
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 6985–7002

www.elsevier.com/locate/jcp
On sub-linear convergence for linearly degenerate
waves in capturing schemes

J.W. Banks a,c,*,1,2, T. Aslam b,3, W.J. Rider c,2

a Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
b Shock and Detonation Physics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
c Computational Sciences Research Institute, Sandia National Laboratory, Albuquerque, NM 87185, USA

Received 19 December 2007; received in revised form 20 March 2008; accepted 3 April 2008
Available online 14 April 2008
Abstract

A common attribute of capturing schemes used to find approximate solutions to the Euler equations is a sub-linear rate
of convergence with respect to mesh resolution. Purely nonlinear jumps, such as shock waves produce a first-order con-
vergence rate, but linearly degenerate discontinuous waves, where present, produce sub-linear convergence rates which
eventually dominate the global rate of convergence. The classical explanation for this phenomenon investigates the behav-
ior of the exact solution to the numerical method in combination with the finite error terms, often referred to as the mod-
ified equation. For a first-order method, the modified equation produces the hyperbolic evolution equation with second-
order diffusive terms. In the frame of reference of the traveling wave, the solution of a discontinuous wave consists of a
diffusive layer that grows with a rate of t1/2, yielding a convergence rate of 1/2. Self-similar heuristics for higher-order dis-
cretizations produce a growth rate for the layer thickness of Dt1/(p+1) which yields an estimate for the convergence rate as p/
(p + 1) where p is the order of the discretization. In this paper we show that this estimated convergence rate can be derived
with greater rigor for both dissipative and dispersive forms of the discrete error. In particular, the form of the analytical
solution for linear modified equations can be solved exactly. These estimates and forms for the error are confirmed in a
variety of demonstrations ranging from simple linear waves to multidimensional solutions of the Euler equations.
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1. Introduction

Simulations of inviscid compressible flows typically result in the computation of an advected discontinuity.
Such advected discontinuities are typified by the simple contact discontinuity, but other examples, such as slip
lines, also exist. In any case, these discontinuities have the property that the governing equations are linear in a
neighborhood of the jump and so they are often referred to as ‘‘linearly degenerate” waves [1]. The result of
this linearity is that characteristic curves run parallel to each other as well as the discontinuity, and so any
error made in the computation of such a wave will persist throughout the simulation for all time. To contrast
this, fully nonlinear waves such as shocks, have a natural steepening mechanism which causes the character-
istics to enter back into the wave. This can also be viewed as the natural steepening mechanism inherent to
shocks. The result is that errors made in the computation of shocks can be absorbed back into the disconti-
nuity and dissipated, thus the idiom that shock waves are ‘‘numerical garbage collectors”.

These factors become important when linear jumps are ‘‘captured” rather than ‘‘tracked”. Certainly for
Eulerian schemes [2,3], all waves are captured and so the connection is clear. Lagrangian schemes [4–6] are
often used to circumvent the issues associated with captured linear jumps by performing computations in
the frame of the fluid, but most interesting simulations require, at the very least, mesh remap which results
in the so-called arbitrary-Lagrangian–Eulerian (ALE) schemes [7]. The use of such remap has the potential
to cause ALE to schemes suffer the same fate as purely Eulerian schemes although the details may depend
on the frequency at which remapping is performed. For many problems then, the convergence rates for
ALE methods near linear jumps are limited in a similar way as the convergence rates for Eulerian schemes.

Material interfaces, contact surfaces, and slip lines are all examples of linearly degenerate jumps and are
present in most physically interesting simulations. To make matters worse, such jumps can arise spontaneously
in the flow. This can happen for example through a simple Riemann problem [8], the interaction of two
shocks, or even geometric irregularities interacting with other nonlinear waves [9]. On the other hand, the
importance of accurate treatment of all discontinuities, including linear jumps, is paramount in the overall effi-
cacy of a given simulation. The difficulties associated with the computation of discontinuous solutions has
been the driver behind such developments as high-resolution methods [10–12] and adaptive mesh refinement
[13,14].

Abundant mechanisms to propagate and generate discontinuous solutions, combined with the requisite
accuracy requirements for effective simulations, makes the need to have a detailed understanding of the
expected convergence behavior of numerical methods near those jumps clear. Of course this applies to linear
as well as nonlinear jumps, and this paper focuses on the linear variety. Our focus on linear waves stems from
the ironic fact that the linear case is, in some sense, more difficult. Because nonlinear waves can reprocess
numerical error while linear waves cannot, the convergence rates for numerical methods near linear jumps
are necessarily lower. Thus the convergence character for quantities which jump through linear waves, and
potentially for quantities that are coupled to those jumping through linear waves, is ultimately driven by
the convergence character near the linear jump and so in this sense a complete understanding for linear jumps
is more critical. Furthermore, experience tells us that the convergence character near linear jumps is the pri-
mary difficulty. Of course, we do not write off the need to adequately understand behavior near nonlinear
jumps, but this is a topic for another paper.

For linear jumps, we posit that the general L1 order of convergence for linear pth order capturing schemes is
p/(p + 1). Recall that capturing schemes are generally non-convergent in the L1 norm because at jumps, O(1)
errors are always present. This order of convergence is demonstrated rigorously by considering the truncated
modified equation (ME) which is solved exactly. From this solution one computes the error and determines
the advertised convergence rate. For limited schemes, sometimes called high-resolution schemes or nonlinear
schemes, the story is slightly more complex. For non-compressive limiting strategies, such as MinMod, the
convergence rate is identical to the unlimited case. In fact the analytic solution to the ME for the second-order
MinMod limited scheme is derived and convergence is demonstrated at 2=3. For compressive limiting strate-
gies, such as double MinMod or SuperBee, the modified equation is shown to contain anti-diffusive modes.
Such modes are inherently linearly unstable and the scheme relies on the limiting strategy to maintain overall
solution stability. These un-physical anti-diffusive terms provide an artificial steepening mechanism for linear
jumps which can result in first-order convergence.
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The analysis presented in this paper is in many ways a generalization of what has been presented by
many authors before. In [15], Hedstrom presents an analysis of general two level difference schemes
and shows how the simple requirement of stability necessitates convergence at order p/(p + 1). This pio-
neering analysis demonstrated the fundamental behavior but failed to give any quantitative description of
solution character other than asymptotic convergence rates. Furthermore, the convergence character of
compressively limited schemes, which are TVD and hence stable, is not included in this description. This
was followed in [16] by Orszag and Jayne where the same convergence character was shown. Soon after,
Chin [17,18] derived the exact solution for the ME of a second-order linear scheme as the integral of the
Airy function. This valuable addition hinted toward the possibility of solving the ME for arbitrary-order
schemes and even the possibility of solving the ME for limited schemes as well. Then during the develop-
ment of the artificial compression method (ACM) [19], Harten states the fundamental desire to produce
difference schemes which can potentially achieve a steady state for linear jumps. Standard schemes are
shown to diffuse as a function of time and so he goes on to develop ACM as an alternative. Such schemes
are close brethren to modern high-resolution schemes which employ compressive limiting strategies and so
can potentially achieve higher rates of convergence. The slow smearing of linear jumps is cited in both
[19,20] as the cause of reduced convergence and the rate of smearing is used to devise the same rate p/
(p + 1). Also in [19] it is shown that the general solution to the ME of a linear scheme for discontinuous
data should be representable as a similarity solution. This paper extends the analysis through the next
logical step. We provide closed form solutions for the MEs of linear approximations, which were previ-
ously lacking. These solutions demonstrate many of the previously known results. We also extend our
solutions to limited high-resolution approximations and shows why compressive schemes achieve higher
convergence rates. Furthermore, this analysis gives insight into high-resolution schemes showing how sec-
ond-order limited schemes retain the use of high-order stencils at jumps, and why monotone third-order
approximations are not possible.

The rest of this paper is organized as follows. In Section 2 the governing equations and simple numerical
schemes are presented. Section 3 presents the essential difficulty and demonstrates sub-linear convergence
for the simplest schemes. A detailed analysis of the methods from Section 3 is presented in Section 4. Here
the similarity solution argument is presented for the first-order scheme and this forms the basis for much of
what follows. Higher-order schemes are analyzed in Section 5 with special emphasis on the exact solution to
the ME for linear and nonlinear second-order schemes. Schemes of order higher than two are also investi-
gated and the convergence character shown to hold. A simple example of how this type of convergence
character will be exhibited for more complex, two-dimensional Euler flow is presented in Section 6. Some
conclusions are given in Section 7. Appendix A demonstrates how the analyses from this paper extend also
to flows containing corners, that is to say flows with discontinuous first derivatives. Finally Appendix B
gives some mathematical detail concerning the derivation of the exact solution of the ME for the MinMod
limited scheme.

2. The model problem

We typically seek to understand the nature of solutions to sets of equations such as the Euler equations, or
the equations of ideal magneto-hydrodynamics. Furthermore the typical practical setting is one of two or
more dimensions further complicating our understanding. It is fortunate that the particular problem under
consideration in this work manifests itself for the one-dimensional linear advection equation
o

ot
uðx; tÞ þ a

o

ox
uðx; tÞ ¼ 0 ð1Þ
with a being the constant flow velocity (without loss of generality take a > 0) in just the same way as for the
more complex cases. Eq. (1) is a model for the behavior of linearly degenerate waves in the more complex sys-
tems of equations. For instance in regions of uniform velocity and pressure in Euler flows, a simple transfor-
mation of the equations into the streamline direction reduces the full set of Eq. (1).

To facilitate the discussion, Eqs. (2) and (3) introduce the first-order explicit and implicit upwind schemes
respectively
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i � k vn
i � vn

i�1
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ð2Þ

vnþ1
i ¼ vn

i � k vnþ1
i � vnþ1

i�1

� �
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where vn
i is a numerical approximation to u(xi, tn) and the so called CFL number is k ¼ aDt

Dx . Here, the under-
standing is that the spatial domain [xL, xR] has been discretized as xi = xL + iDx where Dx = (xR � xL)/
(N � 1) and N is a parameter measuring grid resolution. Similarly, time has been discretized as tn = nDt with
initial conditions u(x, 0) being given at t = 0. Numerical stability dictates that k be less than one for the explicit
case (2) but can be arbitrarily large for the implicit case (3). These are the archetypal schemes to which many
others reduce near contact discontinuities thus providing the simplest possible context in which to carry out
the discussion to follow. It should be noted that although the situation changes slightly for so called ‘‘high-
resolution” methods, the critical ideas are the same and the ideas presented during the discussion of (2)
and (3) lay the groundwork for the rest of this paper.

A more complete understanding of the behavior of the schemes (2) and (3) can be obtained by viewing their
respective modified equations, that is to say the equations for which the approximations are exact [2]. After
some manipulation, the modified equation for the explicit scheme (2) is found to be
o

ot
uðx; tÞ þ a

o

ox
uðx; tÞ � aDx

2
1� kð Þ o2

ox2
uðx; tÞ þ � � � ¼ 0 ð4Þ
and for the implicit scheme (3) it is found to be
o

ot
uðx; tÞ þ a

o

ox
uðx; tÞ � aDx

2
1þ kð Þ o2

ox2
uðx; tÞ þ � � � ¼ 0: ð5Þ
Investigation of these modified equations shows that for 0 6 k 6 1 numerical stability is achieved for the ex-
plicit scheme because the modification to the actual advection equation (1) represents diffusion (rather than
anti-diffusion). For the implicit scheme, k P 0 is sufficient to guarantee the modification represents diffusion
rather than anti-diffusion.

3. The essential difficulty

To illustrate the fundamental difficulty, the two schemes are employed to compute the solution of a simple
advecting discontinuity. Of course the reader will immediately notice that discontinuous solutions are suspect
as the differential equation (1) is not defined for solutions containing discontinuities. However, reference to
many texts, such as [21,1], brings the concept of weak solutions into the picture and for this case the appro-
priate weak solution is defined through the method of characteristics. Thus if the initial conditions are given as
u(x, 0) = f(x) on an infinite domain then the exact solution at any later time is given by u(x, t) = f(x � at). This
construction admits discontinuous solutions and the expectation is that the numerical method will converge to
such solutions (see [22,1,3] for details). Fig. 1 illustrates the results of a convergence study at various resolu-
tions using both the explicit and implicit first-order upwind methods.

In this computation, the initial conditions are
uðx; 0Þ ¼
1:0 for x < 0:2

0:125 for x P 0:2

�

and a zero gradient condition is applied at the boundaries. Computations are carried out at four resolutions
Dx = 0.05, 0.025, 0.0125, and 0.00625 with a fixed CFL k = 0.8. The integration is taken to tf = 1 with advec-
tion velocity a = 1 and the exact solution is overlaid for comparison to the numerical approximations. From
this figure it is clear that both numerical methods are in fact converging, but a more quantitative examination
shows the flaw. A typical a priori expectation is that a first-order numerical method, such as either upwind
schemes under consideration, will converge at first-order with errors computed using the L1 norm. Recall that
the convergence rate is the power of two given by the ratio of the error at a given grid spacing to the error at a
grid spacing half that of the original. Table 1 shows the errors for these simulations and the corresponding
convergence rates for the two schemes at the resolutions of Fig. 1. While it is gratifying to see that the schemes
are definitely converging, it may be alarming to see that both schemes are converging at O(Dx1/2) rather than



Table 1
Convergence results for contact wave using the first-order explicit (left) and implicit (right) upwind methods

N eu(N) (explicit) Rate eu(N) (implicit) Rate

41 7.13e�2 – 2.07e�1 –
81 4.99e�2 0.515 1.47e�1 0.494

161 3.51e�2 0.508 1.04e�1 0.499
321 2.46e�2 0.513 7.40e�2 0.491

Shown are L1 errors at t = 1 for grid resolutions determined by N, and the convergence rates at successive resolutions.
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Fig. 1. Convergence of the explicit scheme (left) and implicit scheme (right) for x 2 [0, 2], Dx = 2/(N � 1) and CFL k = 0.8, where N = 41
(cyan), 81 (blue), 161 (green) and 321 (red). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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the expected O(Dx) as Dx ? 0. Upon further analysis, this is a byproduct of the fact that the exact solution
contains a jump and if the same test is performed for initial conditions defining a smooth transition between
states the expected order of convergence, O(Dx), will result at some sufficient resolution. Knowledge of this
phenomenon is not new and analysis is presented for example in [2,15,16,18–20]. This example simply serves
as useful demonstration of this type of behavior.

A natural question to ask is whether this matters for the more complicated equation sets and in multiple
dimensions where one is interested in performing computations. All evidence indicates that the answer to this
question is yes. For flows governed by the Euler equations one must contend with the formation of discon-
tinuous solutions in finite time as a result of inherent nonlinearities even if the initial data was perfectly
smooth. Furthermore, the typical flow one is interested in, contains many such jumps with shocks and con-
tacts interacting in some complicated way. If convergence to a contact is sub-linear and a shock subsequently
propagates through it, even if the shock is treated to very high-order it will be infected with low-order errors
which force convergence at less than first-order. Ultimately as grids are refined, the smallest convergence rate
will dominate the asymptotic rate of convergence for the problem. This state of affairs for linear jumps is, to a
large degree, the underlying motivation driving the development of high-order as well as adaptive methods.

4. Analysis of the problem

So what exactly is going on to cause the numerical methods to converge at O(Dx1/2)? This question has been
investigated by other authors in a number of ways, but here we seek the answer through a detailed modified
equation analysis. If one takes the stance that the modified equation is the PDE which the numerics solve more
accurately than the original PDE (presumably a small perturbation to the original problem), then the quest
becomes one of understanding the behavior of (4) and (5). Both of these modified equations can be viewed
as approximations to the advection–diffusion equation
o

ot
ûðx; tÞ þ a

o

ox
ûðx; tÞ � m

o
2

ox2
ûðx; tÞ ¼ 0; ð6Þ
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where m is a viscosity coefficient whose size is dictated by the choice of Dx, the CFL number k, and the par-
ticular scheme (4) or (5). In either case, the same behavior is demonstrated where at fixed k, a doubling of
spatial resolution results in a halving of the numerical value of m. With the goal of determining an analytic
solution for (6), and demonstrating a solution strategy which we will later generalize to high-order and
high-resolution approximations, the change of variables
z ¼ x� x0 � at

s ¼ t
is introduced which transforms (6) into the familiar heat equation
o

os
ûðz; sÞ � m

o2

oz2
ûðz; sÞ ¼ 0: ð7Þ
On an infinite domain and with discontinuous initial data u(x, 0) = uL for x < x0 and u(x, 0) = uR for
x P x0, one can seek a self similar solution to (7), via the following change of independent variables
nðz; sÞ ¼ z
s1=2

; ð8Þ
which reduces the partial differential equation (7) to a second-order ordinary differential equation
n
d

dn
ûðnÞ þ 2m

d2

dn2
ûðnÞ ¼ 0: ð9Þ
Substituting s ¼ dû
dn yields a first-order ODE in the slope
nsþ 2m
ds
dn
¼ 0 ð10Þ
and upon integration of this separable ODE
s ¼ ce�
n2

4m ; ð11Þ

where c is a constant of integration. Integrating (11), setting integration constants to yield the appropriate
boundary conditions, and transforming back to the original dependent and independent variables yields
the analytic solution to (6) for t > 0
ûðx; t; mÞ ¼ uL þ uR

2
þ uR � uL

2
erf

x� x0 � atffiffiffiffiffiffi
4mt
p

� �
; ð12Þ
where erf(f) is the error function
erfðfÞ ¼ 2

p

Z f

0

e�v2

dv:
Now for a given value m = m1 and fixed time t = tf, define the L1 error, e, between (12) and the exact weak
solution (13)
uðx; tÞ ¼
ul for x� x0 < at

ur for x� x0 P at

�
ð13Þ
to be
eðtf ; m1Þ ¼
Z 1

�1
uðv; tfÞ � ûðv; tfÞj jdv: ð14Þ
A relatively straightforward simplification shows that
eðtf ; m1Þ ¼ ur � ulj j
ffiffiffiffiffiffiffiffiffiffi
4m1tf

p Z 1

0

erfcðvÞ dv; ð15Þ
where erfc(f) = 1 � erf(f) is the complementary error function. From (15) it is trivial to show that
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eðtf ; m1Þ
eðtf ;

m1

2
Þ ¼

ffiffiffi
2
p

ð16Þ
and thus a halving of the numerical value of m results in a reduction of total error by a factor of
ffiffiffi
2
p

. It should
be recognized that although this analysis is carried out on an infinite domain, this is a good approximation to
the finite domain where the contact discontinuity is far removed from the computational boundaries. Return-
ing to the original numerical schemes (2) and (3), it is clear that in both cases for fixed k, m = O(Dx) and thus
the asymptotic convergence rate is O(Dx1/2), as shown in Table 1. Fig. 2 shows the numerical solution as com-
puted using the explicit scheme (2) and as computed by the implicit scheme (3). These are overlaid with the
analytic solution (12) using the appropriate value for m.

5. Analysis of higher-order schemes

5.1. Second-order linear scheme

The implication of degraded convergence rates for high-resolution schemes has important practical conse-
quences. In fact, high-resolution schemes have become very popular and proved to be quite effective largely
because of their ability to mitigate, but not eliminate, this poor behavior. In a high-resolution scheme, a nom-
inally O(Dxp) method switches to a first-order scheme near local maxima and minima in order to maintain
monotone profiles. The investigation in this paper shows that this limiting process does not degrade conver-
gence rates for discontinuous linear waves. Rather, we see that the high-resolution schemes attain the same
convergence rates as their unlimited linear upwind counterparts.

To understand this, introduce scheme (17) which is a second-order unlimited (linear) approximation in both
space and time
vnþ1
i ¼ vn

i � k vn
i þ

1

4
ð1� kÞðvn

iþ1 � vn
i�1Þ

� �
� vn

i�1 þ
1

4
ð1� kÞðvn

i � vn
i�2Þ

� �� 	
: ð17Þ
This is the second-order unlimited Godunov method, and will serve as a useful template when limited methods
are investigated later. The modified equation for this scheme is
o

ot
uðx; tÞ þ a

o

ox
uðx; tÞ þ aDx2

2
1� kð Þ 1

3
ð1þ kÞ � 1

2

� �
o3

ox3
uðx; tÞ þ � � � ¼ 0: ð18Þ
A straightforward convergence study performed in the same way as the previous studies is shown in Table
2. The trend for this scheme appears to follow a convergence rate of OðDxp=ðpþ1ÞÞ, where p = 2. This behavior
can be explained through an analysis of (18) above. Again, we will examine the truncated modified equation
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Red marks show the numerical solution for N = 321 as computed using the explicit scheme (left) and by the implicit scheme (right).
id is the analytic solution (12) using the appropriate value for m (black line). (For interpretation of the references to color in this
legend, the reader is referred to the web version of this article.)



Table 2
Convergence for the second-order unlimited scheme with discontinuous initial data approaches the theoretical convergence rate of 2/3

N eu(N) Rate

501 6.55e�3 –
1001 4.09e�3 0.679
2001 2.55e�3 0.682
4001 1.61e�3 0.663
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o

ot
ûðx; tÞ þ a

o

ox
ûðx; tÞ þ g

o3

ox3
ûðx; tÞ ¼ 0; ð19Þ
where g is simply
g ¼ aDx2

2
1� kð Þ 1

3
ð1þ kÞ � 1

2

� �
; ð20Þ
as it appears in (18). Note that g changes sign at k ¼ 1=2. Eq. (19) is recognized as the linear KdV equation
and solutions have been found in other contexts, for example see [21]. As before, applying the change of
variables
z ¼ x� x0 � at;

s ¼ t;
yields
o

os
ûðz; sÞ þ g

o3

oz3
ûðz; sÞ ¼ 0: ð21Þ
For discontinuous initial data u(x, 0) = uL for x < x0 and u(x, 0) = uR for x P x0, one can seek a self similar
solution to (21), via the following change of independent variables:
nðz; sÞ ¼ z
s1=3

: ð22Þ
This reduces the partial differential equation (7) to a third-order ordinary differential equation
n
d

dn
ûðnÞ � 3g

d3

dn3
ûðnÞ ¼ 0: ð23Þ
Substituting s ¼ dû
dn yields a second-order ODE in the slope
ns� 3g
d2s

dn2
¼ 0: ð24Þ
The solution to this ODE [23] is given by
s ¼ c1Ai

ffiffi
1
g

3

q
nffiffiffi

33
p

0
@

1
Aþ c2Bi

ffiffi
1
g

3

q
nffiffiffi

33
p

0
@

1
A; ð25Þ
where Ai and Bi are Airy functions and c1 and c2 are integration constants. Because Bi is unbounded as n ?
1, we must take c2 = 0. Integrating (25), and setting integration constants to yield the appropriate boundary
conditions yields (for 1=2 < k < 1)
ûðnÞ ¼ 1

3
ðuL þ 2uRÞ �

ðuR � uLÞn
ffiffi
1
g

3

q
nC 2

3


 �2
1F 2

2
3
; 4

3
; 5

3
; n3

27g

� 
� 3C 1

3


 �
C 5

3


 �
1F 2

1
3
; 2

3
; 4

3
; n3

27g

� � 
27

ffiffiffi
g3
p

C 2
3


 �
C 4

3


 �
C 5

3


 � ð26Þ
where C is the Euler Gamma function, and 1F2 is a generalized hypergeometric function. The analytic solution
to (19) can be written by simply substituting n ¼ x�x0�at

t1=3 into (26). Also note that by using (26), the convergence
of the second-order linear scheme is demonstrated to be 2=3. See analysis in Section 5.3 for more details.
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Fig. 3 shows a zoom near the true discontinuity, x = 1.2 at t = 1, for 2 different resolutions. Both the
numerical solution, and analytic solution to the modified equation are shown. Note that when 0 < k < 1=2,
the sign of g changes, and expected oscillating dispersive waves will lead the true discontinuity locus, instead
of lag as shown in Fig. 3.

5.2. Second-order MinMod scheme

The effect of limiting the solution to maintain monotone profiles (with non-compressive limiters such as
MinMod) does not effect this rate of convergence as is shown in Table 3. Here scheme (17) is used but a Min-
Mod limiter is applied to the slopes. Thus the scheme becomes
Fig. 3.
Shown
legend

Table
Conve

N

501
1001
2001
4001
vnþ1
i ¼ vn

i � k vn
i þ

1

2
ð1� kÞa

� �
� vn

i�1 þ
1

2
ð1� kÞb

� �� 	
; ð27Þ
where
a ¼MinModðvn
iþ1 � vn

i ; v
n
i � vn

i�1Þ;
b ¼MinModðvn

i � vn
i�1; v

n
i�1 � vn

i�2Þ;

and
MinModðb; cÞ ¼
b if jbj < jcj and bc > 0;

c if jbjP jcj and bc > 0;

0 if bc 6 0:

8><
>:
Note that this is nothing more than a high-resolution Godunov method (see [14,24] for details). As is demon-
strated in Table 3, scheme (27) converges at order 2=3 as was the case for the unlimited scheme. This inter-
esting phenomenon shows that for discontinuous data, the sub-linear convergence exhibited by numerical
schemes is not a by-product of the limiting procedure, but rather a fundamental flaw in the convergence char-
acter of the high-order methods. That is to say that for simple linear jumps, the MinMod scheme has second-
order truncation error (uses second-order approximations) everywhere and the use of the limiter never causes
a first-order approximation to be used, which would reduce the convergence rate to 1=2.
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3
rgence for the second-order MinMod scheme with discontinuous initial data

eu(N) Rate

8.67e�3 –
5.53e�3 0.649
3.51e�3 0.656
2.22e�3 0.661
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To better understand the behavior of the second-order MinMod limited scheme, we perform an analysis of
its corresponding modified equation (28)
o

ot
ûðx; tÞ þ a

o

ox
ûðx; tÞ þ aDx2

12
ð1� kÞ ð2k� 1Þ � 3sign

o

ox
ûðx; tÞ

� �
sign

o2

ox2
ûðx; tÞ

� �� 	
o3

ox3
ûðx; tÞ þ � � � ¼ 0:

ð28Þ

Details concerning the derivation of the modified equation for the MinMod scheme can be found in [25] in
Chapter 5. The key point to recognize is that the functions used to define the MinMod limiter can be expressed
in a form amenable to a modified equation analysis. Specifically,
MinModðb; cÞ ¼ 1

4
signðbÞ þ signðcÞð Þ bþ cj j � b� cj jð Þ;
where jdj ¼
ffiffiffiffiffi
d2
p

and signðdÞ ¼ d
jdj. It can be shown that modified equation (28) can be simplified to the form

(19), with g defined as
g ¼
� aDx2

6
ð1� kÞð2� kÞ if oû

ox
o2 û
ox2 > 0

aDx2

6
ð1� k2Þ otherwise:

(
ð29Þ
For the most part, the analysis of Section 5.1 carries over for the MinMod scheme. The major difference is
that the solution is now broken into two parts depending on the signs of the first and second derivatives. Since
the approximate solution is TVD, and thus monotone for this example, the first derivative does not change
sign and the second derivative provides the switch in (29). The location of this switch in the similarity solution,
call it ns, is found as part of the solution process and in general depends on the left and right values of g and
thus the CFL number k. Note that for k = 1/2, the magnitude of g on the left is identical to the magnitude on
the right and ns = 0. For other values of k, the solution is written in the general form
ûðnÞ ¼

C2 � C1n
nC 2

3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

gL
1F 2

2
3;

4
3;

5
3;

n3

27gL

� 
3

r
4p
ffiffi
36p �

1F 2
1
3;

2
3;

4
3;

n3

27gL

� 
C 2

3ð Þ
ffiffi
33p 2

2
664

3
775 for n < ns;

C4 � C3n
nC 2

3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

gR
1F 2

2
3;

4
3;

5
3;

n3

27gR

� 
3

r
4p
ffiffi
36p �

1F 2
1
3;

2
3;

4
3;

n3

27gR

� 
C 2

3ð Þ
ffiffi
33p 2

2
664

3
775 for n P ns:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð30Þ
The constants C1, C2, C3, and C4 are found as functions of ns by enforcing the conditions that ûð�1Þ ¼ uL,
ûð1Þ ¼ uR, continuity of ûðnÞ at n = ns, and continuity of d

dn ûðnÞ at n = ns. In order to uniquely define the
value for ns, the fact that the numerical scheme is exactly conservative by construction is used and that prop-
erty is enforced for ûðnÞ as well. Note that for linear schemes such as those we have investigated thus far, the
exact solution of the ME is conservative by construction and so conservation does not pose any additional
constraints on the solution. For more details concerning this derivation refer to the appendix in Section B.

For the example under consideration here (k = 4/5, uL > uR), the values for g are given as
gL ¼ �
aDx2

6
ð1� kÞð2� kÞ;

gR ¼
aDx2

6
ð1� k2Þ;
and we demonstrate the solution for two values of Dx. The numerical values for the integration constants
and ns are shown in Table 4 to five significant figures. Recall n ¼ ðx� x0 � atÞ=

ffiffi
t3
p

and so the solution (30)
can be written in terms of x and t. Fig. 4 shows a zoom near the true discontinuity, x = 1.2 at t = 1, for
the two resolutions whose complete solution is presented in Table 4 and Eq. (30). Shown are the exact
solution to the modified equation (30) and the numerical approximations. Note the different scales in
the two images.



Table 4
Numerical values for integration constants and ns to define the solution in (30)

C1 C2 C3 C4 ns

Dx ¼ 1
50;000 �3.9113 � 103 5.2618 � 10�1 �2.9786 � 103 5.3805 � 10�1 �7.1958 � 10�5

Dx ¼ 1
400;000 �1.5645 � 104 5.2618 � 10�1 �1.1914 � 104 5.3805 � 10�1 �1.7990 � 10�5

The values have been found through an iterative procedure and are shown to five significant figures.
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Fig. 4. Comparison of modified equation solution (black line) and numerical discretization (red � marks) for the MinMod limited scheme
(27). Shown are comparisons for k = 0.8 for Dx ¼ 1
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400;000
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figure legend, the reader is referred to the web version of this article.)
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Here it should be noted that the approximate solution obtained using the MinMod scheme (27) is fully sec-
ond-order accurate except at extrema. Because the solution to the unlimited approximation is monotone on
one side of the discontinuity, a fully monotone solution can be pieced together which maintains second-order
accuracy everywhere by taking the monotone portion of two separate solutions. Effectively the MinMod lim-
iter chooses between two fully second-order schemes, the Beam-Warming scheme to the left and the Lax-
Wendroff scheme to the right, in such a way as to maintain a monotone profile. Unfortunately, the existence
of schemes which exhibit this property seems to be a peculiarity of second-order (or lower) approximations.
For most higher-order approximations, the solutions of the modified equations are not monotone on either
side of a discontinuity. The result is that there is no method which is both monotone and fully pth order accu-
rate for p > 2 and arbitrary k.

As discussed in the introduction, limiting procedures that result in slightly compressive, also called anti-dif-
fusive, schemes, such as Superbee or Ultrabee, are somewhat outside this analysis as their modified equations
contains some anti-diffusive portion which serves as an artificial steepening mechanism and allows such
schemes to converge at higher rates for discontinuous data. However, because such schemes allow some unsta-
ble character into the approximate solution, they rely on limiting to maintain overall solution stability. As
such, extreme care must be take when using such schemes as unphysical results and/or noise in the higher
derivatives can occur.

An ill-advised method that has the same fundamental character, but is amenable to modified equation anal-
ysis, is the TVD limited downwind method. For a > 0, a downwind stencil in a slope limited scheme corre-
sponds to the selection of a slope equal to twice the downwind slope. To make this scheme stable it should
conform to bounding via a TVD limiter [26]. This can be accomplished through the selection of a slope defined
(as before) by,
a ¼ 2MinMod vn
iþ1 � vn

i ; v
n
i � vn

i�1


 �
;

and
b ¼ 2MinMod vn
i � vn

i�1; v
n
i�1 � vn

i�2


 �
:
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The modified equation for this method (31) can easily be computed and immediately produces two impor-
tant observations: the method is first-order accurate, and any useful computation involves a balance between
linear anti-diffusion and both linear and nonlinear dispersion,
o

ot
ûðx; tÞ þ a

o

ox
ûðx; tÞ þ jajDx

2
ð1� kÞ o2

ox2
ûðx; tÞ

þ aDx2

6
ð1� kÞ ðk� 2Þ � 3sign

o

ox
ûðx; tÞ

� �
sign

o2

ox2
ûðx; tÞ

� �� 	
o3

ox3
ûðx; tÞ þ � � � ¼ 0: ð31Þ
It is this balance that allows the method to achieve a higher convergence rate than the linear or nonlinear sec-
ond-order methods above. Here, the lower-order anti-dissipative terms never dominate the high-order stabi-
lizing diffusion because the discrete wave profile is never resolved. That is to say that the approximation
attains a quasi-steady profile of approximately one to two cell widths. This behavior is different than the stan-
dard MinMod scheme where the wave profile grows as a function of time as t1=3. The smeared profile is respon-
sible for the observed sub-linear convergence rate. Simple calculations confirm that this limited down-wind
method produces a first-order result for discontinuous waves, but at the cost of including controlled unstable
stencils in the approximation.

5.3. Higher than second-order schemes

For unlimited schemes with greater than second-order accuracy the story is much the same as before with
the understanding that higher-order TVD schemes do not exist. Here we can demonstrate that a convergence
rate of OðDxp=ðpþ1ÞÞ is expected for the unlimited schemes and non-compressive limiting procedures are not
expected to effect this rate. To show the advertised convergence rate notice that a stable pth order schemes
will have a modified equation of the form
o

ot
uðx; tÞ þ a

o

ox
uðx; tÞ � k

opþ1

oxpþ1
uðx; tÞ þ � � � ¼ 0; ð32Þ
where k ¼ ~kDxp and ~k is some constant (dependent on the CFL k). In analyzing the behavior of this modified
equation it is again useful to perform the change of variables
z ¼ x� x0 � at;

s ¼ t;
which after dropping the higher-order terms transforms (32) into the form
o

os
ûðz; sÞ � k̂

opþ1

ozpþ1
ûðz; sÞ ¼ 0; ð33Þ
where k̂ is either plus or minus k depending on the value of p. In a similar manner as before, for
n ¼ z
pþ1

2ffiffiffiffiffi
k̂s

p ;
there exists a similarity solution
ûðnÞ ¼ uL þ uR

2
þ uR � uL

2
SðnÞ;
where S is some similarity function whose form is not important but in general will involve hypergeometric
functions. A straightforward manipulation shows
eðtf ; k̂Þ ¼ ur � ulj jðk̂tfÞ
1

pþ1
2

p þ 1

Z 1

�1
SðvÞv

p�1
pþ1

��� ���dv: ð34Þ
From (32) it is seen that if k̂ ¼ k̂1 for a given resolution Dx1, then doubling the resolution to 1
2
Dx1 results in

k̂ ¼ k̂2 ¼ 1
2pk̂1. At this point all the pieces are in place and it is straight forward to show that
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eðtf ; k̂1Þ
eðtf ; k̂2Þ

¼ ppk̂tf

ppk̂tf

2p

 ! 1
pþ1

¼ 2
p

pþ1:
Thus the order of convergence for unlimited stable schemes is established as OðDxp=ðpþ1ÞÞ where p is the order
of the approximation for smooth flows. Any limiting procedure which does not introduce unstable portions
into the modified equation (i.e. a non-compressive limiter) is then bounded by this convergence rate. Detailed
analyses of such compressively limited schemes is beyond the scope of this paper. One of the primary advances
represented in this analysis is the knowledge that not only does a similarity solution exist, but that the form is
known as piecewise generalized hypergeometric functions even for nonlinear schemes.

6. More complex flows

Up until now, the discussion in this paper has centered on understanding the behavior of numerical error
produced by shock capturing methods for linear equations with discontinuities, but clearly this is of limited
use as linear equations rarely, if ever, accurately model the physical world. In this short section we show some
results for the more complex situation of inviscid compressible flows governed by the Euler equations in two
space dimensions where sub-linear convergence is demonstrated at a contact surface. Typically, exact weak
solutions for the Euler equations are difficult to derive when the flow is more complicated than that arising
from a simple Riemann problem in one dimension. For two dimensions then, non-trivial exact weak solutions
are very rare.

One exception to this is the so called shock polar solution were two oblique shocks turn the flow on either
side of a contact so that the resulting structure is steady in the frame where the shocks and contact intersect.
Such flows have been investigated for example in [24,27] where the contact surface separated two different
materials. Here a single ideal gas is used and a shock polar solution derived which consists of an upstream
slip which is aligned with the computational mesh so that no significant instability growth can arise there,
and a post-shock state with no slip. Fig. 5 shows a schematic of such a flow.

The solution represented in Fig. 5 can be derived through a shock polar analysis, as described in [27,24]
with reference to [21]. The problems above and below the contact line are solved in isolation using the oblique
shock jump conditions and then coupled using the requirements that the velocity and pressure agree in the
post-shock region. Such an analysis leads to the shock polar diagram shown in Fig. 6 where the post-shock
pressure and streamline deflection angle are parameterized by the shock inclination angle and are plotted
for the gas both above and below the contact surface. The eventual shock polar solution is found as the inter-
section of these two shock polars and is given in Table 5.
w1

Ξ

Φ

Θ

w2

w3

w4

Oblique shock interaction with a planar material interface. The interface (dashed line) indicates a slip line which is deflected by an
behind the shock. The oblique shock (solid line) make angles U and N relative to the vertical. The flow states are denoted by wi for

, 3, and 4.
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Fig. 6. Shock polars for the flow configuration shown in Fig. 5. The dashed curve shows the downstream pressure p3 versus flow deflection
H3 parameterized by the shock angle U for the gas above the dashed contact. The solid curve is p4 versus H4 parameterized by N for the gas
below the dashed contact. The exact solution with states given in Table 5 is given by the point of intersection of these shock polars where
p3 = p4 = 2.4916, H3 = H4 = 0.3, U = 0.76125 and N = 0.50955.

Table 5
Primitive variables for the flow configuration shown in Fig. 5

Region 1 Region 2 Region 3 Region 4

q 2 1 3.75651514 1.87825757
ux 1.24440775 1.54592121 0.816883174 0.816883174
uy 0 0 0.407359702 0.407359702
p 1 1 2.49155439 2.49155439

The velocities include a constant translation to the left with speed 0.5.
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This flow is then investigated numerically by setting the initial condition for the rectangle
{(x, y) : x 2 [�2, 2],y 2 [�3, 2]} as the shock polar solution from Table 5 centered about the origin and inte-
grating to a final time of t = 1. The solution is then queried along the line x = �0.25, y 2 [0, 0.2] and the com-
puted solution compared to the exact solution. Note here that this slice through regions 3 and 4 is sufficiently
removed from the computational boundaries so that no disturbance generated at the boundaries has yet had
opportunity to interact with it. The computational method is a second-order high-resolution Godunov
method as discussed in [14]. Errors are computed using the L1 norm for all primitive quantities and results
presented in Table 6 for various resolutions defined by h = 1/(N � 1) with N a measure of the number of grid
cells per unit distance.

The results indicate that although the velocities and pressure are tending toward first-order convergence,
the density, which jumps across the contact, is not. The analysis presented in this paper indicates a probable
cause for this type of sub-linear convergence, thus demonstrating that the phenomenon of sub-linear conver-
gence at contacts is not entirely an academic exercise. Here the same effect is seen for the Euler equations in
two space dimensions for a well characterized test case. It is somewhat surprising that not all quantities
Table 6
Convergence results for shock polar along the line x = �0.25 for y 2 [0, 0.2]

N eq(N) Rate eux ðNÞ Rate euy ðNÞ Rate ep(N) Rate

26 6.06e�2 – 9.30e�4 – 5.95e�4 – 1.99e�3 –
51 4.50e�2 0.429 6.72e�4 0.469 2.50e�4 1.25 1.34e�3 0.571

101 2.70e�2 0.737 3.99e�4 0.752 1.42e�4 0.816 6.57e�4 1.03
201 1.64e�2 0.719 2.26e�4 0.820 7.30e�5 0.960 3.23e�4 1.02
401 1.07e�2 0.616 1.26e�4 0.843 3.79e�5 0.946 1.51e�4 1.10
801 6.64e�3 0.688 6.82e�5 0.886 1.88e�5 1.01 7.25e�5 1.06

Here L1 errors are computed and the tendency is toward first-order convergence for the velocities and pressure but sub-linear convergence
at order 2/3 for the density.
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converge at sub-linear rates because the flow is highly coupled. In fact this type of de-coupling should not be
expected in general. Of course, in most practical simulations, the resulting flow will be quite complex and sub-
sequent interaction with poorly converged interfaces will result in poor convergence for all quantities involved
in the interaction even if the convergence rates do de-couple near the contact.

7. Conclusions

We have provided a description concerning the phenomenon of sub-linear convergence rates for numer-
ical methods applied to linear discontinuities. The discussion proceeded through a detailed analysis of the
modified equations (ME) of various schemes for the model problem of linear advection. The convergence
rate of 1/2 was derived through the exact solution to the ME with discontinuous data for the explicit
and implicit first-order upwind schemes and this rate was verified through a comparison to numerical
experiment.

The analysis was then extended to a linear, or unlimited, second-order scheme and the exact solution of the
ME again derived. This exact solution was shown to be a generalized hypergeometric function and so the solu-
tion was expected to contain oscillations caused by dispersion. Numerical experimentation was carried out for
this scheme and not only does the convergence rate match the estimated 2/3 rate, but the form of the solution
agrees with prediction to a very high degree. Second-order limited schemes were then shown to fit into this
analysis and the exact solution for the ME from the MinMod limiter was given. This solution was fully sec-
ond-order, and the TVD and monotonicity constraints of the solution were guaranteed by piecing together
two non-oscillatory portions. These two parts correspond roughly to the exact solution of the Beam-Warming
ME and the Lax-Wendroff ME. Again the convergence rate is demonstrated to be 2/3 and this verified
through numerical experimentation. Furthermore, the exact solution to the ME and the computed numerical
approximation are shown to be in very good agreement. At this point a short discussion of a compressively
limited scheme, the double MinMod scheme which corresponds to the TVD limit, was presented. Here it was
shown why such a scheme lies somewhat outside this analysis and how steady state may be achieved as a bal-
ance between anti-diffusive and dispersive terms of the ME. The inclusion of anti-diffusive terms sheds light as
to why such care must be taken when using such compressive schemes.

Linear schemes of arbitrary order were also investigated through this analysis. For a general scheme of
order p, the exact solution of the ME with discontinuous data is shown to be a similarity solution involving
generalized hypergeometric functions. The convergence rate of p/(p + 1) is derived from these solutions. This
approach demonstrates why TVD schemes of order higher than 2 do not exist in that the exact solutions do
not contain monotone halves as was the case for p = 2.

Finally the results are shown to apply to the Euler equations in two space dimensions. Here an exact solu-
tion involving shocks and contacts is derived through a shock polar analysis and computations presented
which demonstrate the 2/3 convergence rate. More complex examples would also demonstrate such a rate,
but this is perhaps the simplest non-trivial 2-D example to which the solution is known and which does
not suffer from physical instability.

The first appendix shows how this analysis extends to flows containing corners. Such flows are likely to
occur near rarefaction corners, and although those waves are strictly nonlinear, the nonlinearity is fairly weak
and so the analysis may be important there as well. Finally the second appendix presents some detail concern-
ing the derivation of the exact solution for the MinMod ME.

Appendix A. Convergence at corners (discontinuous first derivatives)

We make one observation concerning continuous flows containing a discontinuous first derivative, a cor-
ner. See [20] for an alternate analysis. Such an analysis is important not only for density profiles containing
corners, but also for the corners found in rarefaction waves of Euler flows. Although rarefactions are a non-
linear phenomenon, the nonlinearity is quite weak and in practice the convergence of most numerical methods
in such regions adheres very closely to that which we would expect from a purely linear wave.

Assume that one is advecting a corner using the first-order upwind method. So that we have it here in front
of us, the truncated modified equation for that method is
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o

ot
ûðx; tÞ þ a

o

ox
ûðx; tÞ � m

o2

ox2
ûðx; tÞ ¼ 0:
The now familiar analysis uses a change of variables to place us in the reference of the traveling solution
o

os
ûðz; sÞ � m

o2

oz2
ûðz; sÞ ¼ 0: ð35Þ
A corner is a continuous solution, but the first derivative will jump and so we expect self similar behavior in
the first derivative of the computed solution. Taking the derivative o

oz of (35) yields
o

os
ŝðz; sÞ � m

o
2

oz2
ŝðz; sÞ ¼ 0; ð36Þ
where
ŝðz; sÞ ¼ o

oz
ûðz; sÞ:
Obviously, (36) represents familiar ground and the behavior of ŝ can be analyzed as we have done before.
The difference here is that ŝ represents the slope of the solution and so one further integration is required to
recover the original solution û. At the end of the day, the analytic solution is
ûðz; sÞ ¼ û0 þ 1
2
ðŝL þ ŝRÞzþ

e�
z2

4msðŝR � ŝLÞ
ffiffiffiffiffiffiffi
4ms
p

ffiffiffi
p
p � ðŝL � ŝRÞz erf

zffiffiffiffiffiffiffi
4ms
p
� �" #

;

where û0 is the solution value at the corner, and ŝL and ŝR are the slopes of the solution on the left and right
respectively. From such an analytic solution it is trivial to show that the L1 error occurs at the corner itself
and has the form
e1 ¼
ð�ŝL þ ŝRÞ

ffiffiffiffi
mt
pffiffiffi

p
p :
Because we are dealing with a first-order method and m = O(Dx), the L1 convergence rate is OðDx1=2Þ. One can
also show that the L1 error is
e1 ¼ ð�ŝL þ ŝRÞmtj j

and so the L1 convergence rate is O(Dx). For a pth order method these results generalize to convergence at
OðDxp=ðpþ1ÞÞ for the L1 norm and OðDx2p=ðpþ1ÞÞ for the L1 norm.

Appendix B. Notes on the exact solution of the ME for the MinMod scheme

We feel it appropriate to say a few words concerning the derivation of the exact solution to the modified
equation for the MinMod limited scheme. Recall that we had the general form for the solution
ûðnÞ ¼

C2 � C1n
nC 2

3ð Þ
ffiffiffiffi
1

gL
3
p

1F 2
2
3;

4
3;

5
3;

n3

27gL

� 
4p
ffiffi
36p �

1F 2
1
3;

2
3;

4
3;

n3

27gL

� 
C 2

3ð Þ
ffiffi
33p 2

2
4

3
5 for n < ns;

C4 � C3n
nC 2

3ð Þ
ffiffiffiffi
1

gR
3
p

1F 2
2
3;

4
3;

5
3;

n3

27gR

� 
4p
ffiffi
36p �

1F 2
1
3;

2
3;

4
3;

n3

27gR

� 
C 2

3ð Þ
ffiffi
33p 2

2
4

3
5 for n P ns:

8>>>>>>><
>>>>>>>:
For the left and right boundary conditions we enforce the conditions that ûð�1Þ ¼ uL and ûð1Þ ¼ uR. This
produces the two constraints
C2 þ C1

ffiffiffiffiffi
gL

3
p
ffiffiffi
33
p 2

¼ uL;

C4 þ C3

ffiffiffiffiffiffi
gR

3
p
ffiffiffi
33
p 2

¼ uR:

ð37Þ
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We also require the solution to be continuous at the location of the switch ns and so
C2 � C1ns

nsC 2
3


 � ffiffiffiffi
1
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3

q
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2
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3
; 5

3
; n3
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p �
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; 4

3
; n3

s

27gL

� 
C 2

3
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4

3
5: ð38Þ
We require that the first derivatives match at the location of the switch which gives
C1Ai
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A: ð39Þ
The requirement of continuity of first derivatives is something which is seen in practice and results from the
fact that if the first derivatives are not continuous at that point, the MinMod limiter would favor the stencil
with the smaller slope. This would then force the location of ns to change until continuity is achieved. Finally,
the restriction that the solution of the modified equation agree with the numerics in so far as it is exactly con-
servative adds the additional constraint
Z 0

�1
uL � ûðvÞð Þdv ¼

Z 1

0

ûðvÞ � uRð Þ dv: ð40Þ
Notice that these integrals can be found analytically because ûð�1Þ ¼ uL and ûð1Þ ¼ uR. Now Eq. (37)–
(40) represent five nonlinear equations for the five unknowns C1, C2, C3, C4, and ns and can be solved through
an iterative procedure. For values of k where this process is non-trivial, that is where ns 6¼ 0, we have used such
a numerical approach to determine the root to within a given tolerance although a closed form solution seems
possible. One step toward a closed form solution seems to be the fact that ns scales as O(Dx2/3) while C1 and C3

scale as O(Dx�2/3). This observation also allows the construction of exact solutions for the MinMod ME using
Table 4 provided that we restrict ourselves to k = 4/5. For k = 1/2, this solution process reveals that ns = 0 and
the whole solution results in a straightforward way. In these cases C1 = C3, C2 = C4, and a closed form solu-
tion is readily realized.
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