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Abstract

Direct discretization of continuum kinetic equations, like the Vlasov equation, are under-utilized
because the distribution function generally exists in a high-dimensional (>3D) space and compu-
tational cost increases geometrically with dimension. We propose to use high-order finite-volume
techniques with block-structured adaptive mesh refinement (AMR) to reduce the computational
cost. The primary complication comes from a solution state comprised of variables of different di-
mensions. We develop the algorithms required to extend standard single-dimension block structured
AMR to the multi-dimension case. Specifically, algorithms for reduction and injection operations
that transfer data between mesh hierarchies of different dimensions are explained in detail. In ad-
dition, modifications to the basic AMR algorithm that enable the use of high-order spatial and
temporal discretizations are discussed. Preliminary results for a standard 1D+1V Vlasov-Poisson
test problem are presented. Results indicate that there is potential for significant savings for some
classes of Vlasov problems.
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1. Introduction

The Vlasov-Maxwell system of equations is a fundamental kinetic model that describes weakly-
coupled plasma dynamics. The Vlasov equation is a partial differential equation in phase space,
(x,v) ∈ RN ×RM for N,M ∈ [1, 2, 3] such that M ≥ N , that describes the evolution in time,
t ∈ R+, of a particle distribution function, f(x,v, t) ∈ R+, in the presence of electromagnetic fields,
E(x, t) ∈ RN and B(x, t) ∈ RN . For a particle species α, the Vlasov equation is

∂fα
∂t

+ v · ∇xfα +
qα
mα

(E + v ×B) · ∇vfα = 0, (1)

where the particle charge and mass are qα and mα, respectively. Both imposed and self-generated
electric and magnetic fields, E and B, respectively, are responsible for the Lorentz force in (1) and
are the solutions of Maxwell’s equations (or a specialization thereof):

∇×E +
1

c

∂B

∂t
= 0, (2a)

c2∇×B− ∂E

∂t
=

j

ε0
, (2b)

∇ ·E =
ρ

ε0
, (2c)

∇ ·B = 0, (2d)
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where ε0 is the permittivity of free space and c is the in vacuo speed of light. The total charge
density, ρ, and the total current, j, are the sums over contributions from all species α,

ρ(x, t) =
∑
α

ρα(x, t) =
∑
α

qα

∫
Rd

fα dv, (3a)

j(x, t) =
∑
α

jα(x, t) =
∑
α

qα

∫
Rd

vfα dv, (3b)

and these moments of the distribution function nonlinearly couple Maxwell’s equations to the Vlasov
equation.

The Vlasov-Maxwell system and related models are fundamental non-equilibrium descriptions of
plasma dynamics. Non-equilibrium kinetic effects in plasmas play a crucial role in fusion applica-
tions. Understanding and controlling wave-particle interactions is important to the success of inertial
confinement fusion, where resulting resonant responses can interfere with the intended deposition
of laser energy [1]. In magnetic confinement fusion, gyrokinetic models, which are a reduced form
of the Vlasov equations [2, 3, 4], are used to better understand the physical mechanisms controlling
the core conditions, in particular micro-turbulence, which is at the origin of the so-called anomalous
transport [5].

The Vlasov model also has applicability beyond fusion plasmas. Collisionless shocks in astro-
physics, which are thought to be driven by electrostatic and electromagnetic instabilities [6, 7, 8], can
be accurately modeled by the Vlasov-Maxwell system. The Vlasov-Poisson system, where Gauss’
Law (2c) is sufficient to describe the relationship between the electrostatic field and the charge
density, is being used in particle beam accelerator design [9]. Laser isotope separation is another
application area for Vlasov-Maxwell models [10].

While these kinetic models may have great relevance, their numerical approximation for prob-
lems of interest have been constrained primarily by computational cost. For N = 3, the distribution
functions in the full Vlasov model have a phase-space domain of six dimensions. Directly discretizing
phase space, an approach alternatively referred to as grid-based, Eulerian, or continuum methods,
incurs a computational cost that scales geometrically with the number of dimensions. Thus, while
for over forty years work has been done on the continuum numerical discretization of the Vlasov
equation [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], continuum
Vlasov methods have been applied primarily to lower-dimensional – so-called 1D+1V and 1D+2V –
problems. Application of continuum Vlasov to four dimensions (2D+2V) and above has been lim-
ited [30, 32, 31, 33]. In contrast, the particle-based particle-in-cell (PIC) [34] method has dominated
kinetic Vlasov simulation. PIC methods use Monte-Carlo sampling techniques in velocity space to
reduce the high-dimensional cost and evolve “clouds” of particles through a Lagrangian form of
the Vlasov equation. Maxwell’s equations, however, are solved on an overlaid computational mesh
(hence, “in cell”). While this approach is generally less expensive than continuum Vlasov discretiza-
tion, PIC results contain inherent statistical noise that generally vanishes only as the square root of
the number of particles.

As computer speed and memory have increased, direct discretization of the Vlasov-Maxwell
system has become more feasible, but hardware improvements alone are insufficient to make full-
phase-space, continuum Vlasov codes practical. However, as with PIC methods, tremendous savings
could be realized if continuum approaches could reduce the number of cells used to represent phase
space. One means to this end is to employ adaptive mesh refinement and to resolve only those
regions of phase space of greatest variation or importance. For instance, block-structured adaptive
mesh refinement (AMR) in phase space could concentrate cells in the vicinity of localized structure,
such as particle trapping regions. In addition, flux-based explicit Eulerian schemes have time-step
restrictions that, for Vlasov, are typically dominated by the maximum particle velocity limits of
the phase-space domain. AMR allows for high-aspect ratio cells in these regions, which can result
in significant increases in time step size without a loss of accuracy, since little particle density or
variation is present at these extreme velocity boundaries.
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Adaptive mesh refinement has a limited history in Vlasov simulation. AMR has been used with
PIC methods in the simulation of heavy-ion accelerators [35, 9]. Recent work in this area uses a
wavelet-based approach [23, 25], where the semi-Lagrangian interpolation is based upon a multi-level
wavelet basis and where the local depth of the wavelet hierarchy is used to increase or decrease the
local mesh refinement. This approach generates a near-optimal grid, but progress in this direction
seems to have stalled. It may be the case that the less regular grid structure may introduce other
complications, for example, in the construction of moments, that make this approach less attractive.

In this paper, we present a block-structured adaptive mesh refinement approach suitable for
the continuum discretization of the Vlasov-Maxwell system. As a proof-of-concept, we demonstrate
the ideas and techniques in the context of a simpler system, the Vlasov-Poisson model, which is
presented in Section 2 along with the basic flux-based Eulerian discretization we employ. Thus, we
will not address the control of electromagnetic wave reflections at coarse-fine interfaces; methods to
minimize such reflections are addressed elsewhere in the literature [36, 35]. In Section 3, we discuss
the block-structured AMR strategy, its benefits, and the challenges presented by Vlasov problems.
We specifically address a subset of these issues that we have resolved in order to demonstrate a
successful Vlasov-AMR implementation. Sample calculations are presented in Section 4, and we
conclude with a discussion of the future algorithmic advances that will allow additional gains from
AMR applied to Vlasov simulation.

2. Model Problem and Discretization

Both for our purposes here as well as for many physically interesting problems, the Vlasov-
Maxwell system can be significantly simplified by assuming an electrostatic limit with stationary
ions. The electrostatic limit corresponds to an assumption of small magnetic field strength. The
assumption of stationary ions is appropriate when the ion time scales are large compared to that of
the electrons, which is typically the case. With these assumptions, the Vlasov equation (1) for the
electron probability density function f becomes

∂f

∂t
+ v · ∇xf −E · ∇vf = 0, (4)

under a suitable nondimensionalization. Here E is the electric field, x is the physical space and v
is the velocity. In the electrostatic limit, only Gauss’ law (2c) is relevant. Representing the electric
field in terms of an electrostatic potential, E = ∇xφ, Gauss’ law becomes the Poisson equation:

∇2
xφ = ρe − ρi =

∫
f dv − 1. (5)

Here the constant, unit background charge, ρi = 1, is the manifestation of the immobile ion (proton)
assumption.

For the purposes of discussing the new adaptive discretization algorithms, we make one final
simplifying assumption of a so-called 1D+1V phase space (i.e., one spatial dimension and one velocity
dimension). The final system of governing equations is thus succinctly written as

∂f

∂t
+ v

∂f

∂x
+
∂φ

∂x

∂f

∂v
= 0, (6a)

∂2φ

∂x2
=

∫ ∞
−∞

f dv − 1. (6b)

Note that, as characteristic of all Vlasov-Maxwell-type systems, we have a higher-dimensional vari-
able, f(x, v), coupled to a lower-dimensional variable, φ(x).

In order to discretize the model Vlasov-Poisson system, we restrict our attention to a finite
domain. For the physical coordinate we let x ∈ [−L,L] and apply periodic boundary conditions.
Other boundary conditions are also possible, but for the initial-value problems considered here, a
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periodic condition is appropriate. For the velocity coordinate, we truncate the domain and consider
v ∈ [vmin, vmax]. This introduces an artificial boundary where we apply a characteristic boundary
condition. Outgoing characteristics are extrapolated and incoming characteristics carry values from
an unperturbed Maxwellian distribution.

Our discretization follows the Eulerian finite-volume formulation developed in [37, 38]. The 1D
Vlasov equation (6a) is rewritten in flux-divergence form as

∂

∂t
f +

∂

∂x
(vf)− ∂

∂v
(Ef) = 0. (7)

Phase space is divided into cells using a Cartesian grid with mesh spacings ∆x and ∆v in the x- and
v-dimensions respectively. Integrating over a single computational cell and dividing by the volume
∆x∆v, we obtain the exact system of ordinary differential equations

d

dt
f̄ij = − 1

∆x

(
〈vf〉i+ 1

2 ,j
− 〈vf〉i− 1

2 ,j

)
+

1

∆v

(
〈Ef〉i,j+ 1

2
− 〈Ef〉i,j− 1

2

)
, (8)

where the cell average f̄ij is defined as

f̄ij ≡
1

∆x∆v

∫
Vij

fdxdv.

As in [37, 38], the angle bracket notation is used to indicate face averages, for example,

〈f〉i+ 1
2 ,j

=
1

∆v

∫ vj+1/2

vj−1/2

f(xi+1/2, v)dv.

The face-averaged fluxes are approximated to fourth order as

〈vf〉i+ 1
2 ,j
≈ v̄j〈f〉i+ 1

2 ,j
+

∆v

24

(
〈f〉i+ 1

2 ,j+1 − 〈f〉i+ 1
2 ,j−1

)
,

〈Ef〉i,j+ 1
2
≈ Ēi〈f〉i,j+ 1

2
− 1

48

(
Ēi+1 − Ēi−1

) (
〈f〉i+1,j+ 1

2
− 〈f〉i−1,j+ 1

2

)
.

Notice that, because v is only a function of v and E is only a function of x, the notion of a face
average is redundant, and the angle bracket is replaced by an an overbar. For more details concerning
this high-order finite-volume formalism, refer to [37, 38].

The quantity v̄j is directly computed as an exact cell average (recall that v is an independent
variable). The cell-averaged electric field is computed from a potential φ; to fourth-order, this is

Ēi ≈
1

12∆x

[
8(φ̄i+1 − φ̄i−1)− φ̄i+2 + φ̄i−2

]
.

The cell-averaged potential is obtained by solving a discretization of the Poisson equation (6b) :

30φ̄i − 16(φ̄i+1 + φ̄i−1) + (φ̄i+2 + φ̄i−2) = 12∆xρ̄i, (9)

where

ρ̄i = 1−∆v

vmax∑
j=−vmax

f̄ij .

This discretization leads to a linear system with a nearly pentadiagonal matrix (boundary conditions
slightly alter the pentadiagonal structure).

For reasons explained in Section 3, the Poisson problem is always represented on the finest mesh
in configuration space, and so the resulting linear algebra problem can be LU-decomposed once for
each level of refinement and stored. Periodic boundary conditions in x lead to a singular system,
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which is a well-known problem that is easily addressed by projecting out the portion of ρ̄(x) residing
in the null space of the matrix. This amounts to ensuring that

∑
i ρ̄(xi) = 0, and in so doing, we

ensure that φ̄(x) is normalized around zero. Of course, since we take a derivative of φ̄(x) to get
Ē(x), the offset has no effect on the solution.

To complete the description of the discretization, a procedure to derive face averages from cell
averages must be identified. We use the scheme developed in [39, 32], which has the property that,
for well-represented solutions, a fourth-order centered approximation is used. As solution features
become sharp on a given mesh, upwind numerical dissipation is introduced to smooth out those
features consistently. The scheme is described in detail in [39, 32], but we provide a brief overview
here as well.

We focus on the determination of the face average 〈f〉i+ 1
2 ,j

; other averages follow similar deriva-

tions. The scheme has many similarities to the popular WENO [40] method and uses many of the
tools developed in the literature on that topic. The face average is constructed as a weighted sum
of two third order approximations:

〈f〉i+ 1
2 ,j
≈ wi+ 1

2 ,j,L
〈f〉i+ 1

2 ,j,L
+ wi+ 1

2 ,j,R
〈f〉i+ 1

2 ,j,R
, (10)

with

〈f〉i+ 1
2 ,j,L

≈ 1

6

(
−f̄i−1,j + 5f̄i,j + 2f̄i+1,j

)
(11)

and

〈f〉i+ 1
2 ,j,R

≈ 1

6

(
2f̄i,j + 5f̄i+1,j − f̄i+2,j

)
. (12)

Here the “L” and “R” indicate left- and right-biased, third-order approximations. With ideal weight-
ing, wi+ 1

2 ,j,L
= wi+ 1

2 ,j,R
= 1

2 , equation (10) becomes the centered, fourth-order approximation. Us-
ing the standard WENO methodology, provisional weights, ŵi+ 1

2 ,j,L
and ŵi+ 1

2 ,j,R
, are determined.

To maximize the upwind diffusion in the final numerical method, we assign the larger weight to the
upwind, third-order approximation and the smaller weight for the downwind, third-order stencil.
Thus the final weights are determined as

if (vj > 0) ,

{
wi+ 1

2 ,j,L
= max(ŵi+ 1

2 ,j,L
, ŵi+ 1

2 ,j,R
),

wi+ 1
2 ,j,R

= min(ŵi+ 1
2 ,j,L

, ŵi+ 1
2 ,j,R

),

else

{
wi+ 1

2 ,j,L
= min(ŵi+ 1

2 ,j,L
, ŵi+ 1

2 ,j,R
),

wi+ 1
2 ,j,R

= max(ŵi+ 1
2 ,j,L

, ŵi+ 1
2 ,j,R

).

(13)

Note that, as with traditional WENO schemes, convergence rates near certain types of critical
points (points with many zero derivatives) may be less than optimal. Additional modifications to
the provisional weights can be made to alleviate this deficiency [41].

For the temporal discretization of the semi-discrete Vlasov equation (8), any stable method can
be used. We choose the standard explicit fourth-order Runge-Kutta scheme. At each stage in the
Runge-Kutta update, we solve the discrete potential equation (9) prior to evaluating the phase-space
flux divergence as given by the right-hand side of (8).

Consider the ODE initial value problem

df

dt
= L(f, t), (14a)

f(0) = f0. (14b)

The RK4 discretization for the ODE between time level n and n+ 1 is

fn+1 = fn + ∆t

4∑
s=1

bsks, (15a)

ks = L
(
f (s), tn + cs∆t

)
, (15b)

f (s) = fn + αs∆tks−1, (15c)
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Figure 1: An example of a three-level, block-structured AMR hierarchy. On the left, the composite refined grid GC
is shown. On the right, the corresponding mesh hierarchy GH with overlapping patches is shown. All patches on the
same level have the same refinement ratio relative to the coarsest level; in this case, the refinement ratios are two and
four for the intermediate and finest levels, respectively. Note that each level is comprised of a collection of patches
completely contained within the patches of the next coarser level.

with α = [0, 1/2, 1/2, 1], b = [1/6, 1/3, 1/3, 1/6], and c = [0, 1/2, 1/2, 1]. Acknowledging that the
operator L is, in our case, of flux-divergence form, we can write, for example, in one dimension,

fn+1
i = fni + ∆t

4∑
s=1

bski,s, (16a)

= fn −∆t

4∑
s=1

bs

[
Fi+1/2

(
f (s)

)
− Fi−1/2

(
f (s)

)]
, (16b)

= fn −∆t

[
4∑
s=1

bsFi+1/2

(
f (s)

)
−

4∑
s=1

bsFi−1/2

(
f (s)

)]
, (16c)

= fn −∆t
[
F ∗i+1/2 − F

∗
i−1/2

]
, (16d)

where F ∗i+1/2 are accumulated interface fluxes.

3. Block Structured AMR Algorithms

Block-structured adaptive mesh refinement [42, 43] is a natural fit for certain Vlasov-Maxwell
problems. Frequently, important fine-scale features in phase space, which could substantially benefit
from higher resolution, only occupy limited regions in phase space. In contrast to the semi-structured,
octree-based grids that were used in the earlier Vlasov-AMR work [21], hierarchical block-structured
AMR is based upon rectangular grid patches at different refinement levels in a global Cartesian index
space, as shown in Figure 1. Using a local error estimate or some detection of rapid variation in
the solution to identify regions of interest, cells that should be refined are tagged. Tagged cells are
grouped and expanded minimally to form rectangular patches that are inserted into the next level in
the hierarchy. Slightly larger refinement regions can be used to reduce the frequency of regridding.
The refinement process can be repeated recursively to form a hierarchy of refinement levels, each
composed of multiple patches.
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Connectivity information is kept to a minimum in this scheme because the global Cartesian index
space provides a simple mechanism by which to identify the relationships between patches and levels.
Within a level, patches contiguous in indices are neighboring, and across levels, the same is true,
after adjusting by the net refinement ratio between the two levels. In general, for explicit methods,
communication between patches is accomplished through ghost cells. As an additional savings, by
maintaining a consistent solution on all patches, even those covered by patches on a finer level, time
refinement algorithms that allow for nested subcycling on finer levels can be devised.

Despite all of the previous work on block-structured AMR, applying the technique to Vlasov
simulation introduces several new challenges. First and foremost, at least two mesh hierarchies
must be maintained: one in the RN configuration space and one in the RN × RM phase space.
Different kinetic species will, in general, have different masses and temperatures; the bulk of the
corresponding particles will therefore occupy different ranges of particle velocity, and the structures
arising from resonant responses will occur in different regions of phase space. Thus, each kinetic
species should have its own mesh hierarchy. Thus, new algorithms for the simultaneous advancement
and coordination of multiple hierarchies are required, and more importantly, efficient algorithms
to enable communication between the hierarchies are required. From a parallel implementation
perspective, a hierarchy for each species also allows for increased task parallelism when each hierarchy
is assigned to a subset of processors; with no collisions, kinetic species only communicate through
the lower-dimensional configuration space, so, given the electromagnetic state, high-dimensional flux
computations and updates can naturally be done in parallel.

In this paper, it is our goal to demonstrate solutions to the fundamental issues that must be
addressed to make effective use of AMR in Vlasov simulation. Specifically, we will discuss:

• Basic modifications due to discretization. Using high-order finite volume and a high-
order multi-stage schemes departs somewhat from the standard, nominally second-order block-
structured AMR approach. We describe the modified algorithms we use, for example, the
intra-hierarchy interpolation operations and the synchronous time integration algorithm.

• Inter-hierarchy transfer operations. The coupling of problems of different dimension
and their representation on separate hierarchies necessitates the creation of inter-hierarchy
reduction and injection transfer algorithms. We discuss algorithms that achieve this efficiently.

• Regridding for multiple AMR hierarchies. Regridding hierarchies, when multiple related
hierarchies are present, requires additional constructs for coordination.

In the following subsections, we address each of these areas, describing in more details the issues
involved and explaining our solution approach. We will not specifically address efficient parallel
decomposition strategies in this work.

These new AMR algorithms, combined with the high-order discretizations presented in Section 2
have been implemented in the Vlasov code Valhalla1. This code makes use of the block-structured
AMR library SAMRAI [44], which has been used in prior plasma-fluid simulations [45]. SAMRAI
is capable of handling dimensions above three as well as the simultaneous existence of multiple and
lower hierarchies, possibly of different dimension. A graph-based, distributed implementation of
mesh metadata is employed within SAMRAI to provide excellent scaling to tens of thousands of
processors. SAMRAI also provides fairly sophisticated, high-level AMR algorithm abstractions, but
the simultaneous advancement of multiple related hierarchies, as required by Vlasov-Poisson, does
not fit into these integration strategies and has thus required substantial additional development.

3.1. Basic modifications due to discretization

Our base discretization uses a method-of-lines approach, where spatial operators are first dis-
cretized using a nominally fourth-order spatial discretization and then the resulting semi-discrete

1Vlasov Adaptive Limited High-order Algorithms for Laser Applications
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system is integrated using the standard four-stage, fourth-order explicit Runge-Kutta method. For-
tunately, for a high-order finite-volume implementation, the restriction algorithm to obtain a coarse
cell average from fine cell averages remains the simple summation used for lower-order schemes.

3.1.1. Synchronous, multi-stage time advancement algorithm

In practice, an asynchronous process with time step subcycling on finer cells is typically used
for explicit, space-time discretizations [42], but we chose to start with a synchronous update for
simplicity. For a synchronized update (i.e., a single ∆t for all levels), the RK4 algorithm (15)-(16)
for a conservation law on a single-hierarchy is summarized in Algorithm 1. Looping over stages,
the predictor states and fluxes are computed, and the fluxes are accumulated. The predictor-state
algorithm is laid out in Algorithm 2, and the flux divergence and accumulation algorithm is sketched
in Algorithm 3. We note that, for this conservative form, we accumulate a flux variable as in (16)
so that we can construct a flux divergence using a temporally fourth-order flux for the final update.
Such flux accumulation eliminates an explicit re-fluxing step, since the final update can be done from
finest to coarsest levels, and the accumulated flux can be averaged down so that a single update using
the highest-quality flux can be done on each level. The update is computed from the accumulated
fluxes as shown in Algorithm 4, and regridding is done if a user-defined number of time steps have
elapsed.

Algorithm 1 Multi-Level, Single-Hierarchy Flux-Divergence RK4 Advance

k ← 0
for all Stages s← 1, 4 do

ComputePredictorState(k, s, fpred)
ComputeRHS(fpred, s, k, Faccum)

end for
ComputeUpdate(Faccum, fnew)
if time to regrid then

Regrid all levels
end if
Compute next ∆t

Algorithm 2 Multi-Stage Predictor State Computation

procedure ComputePredictorState(k, s, fpred)
t← told + cs ·∆t
fpred ← fold + αs ·∆t · k
Interpolate up to ghost cells on finer levels of fpred
Exchange ghost cells on each level of fpred
Apply boundary conditions to fpred

end procedure
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Algorithm 3 Multi-Stage Right-Hand Side Evaluation and Flux Accumulation

procedure ComputeRHS(fpred, s, k, Faccum)
for all Levels l← 1, L do

for all Patches p do
Fpred ← computeFluxes(fpred, t)

end for
Exchange fluxes between patches on level l

end for
for all Levels l← L, 1 do

for all Patches p do
k ← fluxDivergence(Fpred)
Faccum ← Faccum + bs · Fpred

end for
end for

end procedure

Algorithm 4 Multi-Stage, Multi-Level Flux-Divergence Update Computation

procedure ComputeUpdate(Faccum, fnew)
for all Levels l← L, 1 do

for all Patches p do
δf ← fluxDivergence(Faccum)
fnew ← fold + ∆t · δf
Coarsen fluxes down to level l − 1

end for
end for
Coarsen fine data down for fnew

end procedure

To integrate the Vlasov-Poisson system, the time advancement algorithm must be adapted to
allow the simultaneous advancement of multiple phase-space hierarchies. In addition, the Poisson
equation represents an instantaneous constraint, and we chose most self-consistent strategy of re-
evaluating the Poisson equation at each predictor state. An alternative possibility is to extrapolate
φ in time to avoid some of the intermediate field solves and the associated parallel synchronization;
investigating this approach is left for future work.

The associated modifications to Algorithm 1 are shown in Algorithm 5. The main differences are
that the major steps are each now computed for all hierarchies and that additional steps to evaluate
instantaneous constraints have been inserted on predicted or updated states are obtained. Note that
we do not recompute the potential until after any possible regridding since the regridding step for
the configuration space hierarchy is not independent of the phase space hierarchies in our current
implementation. More details about this are given in Section 3.3.

3.1.2. Conservative, limited, high-order interpolation algorithm

Fine-patch cells are filled from coarse cells either when new fine-level patches are created or when
fine-patch ghost cells at coarse-fine interfaces are filled. For second-order discretizations of first-
order differential operators, slope-limited linear reconstruction is generally used to obtain fine-cell
averages from the coarse grid while controlling non-physical oscillations. To obtain a fourth-order
reconstruction while controlling oscillations, several techniques exist, including least squares [46],
unfiltered [47], and explicitly-filtered [48] high-order interpolations. We adopt a slightly different
approach and make use of standard WENO5 [40] interpolants that have been analytically integrated
to obtain explicit cell-average interpolation formulas.
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Algorithm 5 Synchronous, Multi-Stage, Vlasov-Poisson Multi-Hierarchy Advance

k ← 0
for all Stages s← 1, 4 do

for all Hierarchies H do
ComputePredictorState(k, s, fpred)

end for
ComputeInstantaneousConstraints(fpred, φ)
for all Hierarchies H do

ComputeRHS(fpred, φ, s, k, Faccum)
end for

end for
for all Hierarchies H do

ComputeUpdate(Faccum, fnew)
end for
if time to regrid then

Regrid all hierarchies
end if
ComputeInstantaneousConstraints(fnew, φ)
Compute next ∆t

x
i−1/2

x
i+1/2

i−2 i−1 i i+1 i+2

R
i

R
i+

1

R
i+

2

R
i+

3

Figure 2: Relationship of fine to coarse mesh in global index space with a refinement ratio of R = 4. The five coarse
cells shown are used to determine the cell averages in the four fine cells that subdivided cell i.

We assume cell-averaged data ūi on a coarse mesh with mesh size h and an overlapping fine mesh
with mesh size hf , such that

hfj = hj/Rj , j = 1, 2, . . . , D, (17)

where each Rj is a positive integer. Our goal is to construct a high-order approximation to fine-mesh

cell-averaged values ūfif such that the integral over the fine mesh exactly equals the integral over
the coarse mesh. In addition, since initialization of fine mesh from coarse mesh may be done in
regions of high gradients, we seek an adaptive interpolation scheme that will inhibit the creation of
unphysical oscillations.

For our fourth-order discretization, the five-point WENO5 scheme is sufficient. In the general
approach to obtain an interpolation in cell i, one is given five cell-averages ūi+e, e = −2,−1, 0, 1, 2,
and a location xi−1/2 ≤ x ≤ xi+1/2, as shown in Figure 2. It is useful at this point to define some
auxiliary quantities:

Di+n = ūi+n+1 − ūi+n, n = −2,−1, 0, 1, (18a)

∆i+p = Di+p −Di+p−1, p = −1, 0, 1. (18b)

The algorithm proceeds for a uniform mesh as follows:
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1. Compute smoothness detectors β
(r)
i , r = 0, 1, 2:

β
(0)
i =

13

12
∆2
i+1 +

1

4
(Di+1 − 3Di)

2
, (19a)

β
(1)
i =

13

12
∆2
i +

1

4
(Di +Di−1)

2
, (19b)

β
(2)
i =

13

12
∆2
i−1 +

1

4
(3Di−1 −Di−2)

2
; (19c)

2. Compute the absolute interpolation weights α
(r)
i , r = 0, 1, 2:

α
(r)
i = dr/(ε+ β

(r)
i )2, (20)

where d0 = 3/10, d1 = 3/5, d2 = 1/10, and ε is a small positive value to avoid division by zero
(typically ε = 10−6);

3. Compute the relative interpolation weights ω
(r)
i , r = 0, 1, 2:

ω
(r)
i = α

(r)
i /

(
2∑
s=0

α
(s)
i

)
; (21)

4. Compute the interpolants v
(r)
i (x), r = 0, 1, 2:

v
(r)
i (x) = h

2∑
m=1


m−1∑
j=0

ūi+j−r




2∑
l=0
l 6=m

 2∏
q=0
q 6=m,l

(
x− xi−1/2 − h(q − r)

)
2∏
l=0
l 6=m

h(m− l)




; (22)

5. Compute the combined interpolant vi(x):

vi(x) =

2∑
r=0

ω
(r)
i v

(r)
i (x). (23)

The result vi(x) is an interpolant constructed from cell average values such that

xi+1/2∫
xi−1/2

vi(x) dx = hūi. (24)

In smooth regions, vi(x) is an O
(
h5
)

approximation pointwise; in regions where under-resolution

generates oscillations, the scheme drops to O
(
h3
)

pointwise (at worst) by adapting its stencil through
the nonlinear weights so as to bias towards interpolations that are less oscillatory.

For adaptive mesh refinement, we can analytically integrate (22) over the fine-mesh cells to
arrive at simple algebraic equations for the fine-mesh cell-averages. For a refinement ratio of R, we
integrate (22) over each of the intervals [xi−1/2 + sh/R, xi−1/2 + (s + 1)h/R], s = 0, 1, . . . , R − 1,

(see Figure 2). Define for r = 0, 1, 2, A
(r)
i , B

(r)
i , and C

(r)
i :

A
(0)
i = ūi + 1

6 (2Di+1 − 5Di),

A
(1)
i = ūi − 1

6 (Di + 2Di−1),

A
(2)
i = ūi − 1

6 (4Di−1 −Di−2),

B
(0)
i = 2Di −Di−1,

B
(1)
i = B

(2)
i = Di−1,

C
(0)
i = ∆i+1,

C
(1)
i = ∆i,

C
(2)
i = ∆i−1.

(25)
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Figure 3: (a) The twenty-five coarse cells in 2D used to interpolate the sixteen fine-cell averages in cell i for a uniform
refinement of R = 4. (b) The cells involved in the partial interpolation in the x-direction for cell i. The result are the
four cell averages that are fine in the x-direction but coarse in the y-direction. (c) The cells involved in the partial
interpolation in the y-direction for sub-cells at fine-grid location Ri. This is repeated for all fine-grid locations in the
x-direction.

Then the three fine-mesh cell-averaged interpolated values in cell (Ri+ s) are(
ūfRi+s

)(r)
= A

(r)
i +B

(r)
i

(
2s+ 1

2R

)
+ C

(r)
i

(
3s2 + 3s+ 1

6R2

)
, (26)

for r = 0, 1, 2. Note that, to ensure exact conservation to round-off, we renormalize the average of
the fine cells to the original coarse cell average by

(
ūfR(i+1)−1

)(r)
renorm

=
(
ūfR(i+1)−1

)(r)
+ ūi −

R−1∑
s=0

(
ūfRi+s

)(r)
/R; (27)

this ensures that the truncation errors are equidistributed amoung the sub-cells.
In implementation, advantage can be made of the many repeated factors. Notably, for any

given coarse cell i, the fifteen auxiliary variables (18) and (25) and the ω
(r)
i only need be computed

once for the R fine cells in cell i. Similarly, for a fixed refinement R, the 2(R − 2) functions of
s = 0, 1, · · · , R− 2 in (26) are the same for any coarse cell i.

The direct, though not most efficient, extension of the one-dimensional algorithm to multiple
dimensions is to apply the method dimension-by-dimension. Thus, it is sufficient to build code to
handle the 1D problem, and the multi-dimensionality is handled through data management, i.e., the
input provided to the 1D routines and the memory destinations to which the results are written.

Consider the 2D case where the refinement ratios are R0 and R1 in the x0- and x1-directions,
respectively. An example with R0 = R1 = R = 4 is shown in Figure 3(a). In cell i, we first compute
cell averages for cells refined only in x0 using (26). This is shown in Figure 3(b). The result for each
cell i is R0 new sub-cell values.

The same operation is then applied in x1-direction, but the input values are no longer the coarse-
grid averages, but are now the partially-refined averages from the previous step. This is shown in
Figure 3(c). The result for each fine cell Ri + s is R1 sub-cell values, and since there are R0

x1-interpolations per coarse cell i, R0R1 sub-cell values.

3.2. Inter-hierarchy transfer operations

Data transfer between hierarchies of different dimensionality requires the formulation of special
algorithms and auxiliary data structures. While the injection of lower-dimensional data in the higher-
dimensional space is a straight-forward constant continuation in the new dimensions, the reduction
of higher-dimensional data into the lower-dimensional space requires the application of an operator
across the dimensions that are removed, such as the integrals in the moment reductions (3).

12



i 0 1 2 3 4 5 6 7

x

Figure 4: The configuration-space composite grid corresponding to the composite grid GC depicted in Figure 1 after
reduction.

The application of reductions across an AMR hierarchy is not in itself new. For example, the
computation of mathematical norms is frequently executed on AMR hierarchies, and any norm is the
reduction of higher-dimensional data into a scalar value. Lower-dimensional slices across a hierarchy
are often used for visualization. A special case of such a slice reduction was developed for the laser-
plasma interaction code ALPS [45], where the paraxial light wave sweeps required plasma densities
on lower-dimensional planar slices. The challenge for the Vlasov system is that the reductions are the
result of accumulation. Spatial fidelity and accuracy must be maintained while accumulating across
the velocity dimensions, and such reductions must be done efficiently and without double-counting
(recall the overlapping mesh hierarchy shown in Figure 1).

In addition to the need to obtain data at equivalent resolution, the act of orchestrating a reduction
operation across a hierarchy in parallel requires several auxiliary structures. In fact, to preserve
generality in the mesh refinement, auxiliary data structures are also helpful for injection operations.
We next discuss two moment reduction algorithms that have been developed for the Valhalla
code, followed by a brief description of the associated injection algorithm.

3.2.1. Moment reduction algorithm

Consider the composite grid depicted in Figure 1. Let us assume that we will accumulate on
coarse-grid index j for coarse-grid index i = 1. Along i = 1 there are cells of two resolutions since
there are two cells, j = 7, 8, that have been refined. If we do not preserve the finest resolution
in the accumulation on j, we will lose some known information about the spatial structure in the
remaining x-direction. To preserve the finest-resolution spatial information, we should subdivide in
the x-direction to obtain cells of uniform resolution (in i). Using this principle, the corresponding
composite grid after reduction is shown in Figure 4.

One might consider subdividing coarse cells without spatially reconstructing the data within the
coarse cell, but this would result in an O(h) error in the summation. To see this, consider that, for
a refinement ratio of R, the relationship between a fine grid cell average and a coarse grid average
in a single dimension is

ūfRi+s = ūi − h
(
R− 2s− 1

2R

)
∂xu|i+ 2s+1

2R
+O

(
h2
)
, (28)

where s = 0, 1, . . . , R − 1. Thus, to preserve higher-order accuracy, all coarse data must be recon-
structed before averaging to the finest resolution and before applying the reduction operation.

One can make use of the limited interpolation operators defined in Section 3.1.2. However, the
data to be reduced should be well-resolved (or else it would have been refined), so a less expensive
option is to use a linear interpolation. One can construct such an interpolant by averaging over
sub-cells the fifth-order interpolant,

v(x) =

2∑
j=−2

γj

(x
h

)
ūi+j +O

(
h5
)
, (29)
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with

γ−2(η) =
(
5η4 − 20η3 + 15η2 + 10η − 6

)
/120, (30a)

γ−1(η) =
(
−20η4 + 60η3 + 30η2 − 150η + 54

)
/120, (30b)

γ0(η) =
(
30η4 − 60η3 − 120η2 + 150η + 94

)
/120, (30c)

γ1(η) =
(
−20η4 + 40η3 + 90η2 − 10η − 26

)
/120, (30d)

γ2(η) =
(
5η4 − 15η2 + 4

)
/120, (30e)

as was done to arrive at (26). The resuling formula for the fine-mesh interpolations is

ūfRi+s =

2∑
j=−2

bj(s)ūi+j +O
(
h5
)

(31)

with

b−2(s) = (p4(s)− 5p3(s) + 5p2(s) + 5p1(s)− 6) /120, (32a)

b−1(s) = (−4p4(s) + 15p3(s) + 10p2(s)− 75p1(s) + 54) /120, (32b)

b0(s) = (6p4(s)− 15p3(s)− 40p2(s) + 75p1(s) + 94) /120, (32c)

b1(s) = (−4p4(s) + 5p3(s) + 30p2(s)− 5p1(s)− 26) /120, (32d)

b2(s) = (p4(s)− 5p2(s) + 4) /120, (32e)

where

pk(s) =

k∑
j=0

k!

j!(k − j)!
sj . (33)

At this point, it is helpful to introduce some notation. We denote an N -vector of integers by
i = (i0, i1, . . . , iN−1) ∈ ZN and a patch, P, by a pair of N -vectors that indicate the lower and upper
cells of the patch: P = [ilo, ihi]. The restriction from an N -vector to a (N − 1)-vector by removing
the j-th element is restrj , e.g.,

restrj i = (i0, i1, . . . , ij−1, ij+1, . . . , iN−1) ∈ ZN−1. (34)

and we define restrj P = [restrj ilo, restrj ihi]. We also define a replacement operator replj(a, b) that
operates on patches and that replaces the j-th element of the lower and upper N -vectors by a and
b, respectively:

replj(a, b)P = [(i0, i1, . . . , ij−1, a, ij+1, . . . , iN−1), (i0, i1, . . . , ij−1, b, ij+1, . . . , iN−1)]. (35)

A collection of patches at a refinement level l is denoted by Ll, and a patch hierarchy GH is defined
as the set of refinement levels with an N -vector refinement ratio defined between each level and the
coarsest (l = 0), i.e.,

GH = {Ll, 0 ≤ l ≤ L− 1 : ∃ rl+1
l ∈ ZN , 0 ≤ l ≤ L− 2}. (36)

The directional refinement and coarsening operators, Ra,bj and Ca,bj , respectively, refine and coarsen
the j-th direction of a patch by the ratio defined between refinement levels a and b, that is,

Ra,bj P = replj(R
a,b
j ij , R

a,b
j (ij + 1)− 1)P, (37a)

Ca,bj P = replj(C
a,b
j ij , bCa,bj (ij + 1)− 1c)P, (37b)

where Ra,bj =
∏b−1
l=0 (rl+1

l )j/
∏a−1
l=0 (rl+1

l )j and Ca,bj = 1/Ra,bj .
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Again referring to Figure 1, we wish to compute the reduction on the composite grid GC , but
in fact we have the hierarchy grid GH . The standard technique for computing a reduction across a
hierarchy without double counting is to use a mask to zero out the contributions from coarse grid
regions that are overlapped by fine grid. Let Pl be the number of patches in level Ll; let Ia,bj be the
the interpolation operator in direction j that refines the local data from the resolution of level a to
that of level b; and let µpi be the masking operator on patch Pp that sets the data in cell i to zero if
the cell is covered by a patch at a finer level. We further assume, without loss of generality, that the
phase-space integer vector i is ordered in such a way so that elements 0 through N − 1 correspond
to configuration-space indices, and elements N through N + M − 1 correspond to velocity space
indices.

The reduction operation to construct the charge density is

ρic = 1− Vv
N+M−1∑
d=N

Jd−1∑
jd=0

fi = 1− Vv
N+M−1∑
d=N

L−1∑
l=0

Pl−1∑
p=0

jpd,hi∑
jd=j

p
d,lo

µpi

N−1∏
d′=0

Il,L−1jd′
f li ,

= 1− Vv
L−1∑
l=0

Pl−1∑
p=0

N+M−1∑
d=N

jpd,hi∑
jd=j

p
d,lo

µpi

N−1∏
d′=0

Il,L−1jd′
f li ,

(38)

where ic =
∏N+M−1
d=N restrd i ∈ ZN is the configuration space index and where Vv =

∏N+M−1
d=N hd.

In words, the distribution function on each patch p is first refined up to the finest level in the
configuration space directions, then masked, and then accumulated. Note that the mask operator
and the interpolation operator do not commute; after summing over the velocity -space indices, jd,
with a mask, the resulting partial sums would in general have discontinuities at mask boundaries.
Thus, using a masking procedure, one must reconstruct in the higher-dimensional space, which is
more expensive that reconstructing in the lower-dimensional space.

To facilitate the inter-dimensional communication, two intermediate data structures are used.
The partial reduction level is a level of overlapping patches at the finest resolution in configuration
space, where the patches are projections of every patch in the phase-space hierarchy:

Lpartial =

{
N−1∏
d′=0

Rl,L−1d′

N+m−1∏
d=N

restrd P, ∀ P ∈ GH

}
. (39)

The total reduction level, Ltotal, disjoint covering of patches of the configuration space domain that,
aside from the resolution, is independent of all hierarchies. These structures are created given a
phase-space hierarchy GH and configuration space-hierarchy GcH and exist until regridding occurs.
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Figure 5: Graphical depiction of the Mask Reduction Algorithm.

Algorithm 6 Mask Reduction

for all levels L ∈ GH do
for all patches P ∈ L do

Refine data in non-reduction directions
Mask out covered cells
Find patch Pp(P) ∈ Lpartial corresponding to patch P
Sum reduce to partial sum patch Pp

end for
end for
for all patches Pt ∈ Ltotal do

Accumulate data from co-located patches Pp

end for
for all levels L ∈ GcH do

for all patches P ∈ L do
Copy data from co-located patches Pt

end for
end for

In Figure 5, a diagram of the Mask Reduction Algorithm, Algorithm 6, is presented. The
algorithm proceeds as follows. For each patch in the phase space hierarchy, the data on the patch is
first refined in those directions that will remain after the reduction. The covered regions are then
masked out; this is accomplished by using masks that have been precomputed using a modified
communication algorithm2 and stored in the phase space hierarchy. A one-to-one mapping is used
to obtain the configuration-space partial-sum patch Pp from the pre-computed partial summation
level Lpartial that corresponds to the current phase space patch P. The summation is then executed,
and the results are placed in the configuration-space partial summation patch Pp. Once all patches
in the phase space hierarchy GH have been reduced, a communication from the partial summation
level Lpartial to the total reduction level Ltotal is executed using an accumulation operation.3 The

2The mask variable is set to unity everywhere. Then a standard communication algorithm from fine to coarse
levels is executed on the mask variable in the phase space hierarchy, but instead of copying fine data to coarse cells
where overlap occurs, zeros are copied into the coarse cells.

3Instead of copying values from each source patch to each destination patch, values are added from each source
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total reduction level at this point contains the total reduction on a set of disjoint patches at the
finest resolution. A standard communication operation from the total reduction level Ltotal to the
configuration space hierarchy GcH completes the data transfer.

We note that the total reduction level is not necessary. One could communicate directly between
the partial summation level and the configuration space hierarchy using an accumulation operation.
However, for clarity and ease of implementation, we favored the use of an intermediate total reduction
level.

While the Mask Reduction Algorithm is simple to implement, one might suspect that it is not
as efficient as it could be because interpolation is done in phase space to the original data. Instead,
consider execution of the reduction on the composite grid, GC . Let PC be the number of patches in
GC . In a single dimension:

ρic = 1− Vv
N+M−1∑
d=N

Jd−1∑
jd=0

fi = 1− Vv
PC−1∑
p=0

N+M−1∑
d=N

jpd,hi∑
jd=j

p
d,lo

N−1∏
d′=0

Il(p),L−1jd′
fpi ,

= 1− Vv
PC−1∑
p=0

N−1∏
d′=0

Il(p),L−1jd′

N+M−1∑
d=N

jpd,hi∑
jd=j

p
d,lo

fpi ,

= 1−
PC−1∑
p=0

N−1∏
d′=0

Il(p),L−1jd′
ρPic ,

(40)

where, since the composite grid has no levels, the level index l is a function of the patch index p and
is merely a label indicating the refinement relative to the coarsest patches. Note the savings of the
last step; instead of applying the potentially costly prolongation operator at every grid level j, it is
instead applied to the lower-dimensional partial sums on each patch. To achieve this simplification,
however, an efficient algorithm is needed to construct the composite grid.

Algorithm 7 Subdivision of patch into composite grid sub-patches

procedure ComputeSubPatches(Pin,Lin,GH)
for all levels L ∈ GH : L > Lin do
S ← Pin

for all patches P ∈ L : P ∩ Pin 6= ∅ do
Pextend ←

∏N+M−1
d=N repld

(
(iinlo)d, (i

in
hi)d
)
P

for all patches Ps ∈ S do
S ← S − Ps + Ps ∩ Pextend + Ps\(Ps ∩ Pextend)
S ← S − P

end for
end for

end for
return S

end procedure

Such a procedure based on basic box calculus operations is presented in Algorithm 7. Given a
patch Pin and the hierarchy in which it resides, a set of sub-patches S is to be constructed. Initially,
the set of sub-patches is just the original patch Pin. All patches P from finer levels that overlap the
patch are found. In the SAMRAI library, these relationships are already known and can be obtained
directly without searching. Each overlapping patch, then, is extended in the reduction directions,
for example, that is, its lower and upper indices in the reduction directions are replaced by the lower

patch to each destination patch.
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Figure 6: Graphical depiction of the Sub-Patch Reduction Algorithm. It is those steps in the light purple box that
differ from the Mask Reduction Algorithm.

and upper limits of the input patch Pin:

Pextend =

N+M−1∏
d=N

repld
(
(iinlo)d, (i

in
hi)d
)
P. (41)

The extended overlapping patch Pextend is then intersected with each patch Ps ∈ S, and both the
intersections and the complements replace the patch Ps in the set. The original overlap patch P is
then subtracted from the set S. The extension ensures that sub-patches of the greatest extent in
the reduction directions can be formed and that subsequent removal of overlap patches results in
rectangular sub-domains.

Algorithm 8 Sub-Patch Reduction

for all levels L ∈ GH do
for all patches P ∈ L do

Find patch Pp(P) ∈ Lpartial corresponding to patch P
S ← ComputeSubPatches(P,L,GH)
for all sub-patches Ps ∈ S do

Grow ghost cells in non-reduction directions
Sum reduce data, including ghost cells, to temporary patch Ptmp

Refine data on Ptmp in non-reduction directions
Copy data on interior of Ptmp to partial sum patch Pp

end for
end for

end for
for all patches Pt ∈ Ltotal do

Accumulate data from co-located patches Pp

end for
for all levels L ∈ GcH do

for all patches P ∈ L do
Copy from co-located patches Pt

end for
end for

Using this sub-patch construction procedure, the more efficient Sub-Patch Reduction Algorithm
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Figure 7: Injection

presented in Algorithm 8 and depicted in Figure 6 can be used. As before, loops are performed
over all patches, but now, for a given patch, the set of sub-patches are identified. Each of these
sub-patches is first grown in the non-reduction directions by the number of ghost cells necessary for
any subsequent prolongation operations. The data on each sub-patch, including the ghost cells, is
sum reduced to a temporary configuration-space patch of the same resolution. This partial sum data
is then refined, and the result is copied into the corresponding partial sum patch from the partial
sum hierarchy. Once all contributions from all sub-patches are obtained, the reduction algorithm
proceeds as before.

Finally, we note that neither reduction algorithm assumes that either the phase-space or
configuration-space hierarchies have a special structure. Because intermediate data structures are
used along with standard communication algorithms, arbitrary meshes could be used in either di-
mensions. In addition, these algorithms are applicable in parallel and for arbitrary dimension.

3.2.2. Injection algorithm

The process of injection from lower to higher dimensions is much simpler. The data, Ei, for
instance, is the same for all phase space locations at index i, that is, Êij = Ei. Nevertheless,
to facilitate the data transfer between hierarchies of different dimensions, it is convenient to first
construct an intermediate configuration-space restricted hierarchy, GrH = {Lrl , 0 ≤ l ≤ L− 1}, where

Lr =

{
N+M−1∏
d=N

restrd P, ∀P ∈ GH

}
, (42)

that is, it is composed of lower-dimensional restrictions of all of the patches in the phase space
hierarchy GH .
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Algorithm 9 Injection

for all Levels L ∈ GrH do
for all Patches p ∈ L do

copy from co-located patches pc ∈ GcH
end for

end for
for all Levels L ∈ GH do

for all Patches p ∈ L do
find patch pr(p) ∈ GrH corresponding to patch p
either copy from pr into p or use directly

end for
end for

For completeness, the injection transfer algorithm is depicted in Figure 7 and presented in Al-
gorithm 9. Standard communication copiers are used to fill the restricted hierarchy GrH from the
configuration space hierarchy GcH . A one-to-one mapping exists from every restricted hierarchy patch
to the corresponding phase space hierarchy patch. The restricted hierarchy data can then be injected
into phase space data, e.g., Êij ← Ei. This wastes storage with many repeated values, so in the
Valhalla code, we directly access the restricted hierarchy data when needed.

3.3. Regridding for multiple AMR hierarcies

Working with multiple hierarchies introduces regridding challenges for AMR algorithms. With
a single hierarchy, the user typically defines a regrid frequency. At user-defined times, refinement
criteria are used to identify cells in need of refinement (coarsening), new levels of rectangular patches
are formed containing these flagged cells and are populated, and these new levels replace old lev-
els in the hierarchy. With multiple hierarchies, one must decide to what degree to constrain the
regridding of each hierarchy. Considerations include the facilitation of efficient communication be-
tween hierarchies, the cost/benefit of adaptation for each hierarchy, and the degree and nature of
dependencies between hierarchies (e.g., can the hierarchies refine independently, and if not, are the
dependencies one-way or more complicated). In the case of Vlasov simulation, coordination is most
critical between the configuration space hierarchy and the phase space hierarchies, where a variety
of intermediate data structures are required to execute inter-dimensional data transfer.

For the purposes of demonstrating proof-of-principle, we made several simplifying choices. For
1D+1V Vlasov-Poisson, the electrostatic problem is solved in 1D. When restricted down to 1D,
mesh refinement of features in 2D, such as particle trapping regions, will typically lead to mesh
refinement almost everywhere; hence, there is little advantage to mesh refinement in configuration
space. Furthermore, the cost of the higher dimensional solve by far dominates the total cost, so
there should be little advantage to using mesh refinement to speed-up the lower-dimensional solve.
We therefore elected to require the configuration space mesh to be uniform at the finest level of
refinement of the phase space hierarchy. While the mesh was decomposed into patches, we did
not distribute the configuration space hierarchy across multiple processors. For higher-dimensional
problems, such as 2D+2V Vlasov-Poisson, one may benefit from distributing the configuration-space
hierarchy. However, such a distribution will be over a much smaller number of processors than the
phase-space hierarchy simply because there is so much less data and work to distribute in lower
dimensions.4 When the phase-space hierarchy was regridded, the configuration-space hierarchy was
only regridded if a new level of refinement was added (removed) in phase space. This scheme had a
secondary advantage of simplifying the Poisson solver; solves were executed on the uniform, finest
mesh level in configuration space and then averaged down to coarser levels, thereby avoiding the

4For a uniform-grid 2D+2V Vlasov-Poisson code, we have seen in practice that the Poisson solve benefits from
distributed parallelism only when the problem size has grown such that the Vlasov solve occurs across several thousand
processors.
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Figure 8: Unified Modeling Language depiction of the Observer Design Pattern used to create notifying hierarchies.
In our case, the reduction and injection algorithms for configuration-space are HierarchyObservers. These observers
register themselves with the phase space NotifyingHierarchy to receive notices about regridding.

need for a Fast Adaptive Composite (FAC) iterative algorithm [49]. We note that these are merely
choices and not requirements; the algorithms for inter-hierarchy data transfers defined in Section 3.2
support more general configuration and phase-space hierarchies.

3.3.1. Managing inter-hierarchy coordination

From the descriptions of the reduction and injection transfer algorithms in Section 3.2, it is clear
that the intermediate data structures, such as the partial sum level or restricted patch hierarchy,
are dependent on the phase and configuration space hierarchies. When regridding of any of the
primary hierarchies occurs, the intermediate data structures must be rebuilt in order to maintain
consistency. To facilitate this, we made use of the Observer Design Pattern [50] as depicted in
Figure 8. The SAMRAI concept of PatchHierarchy was generalized to allow other objects, such as
the ReductionAlgorithm and InjectionAlgorithm, to subscribe to the phase space hierarchy in
order to receive messages indicating that the phase space hierarchy had regridded. Reconstruction
of the intermediate data structures is deferred until a subsequent reduction or injection operation is
attempted and a message from an observed hierarchy is found.

3.3.2. Mesh Refinement Criteria

Finally, selection of mesh refinement criteria can be critical in obtaining optimum AMR perfor-
mance. For our purposes here, we chose to apply common heuristic refinement criteria to the phase
space distribution function. Specifically, we tag cells when

δ1fi + δ2fi > tol (43)

where

δ1fi =

[
1

2

D∑
d=1

∆xd(fi+ed − fi−ed)2

] 1
2

and δ2fi =
1

2

D∑
d=1

∆x2d|fi+ed − 2fi + fi−ed | (44)

estimate the first two truncation error terms. We do not claim that this is the optimal choice; it
is merely sufficient to demonstrate our algorithms. Other error indicators could be used, including
indicators based on physical principles, such as local estimates of the location of the trapped-passing
boundary. The choice of optimal refinement criteria is intimately related to problem-specific quan-
tities of interest, so we leave this topic for future work.

4. Numerical Results

We present results from a Valhalla simulation of the bump-on-tail instability [51, §9.4] as a
basic proof-of-principle of the block-structured AMR approach for Vlasov-Poisson simulation. We
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Parameter AMR1 AMR2 AMR3

largest patch size

level 0 (32,32) (16,32) (16,32)
level 1 (64,64) (32,128) (32,128)
level 2 (64,64) (128,256) (128,256)

smallest patch size (4,4) (8,8) (8,8)
regrid interval 2 4 8

tag buffer (1,1) (4,4) (8,8)

Table 1: AMR parameters used to define the three test configurations The parameters largest patch size and
smallest patch size control the largest and smallest allowable patch sizes level-by-level; if unspecified, the finest
specified value is applied to all subsequent levels. The parameter regrid interval is the frequency, in time steps,
at which regridding occurs. Finally, tag buffer is the number of buffers cells to add around a region tagged for
refinement to facilitate less frequent regridding.

used the same problem specified in our previous discretization work [39]. The initial distribution
function was given by

f = fb(v) (1 + 0.04 cos (0.3x)) , (45)

with

fb(v) =
0.9√
2π

exp

(
−v

2

2

)
+

0.2√
2π

exp
(
−4(v − 4.5)2

)
. (46)

The (x, v) domain was [−10π/3, 10π/3]× [−8, 10] and was periodic in the x-direction. We initialized
the solution with a coarse grid of Nx × Nv = 16 × 32 and with an initial refinement in the box
[(0, 8), (15, 24)]. This initial mesh configuration allowed for larger time steps, since the cells along
the maximum velocity boundary have a larger aspect ratio. The initial time step was ∆t0 = 0.01,
and this was allowed to adjust to 50% of the local stability condition based on the linear stability of
the fourth-order scheme (See [38]). Time steps could increase no more than 10% from their previous
value, but could decrease by any amount. The grid refinement criteria tolerance was tol = 0.01, and
grid refinement ratios of r10 = [2, 4], r21 = [4, 2], and r32 = [2, 2] were used. Up to four levels of AMR
mesh were allowed. To isolate the AMR performance issues, we consider the serial performance on
a single node of the LLNL 64-bit AMD Linux cluster hera.

AMR performance is very problem-dependent. When small regions of refinement are required,
in particular, when there are lower-dimensional features in the solution, AMR is generally a net
win. However, there is overhead associated with AMR for which sufficient problem size reduction
is necessary to achieve a net gain in simulation performance. Performance is also highly dependent
on the choice of parameters, such as regrid frequency and refinement tolerances, so the results pre-
sented here are meant to demonstrate that our Vlasov-AMR procedure works and can show savings.
Whether or not AMR is useful in other specific cases and optimal choices for AMR parameters and
regridding criteria are very important issues.

To help elucidate the AMR performance, we considered three AMR parameter configurations, as
shown in Table 1. The AMR1 case represents an attempt to minimize the number of refined cells by
using smaller patches and more frequent regridding. The AMR2 and AMR3 cases allow for larger
patches an less frequent regridding. Thus, these three cases can give some sense of the trade-offs
between reducing the amount of mesh (AMR memory reduction) and reducing the run time (AMR
speed-up). All cases were run using the Sub-Patch Reduction algorithm with unlimited fifth-order
reconstruction unless otherwise noted.

Figure 9 shows computed approximations of the phase-space distribution function at t = 22.5
for case AMR1. As expected, we see a concentration of the mesh only in regions of most rapid
variation in the solution, and conversely, we see mesh coarsening in the the trapping region. At
this point in the calculation, the total number of cells is 40784, compared to 131072 cells in the
equivalent fine grid – a reduction of approximately 69%. In Figure 10, we show the time history
of the number of AMR cells plotted against the instantaneous equivalent fine grid for each AMR
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Figure 9: Example result for the bump-on-tail problem at time t = 22.5 for the AMR1 case. On the left, the
distribution function is shown. Boxes outlined in white denote AMR patches. On the right, the corresponding four-
level AMR mesh is shown. The mesh adapts to resolve the particle trapping region as it forms. Note that the minimum
distribution function is small but negative; no positivity enforcement schemes were used in this calculation.

parameter configuration. We see that once adaptivity starts, we can achieve an average reduction of
between forty and sixty percent, depending on the AMR parameters. As expected, the AMR1 case
uses the least number of cells, and the AMR3 case, because of its increased patch size and tagging
buffer, uses the most cells. Considering Figure 9, we see that a lot of the mesh reduction comes in the
velocity (vertical) dimension, and this is expected for each additional velocity dimension in higher
dimensions. In 1D+1V, there is little localization in configuration space. However, in 2D+2V, there
is also the opportunity for spatial localization of the features, which would result in even more mesh
reduction.

In Figure 11, we present the time history of the maximum of the electric field for the bump-on-
tail problem for three different resolutions. This metric is a fairly sensitive measure of numerical
fidelity. In addition to the three AMR parameter cases, we plot the results from three uniform-grid
cases: 64 × 128, 128 × 256, and 256 × 512. We use the finest of these as a “reference” solution
to plot the discrepancy of the electric field maximum. For the AMR calculations, the finest local
resolution is equivalent to the 128× 256 uniform mesh. At early times, when the solution has little
structure, all of the solutions agree well. The small up/down differences in the AMR results before
t = 10 are due to the discrete temporal resolution (the AMR cases use larger time steps) of the first
two valleys of the maximum electric field. Around t = 25, one begins to see significant differences
in the coarsest solution, since it cannot resolve as well the features being generated in the particle
trapping region. We can conclude from these results that the 64× 128 resolution was insufficient to
accurately track the maximum electric field over this time interval; thus the increased resolution of
the AMR is necessary.

By about t = 50, one sees a growing discrepancy between all of the AMR cases and the equivalent
uniform mesh of 128×256; over the interval considered, the discrepancy is roughly twice as large at its
maximum. One explanation for this could be the accumulation of error over longer integration times.
Another likely explanation is that we are not capturing all of the relevant details with the refined
mesh because we are using a simple heuristic gradient detection algorithm; more problem-specific
refinement criteria may perform better. Nevertheless, the AMR results do track the equivalent
uniform mesh results well. Compared to the finest uniform grid results, the phase of the AMR
results is relatively good, but the amplitude is being under-predicted by an increasing amount over

23



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14
x 10

4

Number of Cells

T
im

e

 

 

AMR1: Total Number of Cells

AMR1: Equivalent Fine Grid

AMR2: Total Number of Cells

AMR2: Equivalent Fine Grid

AMR3: Total Number of Cells

AMR3: Equivalent Fine Grid

Figure 10: Time history of the number of cells for the bump-on-tail simulation for the three AMR parameter config-
urations. The dashed curves are the number of cells in an equivalent uniform grid based on the current maximum
refinement level, while the solid curves are the actual number of cells in the AMR hierarchy. Note that around t = 3, 6
and 9, there is some intermittency in all cases, as the adaptivity adds and removes a small number of patches at the
next finer level.

Case Time 1 (s) Time 2 (s) Time 3 (s) Avg Time (s) Speed-up

Uniform 1521 1520 1519 1520 1.00
AMR1 2622 2615 2632 2623 0.58
AMR2 1355 1346 1336 1346 1.13
AMR3 960 961 960 960 1.58

Table 2: AMR speed-up on the hera cluster for the three AMR parameter cases. The average of three results for
each case are compared to the average run time for three instances of the same problem solved using the equivalent
uniform mesh.

time; there will, of course, be slightly more dissipation in the coarser results when features appear
that cannot be adequately resolved. These results show that AMR can provide effectively equivalent
results as a uniform mesh. Of course, one must consider the quantities of interest for the calculation,
and suitable choices of AMR parameter and refinement criteria need to be selected.

In addition to mesh reduction, the potential for decreased time-to-solution by using AMR is also
of interest. As indicated earlier, AMR should have the benefit that the equations are integrated on
fewer cells and that larger time steps can be taken. However, traditional AMR incurs additional
overhead from the regridding and the data transfers (communication, interpolation, and averaging)
between patches on different levels. The Vlasov-Poisson system has additional overhead due to the
reduction and injection operations between different dimensions.

In Table 2, we provide run times on the hera cluster for the three AMR parameter cases in
comparison to the run time for the equivalent uniform mesh. The AMR1 case, with refinement
every other step, causes significant slow-down of the code; however, in the other two cases, the
time to solution is reduced. As expected, when the regridding frequency is reduced, the speed-up
increases. We note that we have erred conservatively in favor of the uniform mesh solution; running
serially and with a single patch, it incurs no inter-patch communication costs.

The reasons for the slow-down are obvious when looking at the cost of certain key operations, as
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Case Exclusive Time (s) Total Time (s)

MultiStageIntegrator::computeRHS()

Uniform 830.6 (55%) 830.7 (55%)
AMR1 169.0 (6.4%) 169.1 (6.4%)
AMR2 170.5 (13%) 170.6 (13%)
AMR3 236.0 (25%) 236.0 (25%)

MultiStageIntegrator::evaluateInstantaneousConstraints()

Uniform 16.40 (1.1%) 115.0 (7.6%)
AMR1 68.89 (2.6%) 272.6 (10%)
AMR2 19.63 (1.5%) 132.5 (9.9%)
AMR3 12.35 (1.3%) 89.76 (9.4%)

xfer::RefineSchedule::fillData()

Uniform 32.25 (2.1%) 94.65 (6.2%)
AMR1 21.95 (0.83%) 1564. (59%)
AMR2 14.54 (1.1%) 751.9 (56%)
AMR3 14.00 (1.5%) 384.3 (40%)

ReductionAlgorithm::reduce()

Uniform 0.8683 (0.06%) 76.56 (5.0%)
AMR1 7.507 (0.29%) 153.5 (5.8%)
AMR2 3.179 (0.24%) 74.75 (5.6%)
AMR3 1.846 (0.19%) 43.31 (4.5%)

MultiStageIntegrator::regridHierarchies()

Uniform 0.000 (0%) 0.000 (0%)
AMR1 72.70 (2.8%) 767.9 (29%)
AMR2 17.48 (1.3%) 203.6 (15%)
AMR3 6.150 (0.64%) 74.41 (7.8%)

ConservativeWENORefine::WENO 2D

Uniform 0.000 (0%) 0.000 (0%)
AMR1 639.0 (24%) 720.2 (27%)
AMR2 382.2 (29%) 411.1 (31%)
AMR3 203.7 (21%) 215.1 (22%)

Table 3: A summary of the costs of six key routines for the three AMR cases and the equivalent uniform mesh.
Exclusive time is the time strictly spent in a routine. Total time is the time spent in a routine and all subroutines
called from that routine.
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Figure 11: Time history of the maximum electric field for bump-on-tail calculations at several resolutions. Results
are from the three AMR configurations in which the finest resolution is equivalent to a 128 × 256 uniform mesh as
well as reference uniform-grid calculations on meshes of 64× 128, 128× 256, and 256× 512. The left plot shows the
maximum of the electric field. The right plot is the same data, plotted as the difference from the results from the fine
256× 512 mesh.

shown in Table 3. Note that more than half the time of the uniform grid calculation is the routine
computeRHS(). In contrast, the amount of time in this routine is significantly reduced for all AMR
calculations, as one would expect, since this routine will scale with the number of cells. That the
AMR time in computeRHS() is no more than 24% of the total time suggests that the AMR cases
are spending a great deal of time in AMR overhead.

One obvious source of overhead is regridding, the cost for which is accounted in
regridHierarchies(). As expected, we see that the AMR1 case spends the most time in regridding
while the AMR3 case spends the least. The absolute total time spent in AMR1 regridding is more
than ninety percent of the total time the uniform mesh case spends in computeRHS(). However, for
the AMR3 case, which regrids on every eighth step, the regridding cost is much more reasonable.

The fillData() routine is the top level routine that applies boundary conditions (hence the
non-zero cost even for the uniform grid case), fills patch ghost cells on the interior of the domain,
and fills new patches from patches at the same (i.e., copy) or coarser (i.e., interpolate) mesh levels.
While fillData() accounts for only 6% of the uniform mesh calculation total time, it represents
40-60% of the total time for the AMR calculations. One of the routines that constitutes a significant
portion of fillData() is the finite volume WENO refinement in WENO 2D(); it can be seen that
with less frequent refinement, less time is spent in this routine. Note that, while the absolute time
in WENO interpolation decrease monotonically from AMR1 to AMR3, the relative times peak with
AMR2; this is a trade-off between more mesh and less frequent regridding. Furthermore, we note
that the cost of limited, high-order interpolation for the intra-hierarchy interpolations necessary in
AMR is not a cost specific to the Vlasov-Poisson system; an AMR method based on a higher-order
discretization for any PDE system will need to address the efficiency of such interpolations.

The other two routines shared by all four cases, evaluateInstantaneousConstraints()

and reduce(), are provided to show that these operations spend roughly the same per-
centage of time whether for the uniform mesh or for the AMR cases. Note that
evaluateInstantaneousConstraints() is marginally more expensive for all AMR cases because
this routine includes the Poisson solve, which requires more complicated reductions across the AMR
hierarchies. The AMR1 case is more expensive in absolute time because it has more patches to re-
duce. However, not that the reductions and constraint evaluations for AMR2 and AMR3 are about
the same cost as or even cheaper than (in absolute time) the uniform case.

Finally, in Table 4, we present some timings for the routines related to the two reduction algo-
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Routine Exclusive Time (s) Total Time (s)

ConservativeHighOrderRefine::WENO 2D()

Mask Reduction 742.6 (27%) 824.3 (30%)
Sub-Patch Reduction 642.5 (24%) 727.5 (27%)

ReductionAlgorithm::reduce()

Mask Reduction 27.14 (0.99%) 245.7 (9.0%)
Sub-Patch Reduction 7.505 (0.29%) 157.9 (5.9%)

ConservativeHighOrderRefine::WENO 1D()

Mask Reduction 0.00 (0%) 0.00 (0%)
Sub-Patch Reduction 5.399 (0.20%) 10.88 (0.41%)

Table 4: Comparison of the processing time of the Mask Reduction and Sub-Patch Reduction algorithms. Exclusive
time is the time strictly spent in a routine. Total time is the time spent in a routine and all subroutines called from
that routine.

rithms described in Section 3.2. Note that these results were computed using WENO interpolation
and the AMR1 parameters. For the Mask Reduction, we note that the WENO 2D routine is called for
intra-hierarchy regridding and communication and inter-hierarchy reduction calls. With the Mask
Reduction Algorithm, a great deal of time is spent in the 2D interpolation routine, and the reduc-
tions account for 9% of the total run time. For the Sub-Patch Reduction, the WENO 2D routine is not
called, so its reported time is strictly from intra-hierarchy regridding and communication calls. With
the Sub-Patch Reduction Algorithm, the time spent in the WENO 2D routine is reduced by roughly
10%, and it is replaced by about 1.3% of additional work in the WENO 1D routine. The total cost
of the Sub-Patch Reduction Algorithm is 64% of the Mask Reduction Algorithm. The comparative
performance is what was anticipated, although, admittedly, for 1D+1V Vlasov-Poisson, the savings
are not dramatic. Nevertheless, in higher dimensions, there will be a more significant benefit; for
2D+2V Vlasov-Poisson, the Mask Reduction Algorithm will require four interpolations in each cell
in the four-dimensional mesh (scaling like N4), whereas the Sub-Patch Reduction Algorithm will
require only two interpolations in cell in a two-dimensional mesh (scaling like N2).

5. Conclusions

We have demonstrated the application of block structured adaptive mesh refinement to the
1D+1V Vlasov-Poisson system as implemented in the Valhalla code based on the SAMRAI AMR
library. The primary complication comes from a solution state comprised of variables of different di-
mensions. The considerations and algorithms required to extend standard single-dimensional block
structured AMR have been presented. In particular, algorithms for reduction and injection opera-
tions that transfer data between mesh hierarchies of different dimensions were explained in detail.
In addition, modifications to the basic AMR algorithm due to our use of high-order spatial and tem-
poral discretizations were presented. Preliminary results for a standard Vlasov-Poisson test problem
were presented, and these results indicate that there is potential for savings, both in memory and
in compute time, for at least some Vlasov problems. The effectiveness for any particular problem
will depend intimately on the features of the solution.

There are several obvious directions for future work. Currently, we are working on generalizing
the Valhalla code to 2D+2V and higher dimensions. The SAMRAI library is quite general and
supports arbitrary dimension. Moving to 4D calculations and beyond opens up several new directions
for investigation. When the configuration space problem is in 2D or 3D, there is potential for savings
from adaptivity in configuration space. It is straightforward to enable this generalization, but it is
unclear if the additional cost of the necessary FAC algorithm and of the AMR overhead will justify
the complication, particularly when the solution time will be dominated by operations in the 4D
or higher phase space. With larger phase-space problems, an efficient parallel decomposition will
be necessary; we have already indicated potential advantages of providing each species a distinct
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subset of processors, but empirical results are needed. It also will prove beneficial to allow for
asynchronous time stepping in the AMR advancement; an example of the necessary modifications
to the time advancement algorithm has been shown [46].

Dimensions above three also require additional empirical investigation for AMR efficiency. As
indicated earlier, the potential savings from AMR increases geometrically with dimension, but AMR
overhead, much of which scales with the number of cells at coarse-fine boundaries, also increases
with dimension. Whether the overhead costs in 4D and above negate the savings remains an open
issue and must be the subject of future studies.

AMR overhead, even in lower dimensions, still requires further reduction. One clear path is
to make use of hybrid parallelism as multicore architectures become more prevalent. Much of the
computations contributing to AMR overhead are sequentially executed on a node but are completely
independent and thus ideal for task parallelism. Implementations should also be found that further
optimize the conservative, high-order intra-hierarchy interpolations.

Finally, the topic of refinement criteria requires further investigation. Heuristic or a posteriori
error indicators that seek to minimize local error are sufficient but not optimal, depending on the
desired results of the calculation. Most quantities of interest exist in configuration space, that is, the
macroscopic quantities like temperature and density that can be readily measured in the laboratory.
The reductions leading to configuration space quantities integrate out much of the finer details in
phase space, which suggests that it may be inefficient to resolve all of the finer phase-space structure.
Future investigations should consider (i) the phase space resolution requirements to obtain accurate
configuration space quantities of interest and (ii) whether more efficient phase-space refinement
criteria can be formulated based on these configuration-space accuracy requirements.
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