devise a pth-order 
implicitexplicit multistep scheme of the form 

v(n+l)= i cr,v(rz-k)+dr z /?kf,(n-k)+/4t i Ykf,(rl -k). 
k=O k= -I k=O 

The method will be implicit if /I _, # 0. Although this is not the form of a standard 
multistep method, it can be easily derived from such schemes. For example, starting 
from the implicit scheme, 

v(fl+l)= ; ;I,v(n-,‘)+dt 5 fikf(n-k)), 
k=O k= -, 

one determines constants ]‘k such that Cr= _, PkfE(n -k) = ~~=, ykfE(n - k) + 
O(dPj. This can always be done, for example, by extrapolating f(n + 1): 

f(n+ I)= i 6,f(n-k)+O(dP). 
k=O 

Of course one must consider the stability of the scheme that results. The scheme 
(5.10) is obtained in precisely this manner by starting from the trapezoidal rule and 
then extrapolating for f(n + 1) to second order, f(n + 1) = 2f(n) - f(n - 1) + O(dr’), 
resulting in the second-order Adams-Bashforth scheme for the explicit part. 

In our applications to the Navier-Stokes equations we are particularly interested 
in treating the second-order derivative terms in an implicit manner as these terms 
often determine the time-step restriction through stability considerations. However, 
we typically treat many more terms in an implicit fashion. The nonlinear terms are 
treated in a semi-implicit manner by first linearizing the equations. The approach 
will be to linearize with respect to functions which are independent of time. We only 
linearize with respect to the functions themselves as opposed to their derivatives. 
For example, consider the equation 

u, = CM, + vu,, 

:= f(t) 

which is the form of the Navier-Stokes equations. We split the right-hand side into 
f = f, + f,, where 
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f,= U,(x, y)u.y(x, ?‘, 2) + vu,, 

f,= (u(x, ‘, t) - U,(K Y))UJX, J-7 t). 

Typically we choose U,(x, y) to be the solution at some time t,. The implicit time- 
stepping equations are solved using the elliptic solver CGEL described in an earlier 
section. We then integrate the equations over some time interval with this fixed 
linearization (and fixed factorization). After some time we update U,, to be the 
current solution and refactor the matrix. One way to decide when to choose a new 
linearization is to wait until the relative difference between the current solution and 
the current linearization becomes larger than some small value. The time-stepping 
procedure is second-order no matter what linearization is used, although better 
stability conditions on the time step result if the linearization is close to the current 
solution. 

6. SOLUTION OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 
ON COMPOSITE MESHES 

We now present some results from solving the compressible Navier-Stokes 
equations on composite meshes. After introducing the equations and boundary 
conditions we give some accuracy tests and finally show results from a number of 
applications. The main aim of this section is to show the flexibility of the method. 
Thus although we show results for flows around airfoils, we do not pretend to be 
experts in aerodynamics and hence we do not make comparisons of pressure 
profiles. We are, however, reasonably confident in the accuracy of the solutions we 
have computed for two main reasons: first of all, we have performed a number of 
nontrivial tests when a true solution is known; second, for simulations when no 
solution is available we try to ensure that computed grid functions are smooth with 
respect to the grids that we are using. 

6.1 Navier-Stokes and Scaling 

The compressible Navier-Stokes equations in two space dimensions can be 
written in the form: 

Pr + (PUL + (PV).v = 0 

P(U, + uu.r + y) +A = P Au + (P + J-Nu, + v?.), 

,o(v, + ~0, + vu.,.) +P, = p Av + (p + 1Nu.r + “.,I> 
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where p is the density, u and u are the horizontal and vertical components of the 
velocity, and p is the pressure. We assume the ideal gas law holds, p = pRT, and 
that A = -2/3~. We nondimensionalize and scale the equations using a charac- 
teristic length L,, velocity uO, density pO, absolute temperature To, and relative 
temperature variation of A To. Our nondimensional variables will be defined as 

1 =x/L,, F =1’lL,, F= dLo/Uo), P = PIP09 ii=&), i? = u/u0 

T= (T- T,,)/AT,, P=P/~RT,,)=P(~ + W,P’d~). 

We introduce the non-dimensional parameters Re, Reynolds number, Pr, Prandtl 
number, Ma, Mach number, and 7 the ratio of specific heats, 

Re = POUOLO 
P ’ 

p,,EP 
k ’ Ma=&. ~=2, 

and after dropping the tildes on the non-dimensional variables the equations can be 
written as 

1 
(u,+~~)=~- 

AT+Y(Y-11)Ma2 To 1 -- 
RePrp Re ATOP 

@ 

This will be the form of the equations which we discretize. 

6.2. Boundary Conditions 

We use boundary conditions of the form 

i 

U=UB 

wall (no-slip): 
u=ug 
T+ orT = T 

B 

p: extmpolated 

inflow (subsonic): 
u.n+p=g; 

(U.n-PL=g: 
T=g; 

I u.n=O 

wall (slip): 
(U.t)n=O 
T+GIT,,= T, 
p: extrapolated 

L p=g: 

inflow (supersonic): 
u=g; 

o=g; 

T=g; 
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outflow (subsonic): 
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(u.n+d,=gi 
u.n-p=gA 

outflow (supersonic): 

Tn=i$ i 

p,=o 
u,, = 0 

L’,, = 0 

T,, = 0 

I u.n=O 

symmetry: I (u.t),,=O 
Pn=O 
T,, = 0. 

Here t and n denote the tangent and normal vectors to the boundaries and U, the 
normal derivative of U. Boundary conditions are discretized with second-order one- 
sided difference approximations. 

6.3. Remarks on Implementation 

With the aid of our data handling routines (the DSK routines described in 
Section 4j, we have been able to write a Fortran code, CGNVT, to solve the 
Navier-Stokes equations on the general class of composite meshes which are 
generated through CMPGRD. All the information about the composite grid that the 
program needs to know is contained in the output tile generated by the composite 
grid program. At the time the composite grid is generated with CMPGRD a 
boundary condition code is associated with each side of each component grid. 
These codes are translated by the Navier-Stokes code, CGNVT, into boundary 
conditions such as those presented in Section 6.2. 

We discretize the compressible Navier-Stokes equations to second order in space 
using the mapping method described in Section 5.1. We integrate the equations in 
time using the second-order implicitexplicit method (5.10). The code permits one 
to choose which component grids should be integrated implicitly and which ones 
should be integrated explicitly. We use the routine CGEL (Section 5.5) to solve the 
system of equations that results from the implicit time-stepping, including the 
interpolation and boundary conditions. 

To prevent numerical instabilities we add an artificial viscosity to the density 
equation. This artificial viscosity is applied in the transformed (I, s) coordinates and 
takes the form 

P, + P(U, + UJ) + WY + “PJ = bvc Pw + e P,,). 

Here h, and h, are the grid spacings on the unit square and r. is the coefficient of 
the artificial viscosity. This is a standard way to apply a second-order artificial 
viscosity and the typical claim is that the solution will remain second-order 
accurate provided the coefficient v, is taken to be order one. 

The primary aim of writing the CGNVT code was to develop a flexible research 
program. In fact the code was written to solve a general class of (nonlinear) time 
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dependent equations. Thus it is not particularly optimized to be efficient with 
regard to either CPU time or storage. 

6.4. Numerical Accuracy and Efficiency 

We now present some results which show the accuracy and efficiency that can be 
expected from the scheme. 

TEST 1. As a first test of accuracy a forcing function is added to each of the 
Navier-Stokes equations. The forcing is chosen to be that analytically derived 
function such that the true solution will be 

P true = 1.5 + cos(27rx) COS(27c~) cos(27rr) 

24 true = 1.25 + cos(27c~) sin(2rcy) cos(2nt) 

t’ true = cos(7cx) sin(7cq’) cos(7rt) 

T frue = cos( 7~) sin( 2nr) cos( 7rt). 

We integrated the forced equations on three grids, G,, m = 1,2, 3, which cover the 
same region of a cylinder in a channel, Fig. 18. Table V gives the number of mesh 
points on each of the three composite grids. The mesh spacings h, were chosen to 
be in the ratio (h, : h, : h,) = (2 : d: 1) (approximately). 

The boundary conditions were no-slip on the cylinder, subsonic inflow on the left 
boundary, subsonic outflow at the right boundary, and symmetry on the top and 
bottom boundaries. The parameters used in this run were 

Re = 50., Ma = 0.85, Pr = i., T,JdT,, = l., y = 1.4. 

We integrated the equations starting from the exact initial conditions and computed 
the maximum errors at time t = 1. We denote the discrete solution on grid G, by 

n solution component n = 1, . . . . n, (p, u, u, T) 

u,,(i,j, n, k): (i, j, k) (grid point, component grid) 
m solution on composite grid nz = 1, 2, 3. 

The maximum errors e,,,(n) are defined by 

These errors are given in Table VI. If the code were second-order accurate, one 
would expect that the errors would decrease by a factor of 2 from one grid to the 
next finer grid. This test is designed to show that all the appropriate terms in the 
Navier-Stokes equations have been correctly discretized. 

581 ‘90 I-4 
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TABLE V 

Number of Grid Points on Grids Used for Test 1 and Test 2 

k Grid G, Grid Gz Grid G, 

1 70x50 99x71 139x199 
2 51x7 72x 10 101x13 

TEST 2. As a second accuracy test we compute a supersonic flow on the grids 
G,, and estimate the errors. The parameters used in these runs are 

Re = 50., Ma = 2.0, Pr = 0.71, To/AT, = l., i’ = 1.4. 

On the left edge of the domain we specify supersonic inflow boundary conditions. 
The top and bottom boundaries of the domain are specified with symmetry 
boundary conditions and subsonic outflow conditions are given at the right edge. 
The surface of the cylinder is defined as a no-slip wall with constant temperature. 
The equations are integrated in time with initial conditions p = 1, u = 1, t’= 0, and 
T= 0 and u = c = 0 on the cylinder boundary (impulsively started cylinder). The 
solution develops a (viscous) shock which forms on the front face of the cylinder 
and then propagates to a position upstream. In Fig. 19 we compare the pressure 
contours on grids G,, Gz, and G3 at times t = 1 and t= 3. In Fig. 20 we show 
contours of p, U, U, and T on G, at I = 10 and in Fig. 21 we show a surface plot of 
the pressure on G, at r = 10. The contour plots are obtained by plotting contour 
lines on each component grid independently. The smooth alignment of contours 
between component grids is a good indication of the accuracy of the computed 
solution. This is a difficult problem, since as the shock crosses the interpolation 
boundary it is parallel to that boundary and so many interpolation points are 
affected by the shock at once. Recall that our discretization is not conservative; 
neither is the interpolation conservative. We emphasize, however, that our 
approach here is to have enough grid points to resolve the shock. If the computed 
solution is smoothly represented on the grid then the question of conservation is 
not crucial. Of course, if one does not want to resolve the shock then conservation 

TABLE VI 

Maximum Errors in Navier-Stokes Solver at I= 1. for Test 1 

P 2.5 0.52 0.25 0.12 2.1 2.1 
u 2.25 0.20 0.093 0.044 2.2 2.1 
I! 1.0 0.22 0.11 0.054 2.0 2.0 
T 1.0 0.19 0.087 0.041 2.2 2.1 



FIG. 19. Comparison of pressure contours for Test 2: (a) G,, I = 2; (b) Cl, I = 2; (c) G,, I= 2: 
(d)G,, r=3; (e)G2, 1=3; (f)G,. l=3. 

so 
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a 

I 

FIG. 20. Solution contours on G, at r = 10: (a) p; (b) u; (c) P; (d) T. 

is important. The theoretical problem of conservation at the interpolation faces has 
been considered by Berger [7], while others [26, 3) have apparently been able to 
compute high Reynolds number flows without major difficulties. However, a 
systematic and thorough study of this question is appropriate for a future paper. 

Figure 19a shows that the shock has some difficulty crossing the interpolation 
boundary on the coarsest grid (since the contours lines do not join up smoothly). 
However, the solution is well represented on the two finer grids. Define the I2 norm 
of grid-function on grid G,, I(u,I( z by 

Ilu,Il: = x:(i.i.k)sC, lL(~, “i, 6 k)12 

total number of grid points of G,’ 
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This norm is always computed with respect to the finest grid G3 by interpolating 
the discrete solution on grids G, or G2 to grid G, (d, denotes this interpolant). In 
Tables VII and VIII we show the differences between the solutions on the three 
composite grids at times l= 1 and t = IO. Note that if the solution were converging 
to second order, II,,, = utrur + CA,5, then 

IIll, - u,I/ = C(h’- F/4) 
/Ill:-uJlJ Clh2,2-h2/4)=3. 

The ratios of the differences, as measured in either norm, are fairly consistent with 
this expected convergence rate. 
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FIG. 21. Surface plot of pressure on G, at I= 10. 

Efficiency. One of the possible advantages of a composite grid over an unstruc- 
tured grid is that the composite grid, which consists of a set of logically rectangular 
grids, should be more efficient. We now make some remarks regarding this point. 

Storage. The main difference in storage between a simple single-grid fmite- 
difference time dependent code and the equivalent composite grid code which uses 
explicit interpolation is the storage of the flag array kr(i, j, k). All other arrays are 
at most the dimension of the number of interpolation points. We show that the 
storage for these interpolation arrays and all the storage for pointers, etc. required 
by the DSK package is negligible compared to basic storage requirements of the 
time dependent code. 

The CGNVT Navier-Stokes code uses quite a bit more storage than a basic 
scheme, since it integrates the equations implicitly, on some or all component grids, 

TABLE VII 

Maximum Errors in Navier-Stokes Solver at f = 1 and r = 10 for Test 2 

lIu3Il x llu, -U3Il x I/~~-u3/I & Ilu,-~,ll,ill~z-u,ll,. 

n t=l I= 10 /=I I= IO I=1 l= 10 I=1 1= 10 

P 8.7 6.5 1.4 0.23 0.41 0.061 3.4 3.7 
u 1.1 1.1 0.24 0.068 0.088 0.017 2.1 4.0 
L’ 0.52 0.33 0.16 0.022 0.057 0.0067 2.8 3.3 
T 1.1 0.83 0.35 0.08 1 0.14 0.017 2.5 4.8 
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TABLE VIII 

I, Errors in Navier-Stokes Solver at I = 1 and I = 10 for Test 2 

lIu,II II llu, -uzIIz lluz-u,llz llu,-u~lIzilllu~-~~ll~ 

n /=I I= IO /=I I= 10 I= I 1= IO l= I I= IO 

P a.7 6.5 0.11 0.03 I 0.030 0.0078 3.6 4.0 
II 1.1 1.1 0.023 0.0086 0.0076 0.0024 3.0 3.6 
I’ 0.52 0.33 0.016 0.0035 0.0058 0.0012 2.8 2.9 
T I.1 0.83 0.035 0.0097 0.012 0.0028 3.6 3.5 

using a sparse matrix solver. The storage for the sparse solver is orders of 
magnitude larger than all other storage. We now detail the storage used by 
CGNVT in order to solve a problem on grid G,, Table IX. We list the storage by 
recognizable arrays and separate the storage required by the sparse solver. If the 
code were changed to use explicit interpolation then the storage for the sparse 
solver would not be required. We are able to easily determine all the storage 
requirements, since essentially all variables are allocated with the DSK package 
(Section 4) and stored on one large array; a simple call to a DSK routine displays 
the amount of storage allocated to real arrays, integer arrays, pointers, etc. 

CPU Time. We now give sample CPU times for running the shock-cylinder test 
run on grid G,. The grid itself took 1.6 s to compute with CMPGRD (grids G1 and 
G7 required 3.1 and 7.2 s, respectively, to generate). We performed two runs: Run I 

TABLE IX 

Array Storage Required by CGNVT on Grid G, 

N = total number of grid points = 72 x 52 + 53 x 9 = 4221 

1. s and x grid points = 2N 8,442 
2. ?r/?s, derivatives of transformation = 4N 16,884 
3. Storage for explicit time stepping = (4n, + 6) N 92,862 
4. miscellaneous real arrays 2,511 
5. flag kr = N array 4,221 
6. miscellaneous integer arrays 947 
7. DSK pointers etc. 2,904 

Total for explicit time stepping portion 128.771 

8. Sparse solver (integer arrays) 72.241 
9. Sparse solver (real arrays) 2,601.766 

Total for sparse solver ?,673.907 

Grand total for implicit time stepping 3,802,678 
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TABLE X 

CPU Time for Run I (Explicit Time-Stepping) and Run 2 (Implicit Time-Stepping) for CGNVT 

CPU/step CPU,,ktep CPU,;‘step CPU!step/gridpoint CPU!step.‘dt 

Run 1 0.11 0.049 0.063 31. x 1o-6 45.9 
Run 2 0.2 1 0.050 0.16 59. x 10mh 42.6 

used explicit time-stepping and Run 2 used semi-implicit time-stepping where the 
component grid around the cylinder was integrated implicitly. All times are for the 
CGNVT code running on an IBM 3090 with vector facility. We make no claims 
that our code is particularly fast. The CPU time given in Table X is decomposed 
into two portions: 

1. CPU,: time required in the explicit time-stepping of interior points. 
2. CPU,: time required by the sparse solver to solve the implicit time- 

stepping equations, to solve the interpolation equations and to solve the 
boundary conditions. 

For the computation of the column CPU/step/gridpoint the number of grid 
points was taken as 3580; this number does not include those points which were 
eliminated by the composite grid algorithm. The final column in the table is the 
CPU time required to reach time t = 1. The CPU time per step for the explicit 
method was significantly less than the implicit method. However, since the implicit 
method could use a time step which was twice as large as the explicit method the 
overall CPU required was slightly less for the implicit method. The implicit method 
would have even more of an advantage if the cylinder grid had been stretched more. 

It can be seen from the explicit run that solution of the interpolation and bound- 
ary conditions is taking longer than the solution of all the interior points. The basic 
reason for this poor performance is that the code was written to be run in an 
implicit time-stepping mode and is not efficient when using explicit time-stepping. 
A second reason is that the sparse back-solve routine we use does not run any 
faster when compiled in a vectorized mode. 

A significant speedup per time step could probably be achieved by incorporating 
an efficient explicit-interpolation routine. Indeed, D. Brown reports that when using 
explicit interpolation in his finite volume code that the time required for interpola- 
tion is 11% of the time required to update the interior points [9]. Brown’s code 
ran on a Cray X-MP on a composite grid similar to grid G,. 

6.5. Numerical Results 

This section shows two examples of solving the Navier-Stokes equations on 
composite grids generated by CMPGRD. We present computations around an 
airfoil with multiple flaps and the flow around the read-write head of a magnetic 
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a 

FIG. 22. Composite grid for airfoil with flaps. 

storage device. We show contour and streamline plots of the solutions on the 
composite meshes. The contour plots are performed by plotting contours on each 
component grid separately, using the same contour levels. The contours align only 
if the solutions agree between different meshes. All CPU times stated in this section 
are for the IBM 3090VF. 

I. Flow past an airfoil lvith multiple flaps. As a first example we consider the 
flow around an airfoil with two flaps. For simplicity the airfoil and flaps are defined 
as Joukowsky airfoils. Since each component grid can be generated independently 
of the other component grids it is simple matter to add as many flaps as desired, 
Fig. 22. 

TABLE XI 

CPU Time for Flow Past an Airfoil with Flaps; 8101 Gridpoints 

CPU,‘step CPU,,‘step CPU,:‘step CPU/step/gridpoint CPUjstepidt 

0.725 0.11 0.60 89. x 1O-6 145. 



FIG. 23. Streamlines at times I = 3. 5, 7. 9 
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FIG. 24. Solution contours at r=5: (a) p; (b) U; (c)r; (d) T. 
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FIG. 25. Two-dimensional slider bearing. 

We consider a flow of Mach number Ma=OS and Reynolds number Re= 310 
(based on the length of the main airfoil). The boundary conditions are taken as 
no-slip on the airfoil and flaps, subsonic inflow on the left edge, subsonic outflow 
on the right edge and symmetry conditions on the top and bottom. The equations 
are integrated with implicit time-stepping on the airfoil and flap grids and explicit 
time-stepping on the rectangular grid. The construction of the grid with CMPGRD 
required about 9.3 s, while a breakdown of the CPU time required for time- 
stepping is given in Table XI. Recall that CPU, and CPU, indicate the times 
a 

b 

FIG. 26. Composite grid for the slider bearing and magnified views. 
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required for the explicit and implicit parts of the time-step while CPU/step/dt is the 
time required to integrate the equations to time I = I. Plots of instantaneous 
streamlines are shown in Fig. 23 and contours of p, u, LJ, T at t = 5. are given in 
Fig. 24. 

II. Flow around a disk read-bcrite head. As a second example we consider the 
flow around the body depicted in Fig. 25. This is meant to be a two-dimensional 
model of the body which holds the read-write head in a magnetic disk storage 
device. The bottom surface is the computer disk which moves from left to right at 
a constant speed. The head flies over the disk, using the air which flows underneath 
it to support it. This arrangement is usually called a slider-bearing or air-bearing. 
The difficult part of this problem is the fact that the gap between the head and the 
disk surface is so small. We generated a component grid around this body using the 
method outlined in Section 5.4. The composite grid is shown in Fig. 26 with 
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magnified views of the grid in the narrow gap. For this computation the minimum 
gap height is 100 times smaller than the length of the slider. The Reynolds number 
based on the length of the body is Re = 200 and the Mach number Ma = 0.14. The 
actual device flies at a much smaller gap height and a larger Reynolds number. 
Instantaneous streamlines of the computed time dependent flow are shown in 
Fig. 27, including a magnified view of the flow underneath the slider. Further details 
can be found in [22]. 

a 

b 

FIG. 27. Streamlines around the slider bearing at time I = 5 and a magnitied view 
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7. CONCLUSIONS 

We have described how composite overlapping grids can be used to solve partial 
differential equations. A Fortran code, CMPGRD, has been written to construct 
very general composite grids. We have presented some of the features of CMPGRD 
and have outlined the most important part of the code: the algorithm that the 
program uses in order to determine the regions of overlap. We have discussed how 
to choose the order of accuracy of interpolation so as to maintain overall accuracy. 
We have shown some techniques for solving elliptic and time dependent PDEs and 
have displayed the accuracy of these methods. 

In future work we plan to discuss a number of important issues related to the 
potential usefulness of composite grids. For example, we have been collaborating 
with David Brown on automatic methods for adaptively creating new component 
grids. In this regard we are working on ways to speed up CMPGRD so that it will 
become feasible to generate a composite grid many times in the course of a 
computation. There is also a need for a careful study related to the problem of 
conservation at the interpolation points. Since the fall of 1988, CMPGRD has been 
changed to construct three-dimensional composite overlapping grids. The code was 
extended so that a two-dimensional grid would just be a special case of a three- 
dimensional grid. This two/three-dimensional version of CMPGRD will be 
described in a forthcoming paper. 

We distribute, free of charge, the source code for CMPGRD and the DSK 
package as well as many of the associated utility routines, including the elliptic 
solver, the explicit and implicit interpolation routines, a time dependent code to 
solve linear convection-diffusion equations, the multigrid solver, and plotting 
routines. Please contact one of the authors if you would like to obtain a copy of 
these programs. 
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