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Abstract. This paper is concerned with the computation of numerical discretization error for
uncertainty quantification. An a posteriori error formula is described for a functional measurement
of the solution to a scalar advection equation that is estimated by finite volume approximations.
An exact error formula and computable error estimate are derived based on an abstractly defined
approximation of the adjoint solution. The adjoint problem is divorced from the finite volume method
used to approximate the forward solution variables and may be approximated using a low-order finite
volume method. The accuracy of the computable error estimate provably satisfies an a priori error
bound for sufficiently smooth solutions of the forward and adjoint problems. Computational examples
are provided that show support of the theory for smooth solutions. The application to problems with
discontinuities is also investigated computationally.
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1. Introduction. The problem is to calculate the error in an estimate of M(u),
where u : R

D × R
+ → R solves

∂tu+ ∇ · (~au) = F (x, t), (x, t) ∈ ΩT , (1.1)

u(x, 0) = u0(x), x ∈ Ω ⊂ R
D, D ∈ {1, 2, 3} , (1.2)

for a constant vector ~a = 〈a1, . . . , aD〉 and where M(u) ∈ R is a quantity of interest
(QoI). Periodic boundary conditions are assumed in space. The spatial domain is a
box,

Ω =
(

xL
1 , x

R
1

)

× . . .×
(

xL
D, x

R
D

)

,

and the global space-time domain is denoted by ΩT = Ω× (0, T ]. We assume the QoI
may be expressed in one of these two forms:

M(u) =

∫

ΩT

ψ(x, t)u(x, t) dx dt (1.3)

or

M(u) =

∫

Ω

ψ(x)u(x, T ) dx. (1.4)

These functionals are linear with respect to u. The assumptions of linearity of the QoI
and periodic boundary conditions are not essential, but serve to simplify the analysis
in this report. The extension of the proposed techniques to accomodate nonlinear
functionals of the solution and other boundary conditions depends on the functional,
but in many cases will follow the approach outlined in [5, 6], assuming a sufficiently
smooth solution of (1.1)-(1.2).

Assume that a finite volume method has been applied to estimate the solution of
(1.1)-(1.2), yielding data denoted by v. The QoI is estimated in two steps:
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1. Define a continuum reconstruction ũ from the finite volume data set v.
2. Calculate M(ũ); this is the approximation of M(u).

In large scale simulations it is expected that the discretization error in M(ũ) is sig-
nificant. There has been increasing interest in performing uncertainty quantification
studies to help understand the meaning of a QoI from a simulation, which is necessary
to make informed decisions based on the code output. Calculating discretization er-
rors in the QoI is necessary for numerous applications where these errors will comprise
a significant component of the uncertainty in the QoI.

In practice, no method exists to calculate the error M(u) −M(ũ) exactly, since
the true solution is not known. There are a number of techniques for estimating
the error, (see, e.g., [28, 31] for a review), one of which is adjoint error estimation.
This technique requires deriving an auxiliary (adjoint) problem for the error in the
QoI. Then the error in the QoI can be calculated with a precision limited by the
numerical error in approximating the adjoint solution. A theoretical justification has
been provided for a variety of numerical methods for elliptic and parabolic problems,
(see, e.g., [7, 13–16,21, 27] and references therein).

Numerous numerical studies exist for application to hyperbolic conservation laws,
such as [3–6,8,17,19,24–26,32]. Many of these techniques exhibit good error estimation
properties, but often, no rigorous theoretical justifications are provided due to the
challenges posed by hyperbolic conservation laws, e.g. accommodating weak solutions
with discontinuities or performing a linearization step in deriving the adjoint problem
for the error. The reader is referred to [27] for some introduction to adjoint theory
within the context of hyperbolic conservation laws. A review of adjoint-based error
estimation techniques can be found in the review papers of Giles and Süli [21] as well
as Fidkowski and Darmofal [18].

Many codes are sophisticated enough that modifying them or even understanding
entire calculations can translate into an immense amount of work. Thus an emphasis
is placed on developing a framework for a posteriori error estimation that limits in-
trusiveness. This report describes such a technique in Section 2, deriving an adjoint
error estimate requiring little or no knowledge of the finite volume solver used to es-
timate the solution of the hyperbolic conservation law. Such an approach avoids the
technical difficulties associated with linearizations, due to algorithmic nonlinearities,
that have been present in some previous reports, [3–6, 24–26], and can clarify the
issue of well-posedness of the adjoint problem. The definition of the adjoint problem
depends on the forward problem, initial conditions, boundary conditions and QoI.
Although previous reports have often been motivated by adaptive mesh refinement
techniques to control discretization error, this report is instead motivated by the need
for an efficient, robust, easily implemented error estimation technique to ascertain
deterministic errors in computations for uncertainty quantification. Some discussion
of efficiency is also provided, though this will not be the focus.

As a first step, the adjoint error estimation method used herein is introduced for
the linear advection problem (1.1)-(1.2), in Section 2. An exact error representation
formula and computable error estimate are derived in Section 2.3. The formulas re-
quire continuum approximations of the forward and adjoint solution variables, which
are defined using a reconstruction process for finite volume data described in Section
3. This post-processing step is independent of details of the finite volume solvers such
as nonlinearity of flux calculations. A similar approach was described in [29] using
C2-cubic spline interpolation. In contrast, we use a localized and discretely conser-
vative reconstruction procedure that is more consistent with standard finite volume
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approaches and that applies in a natural way to the reconstruction of weak solutions.
We derive rigorous error bounds and thereby justify an asymptotic statement of accu-
racy for the computable error estimate in Section 4. Based on this result, it is shown
that if the true error in the estimated QoI exhibits an optimal or suboptimal rate of
convergence, then the computable error estimate will converge to the true error faster
than the true error converges to zero, using any first-order or better approximation
of the adjoint solution. If the error in the estimated QoI converges at a superoptimal
rate, a higher-order estimate of the adjoint solution may be required. In Section 5, the
theory is explored in numerous computational examples, including a case involving a
discontinuous adjoint solution. Conclusions and future work directions are discussed
in Section 6.

2. The adjoint problem and error representation formula. The goal is to
derive an exact formula for the error in a QoI. A continuous adjoint approach is taken
(see e.g. Pierce and Giles [29]); the adjoint problem is determined by considering
the adjoint PDE associated in the standard way with (1.1) and then determining
appropriate forcing and boundary conditions given the desired QoI. It is assumed
the forward and adjoint problems are approximated by some possibly discontinuous
functions. In order to derive an error representation formula, one must account for
the discontinuous nature of the approximations. Thus a bilinear form is identified
with the forward problem over trial and test spaces containing the necessary class of
approximating functions. A dual bilinear form is then derived and associated with the
adjoint PDE problem in the strong form. Subsequently an exact error representation
formula is derived. This approach is feasible for solutions with regularity u ∈ H1(ΩT ),
and this approach may easily be implemented with any finite volume method.

2.1. Preliminaries and notation. Denote a cellular partition of Ω with maxi-
mum cell width h ∈ R

+ by Kh. Let A be a set of multi-indices α = (α1, . . . , αD) ∈ N
D

such that αd ∈ {1, 2, . . . ,Md} for d ∈ {1, . . . , D}. The partition Kh is the union of
cells Kh

α such that

Kh
α =

D
∏

d=1

(

(xd)αd
−

1

2
(hd)αd

, (xd)αd
+

1

2
(hd)αd

)

, (2.1)

where cell centers are denoted by xα. For compactness, coordinate values at cell
interfaces are denoted by (xd)αd±1/2 = (xd)αd

± 1
2 (hd)αd

for d = 1, . . . , D. A function
space with the necessary properties to later derive the a posteriori error formula is
the broken space [6]

VB =
{

v|Kh
α
∈ H1(Kh

α × (0, T )), ∀α ∈ A
}

. (2.2)

Define a norm for all v ∈ VB as the positive square root of

‖v‖2
VB =

∑

α∈A

∫

Kh
α×(0,T )

(

|v(x, t)|2 + |∂tv(x, t)|
2 +

D
∑

d=1

|∂xd
v(x, t)|2

)

dx dt. (2.3)

A trivial extension operator T : v ∈ VB → T (v) ∈ L2(ΩT ) exists, so for convenience
the notation is suppressed by saying VB = T (VB) ⊂ L2(ΩT ) and, analogously, we
consider v ∈ L∞(ΩT ), if v is in L∞(Kh

α) for all α ∈ A. The norms for L2(ΩT ) and
L∞(ΩT ) are denoted in the usual way by ‖ ·‖L2(ΩT ) and ‖ ·‖L∞(ΩT ), respectively. The
volume of any set S ⊂ R

n for n ∈ N is denoted by |S|, when it is defined.
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Let γα : Kh
α → ∂Kh

α denote the trace operator on each cell. Given a function
v ∈ VB, two trace functions vα− and vα+ are associated with v at the interface
between two adjacent cells Kh

α and Kh
β . These functions are defined by setting

vα−|∂Kh
α∩∂Kh

β
= γα

(

v|Kh
α

)

, and vα+|∂Kh
α∩∂Kh

β
= γβ

(

v|Kh
β

)

.

Note the convention of defining vα− as the trace derived for a function v that is con-
tinuous on the closure of each cell by taking the limit of v approaching the boundary
of cell α from the interior, whereas vα+ would be the limit derived if approaching the
boundary from the exterior. If v ∈ H1(ΩT ) ∩ VB the notation is suppressed, and we
say γα

(

v|Kh
α

)

= v|∂Kh
α
. The jump in trace values across a cell interface relative to the

cell Kh
α is denoted by

[v]α = vα+ − vα−. (2.4)

Let Kh,T
α = Kh

α × (0, T ) and Γh,T
α = ∂Kh

α × (0, T ), to maintain a compact notation.

2.2. Definition of an adjoint problem for the error. Let n̂α be the unit,
outward-pointing, normal vector on the boundary of each cell Kh

α. Recall that by
assumption, the solution u of (1.1) satisfies u ∈ H1(ΩT ). Then multiplying (1.1) by
v ∈ VB (subject to periodic boundary conditions in space) and integrating by parts
over Kh,T

α × (0, T ) gives

∫

K
h,T
α

((∂tu) v − u∇ · (~av)) dx dt+

∫

Γh,T
α

(~au|∂Kh
α
) · n̂αvα−dσ dt =

∫

K
h,T
α

F v dx dt,

where σ is the usual measure on cell boundaries. The flux across the cell interfaces
must be well defined on VB. The flux f(u) = ~au is replaced with some rule based on

the left and right values at the cell interface, denoted by f̂(vα−, vα+), for α ∈ A and
all v ∈ VB. The rule must be consistent, so that for the true solution u ∈ H1(ΩT ),

f̂(uα−, uα+) = f(u) = ~au|∂Kh
α
, ∀α ∈ A. (2.5)

Inserting this flux rule above and summing over α ∈ A,

A(u, v) =
∑

α∈A

∫

K
h,T
α

F v dx dt, ∀v ∈ VB, (2.6)

where

A(u, v) =
∑

α∈A

∫

K
h,T
α

((∂tu) v − u∇ · (~av)) dx dt

+
∑

α∈A

∫

Γh,T
α

f̂(uα−, uα+) · n̂αvα−dσ dt. (2.7)

This method of extracting a bilinear form consistent with the strong formulation, in
the sense of (2.6), for sufficiently smooth solutions could also be derived by developing
a local DG method as described by Cockburn et.al. [9,10] and enriching the trial and

test spaces. If the flux function f̂ is nonlinear, a linearization must be performed about
an approximation ũ ∈ VB of the solution to (1.1) in order to derive the adjoint problem
for the error in the approximation of the QoI. The adjoint problem then becomes
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dependent on the structure of the linearized problem. There are reports where similar
derivations of adjoint error equations include this complication and where the well-
posedness of the resulting adjoint problems is not known, but is assumed, (e.g. [26]).

It is critical to understand at this point that no particular choice of f̂ has been
made, and so we consider a convenient choice to eliminate technical issues associated
with linearization. In the case of linear advection, the following upwind rule is an
intuitive choice that is both consistent and linear:

f̂(vα−, vα+) =

{

~avα−, if ~a · n̂α > 0,
~avα+, if ~a · n̂α < 0,

(2.8)

for all α ∈ A and for all v ∈ VB. The case ~a · n̂α = 0 may be ignored, without loss of
generality, since it implies zero flux.

To derive the adjoint problem for the error, let ũ ∈ VB be some approximation
for u subject to periodic boundary conditions in space, and define η = u − ũ. Since
f̂ depends on the sign of ~a · n̂α, define G+

α (~z) = {x ∈ Γh,T
α : ~z · n̂α > 0} and

G−
α (~z) = {x ∈ Γh,T

α : ~z · n̂α < 0}, for any ~z ∈ R
D. It follows from (2.7)-(2.8) that

A(u, v) −A(ũ, v) = A(η, v) =
∑

α∈A

∫

K
h,T
α

((∂tη) v − η∇ · (~av)) dx dt

+
∑

α∈A

∫

G+
α (~a)

(~a · n̂α) ηα− vα−dσ dt+
∑

α∈A

∫

G−

α (~a)

(~a · n̂α) ηα+ vα−dσ dt. (2.9)

Integrate by parts the first integral to obtain

A(η, v) =
∑

α∈A

∫

K
h,T
α

(−(∂tv) η + v∇ · (~aη)) dx dt+
∑

α∈A

∫

Kh
α

(v η)|t=T dx

−
∑

α∈A

∫

Kh
α

(v η)|t=0 dx−
∑

α∈A

∫

Γh,T
α

(~a · n̂α) ηα− vα−dσ dt

+
∑

α∈A

∫

G+
α (~a)

(~a · n̂α) ηα− vα−dσ dt+
∑

α∈A

∫

G−

α (~a)

(~a · n̂α) ηα+ vα−dσ dt.

(2.10)

Some cancellation occurs between the last two integrals above, and so (2.10) can be
rewritten as

A(η, v) =
∑

α∈A

∫

K
h,T
α

(−(∂tv) η + v∇ · (~aη)) dx dt +
∑

α∈A

∫

Kh
α

(v η)|t=T dx

−
∑

α∈A

∫

Kh
α

(v η)|t=0 dx+
∑

α∈A

∫

G−

α (~a)

[η]α(~a · n̂α) vα−dσ dt. (2.11)

The integrals evaluated at the initial and final times may be dropped at this point
to derive a dual bilinear form, which will be denoted by A∗(v, η). These terms will
simply reappear in the error equation in the relationship between A and A∗. The
dual bilinear form is

A∗(v, η) =
∑

α∈A

∫

K
h,T
α

(−(∂tv) η + v∇ · (~aη)) dx dt

+
∑

α∈A

∫

G−

α (~a)

[η]α(~a · n̂α) vα−dσ dt. (2.12)
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This dual bilinear form may be associated with the strong form of a certain reverse-in-
time linear advection problem in the following way. Notice that on any boundary of a
cell Kh,T

α , if ~a·n̂α < 0 then there is an adjacent cell, say Kh,T
β , such that n̂β = −n̂α and

~a · n̂β > 0. At this interface, ηα+ = ηβ− and vα− = vβ+. Inserting these relationships
into (2.12), it follows

A∗(v, η) =
∑

α∈A

∫

K
h,T
α

(−(∂tv) η + v∇ · (~aη)) dx dt

−
∑

α∈A

∫

G−

α (~a)

(~a · n̂α) ηα− vα−dσ dt−
∑

α∈A

∫

G+
α (~a)

(~a · n̂α) ηα− vα+dσ dt. (2.13)

Equivalently,

A∗(v, η) =
∑

α∈A

∫

K
h,T
α

(−(∂tv) η + v∇ · (~aη)) dx dt

+
∑

α∈A

∫

Γh,T
α

ĝ(vα−, vα+) · n̂αηα−dσ dt, (2.14)

where ĝ is a the dual upwind flux function defined by

ĝ(vα−, vα+) =

{

−~avα−, if ~a · n̂α < 0,
−~avα+, if ~a · n̂α > 0.

(2.15)

The dual bilinear form may be associated with the strong linear advection problem in
one of two ways, depending on the QoI M(u). In case the QoI takes the form (1.3),
the adjoint problem for the error is to find φ satisfying

−∂tφ−∇ · (~aφ) = ψ, in ΩT , (2.16)

φ(x, t = T ) = 0 in Ω,

subject to periodic boundary conditions in space. In case the QoI takes the form
(1.4), the adjoint problem for the error is to find φ satisfying

−∂tφ−∇ · (~aφ) = 0, in ΩT , (2.17)

φ(x, t = T ) = ψ(x) in Ω,

also subject to periodic boundary conditions in space. If φ ∈ H1(ΩT ) ∩ VB, solves
(2.16), then

A∗(φ, η) = M(η), ∀η ∈
{

η ∈ VB + periodic BCs
}

, (2.18)

or if φ ∈ H1(ΩT ) ∩ VB solves (2.17), then

A∗(φ, η) = 0, ∀η ∈
{

η ∈ VB + periodic BCs
}

. (2.19)

The dual form consistency properties (2.18)-(2.19) are precisely what is needed to

derive a formula for the error. There could be choices other than (2.8) for f̂ since the
goal is only to derive the formula for the error, though if one wanted to define the
adjoint problem in a variational form using A∗ rather than relying on the solvability of
the strong form, then more restrictions would likely be placed on choices for f̂ . Here,
it is not necessary to define the adjoint problem in a variational form; this is left for
possible future work. The focus is instead on investigating the asymptotic properties
of the computable error estimate derived in the following section, using a continuum
reconstruction of the finite volume data independent of the underlying type of finite
volume solver.
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2.3. The error representation formula. The error representation formula
may now be derived in the standard way. The presentation of the remainder of this
report is simplified by discussing only the case when the QoI is of the form (1.4). This
does not affect any of the subsequent analysis or the conclusions.

Denote by eM(ũ) the error in the QoI, that is,

eM(ũ) = M(u) −M(ũ) =

∫

Ω

ψ(x) (u − ũ) dx. (2.20)

The error formula is obtained by using the fact that φ(x, T ) = ψ(x) in (2.19) and by
inserting η = u − ũ into (2.11)-(2.12) to derive the following relationship between A
and A∗:

eM(ũ) =
∑

α∈A

∫

Kh
α

((u− ũ)φ)|t=T dx = A((u − ũ), φ) −A∗(φ, (u − ũ))

+
∑

α∈A

∫

Kh
α

((u − ũ)φ)|t=0 dx

⇒ eM(ũ) = A((u − ũ), φ) +
∑

α∈A

∫

Kh
α

(u0 − ũ|t=0)φ|t=0 dx. (2.21)

The exact adjoint solution can be approximated by φ̃ ∈ VB using any suitable
numerical method. A computable error estimate is then extracted by adding and
subtracting φ̃, yielding

eM(ũ) = A((u− ũ), φ− φ̃) +A((u − ũ), φ̃) +
∑

α∈A

∫

Kh
α

(

φ− φ̃
) ∣

∣

∣

t=0
(u0 − ũ|t=0) dx

+
∑

α∈A

∫

Kh
α

φ̃|t=0 (u0 − ũ|t=0) dx. (2.22)

By virtue of (2.6),

eM(ũ) = ẽM(ũ, φ̃) +A((u − ũ), φ− φ̃)

+
∑

α∈A

∫

Kh
α

(

φ− φ̃
) ∣

∣

∣

t=0
(u0 − ũ|t=0) dx, (2.23)

where ẽM(ũ, φ̃) is the computable error estimate:

ẽM(ũ, φ̃) =
∑

α∈A

∫

Kh
α

F φ̃ dx dt−A(ũ, φ̃) +
∑

α∈A

∫

Kh
α

φ̃|t=0 (u0 − ũ|t=0) dx. (2.24)

The exact error representation formula (2.23) states that the difference between the
true error in the approximation of the QoI and the approximation ẽM(ũ, φ̃) of this
error is equal to a bilinear product of the error fields u−ũ and φ−φ̃. An important im-
plication for uncertainty quantification is that the accuracy of the error measurement
ẽM(ũ, φ̃) depends on the space-time correlation of these error fields. For example, it
will be highly desirable to find φ̃ that minimizes the error φ− φ̃ at points where u− ũ
is large.

It is not clear precisely how eM(ũ) − ẽM(ũ, φ̃) will compare to the size of eM(ũ)
in general if the same computational grid and similar numerical methods are used for
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both the forward and adjoint solutions. If the error in the forward solution is large on
one cell, the error in the adjoint approximation on that cell must be correspondingly
smaller to compensate if high accuracy in the error estimate is desired. Therefore, in
practice, it may be necessary to use a different grid or higher-order numerical method
for the adjoint problem. In any case, it is clear that with a sufficiently well-resolved
approximation of the adjoint solution, the error in the QoI may, in principle, be
approximated to any desired precision. Since in this context the adjoint problem has
the same structure as the forward problem, we will consider approximations of the
adjoint solution by finite volume methods. Then the approximations ũ and φ̃ will
be defined using standard tensor-grid polynomial reconstruction and interpolation in
time. It follows that some asymptotic properties of the computable error estimate
may be predicted.

3. Reconstruction mappings for finite volume data. The approximations
ũ and φ̃ could be constructed in many ways. In this report, a map is constructed
from a finite volume data set w to a space-time approximation w̃ ∈ VB of a smooth
function U(x, t). This map is then used to define ũ and φ̃ from two finite volume
data sets on potentially different grids. First, cell average-preserving polynomials are
defined at each discrete time {t0 = 0, t1, . . . , tN = T } on each finite volume cell. Then
a piecewise interpolant of the data in time is used to define w̃.

A common method of data reconstruction in space is used (see e.g. [11]) that
yields piecewise polynomials that are continuous on each cell, with jumps across cell
interfaces. The reconstruction will be defined using a spatial grid KH , defined as in
Section 2.1, but possibly distinct from the grid Kh used to define the broken space
VB. The spatial reconstruction of the finite volume data w at time tn on the cell KH

α

is denoted by w̃n
α(x). The construction of w̃n

α(x) is achieved using the finite volume
data on a tensor product stencil of cells containing KH

α , denoted by Sα. Since periodic
boundary conditions are considered and it is assumed that the function U is smooth,
an approximation of order Hp+1 may be obtained by considering the stencil

Sα =
{

β ∈ Z
D : αd − r ≤ βd ≤ αd − r + p, d = 1, . . . , D

}

, (3.1)

for a fixed stencil shift r and by defining a tensor product polynomial of degree at
most p in each coordinate of the form

w̃n
α(x) =

D
∑

d=1

p
∑

id=0

c(i1,...,iD)

D
∏

d=1

(xd)id , (3.2)

where the constants c(i1,...,iD) depend on n, β, r, p and w. In the presence of non-
periodic boundary conditions, the stencil can be shifted independently for each cell
toward the interior of the domain. Define w̃n

α(x) to be the unique polynomial of the
form (3.2) satisfying

1
∣

∣

∣KH
β

∣

∣

∣

∫

KH
β

w̃n
α(x) dx = wn

β , ∀β ∈ Sα. (3.3)

The spatial reconstruction over Ω at time tn is denoted by w̃n(x), where w̃n(x)|KH
α

=
w̃n

α(x).
Given the reconstructions w̃n(x) for n = 0, 1, . . . , N , the final continuum approx-

imation w̃(x, t) is constructed by interpolation in time. If x ∈ KH
α and 0 ≤ n− rn ≤

8



N − p − 1, w̃(x, t) is defined on [tn, tn+1] as the unique polynomial interpolant of
degree p+ 1 satisfying

w̃(x, tµ) = w̃µ
α(x), µ = n− rn, n− rn + 1, . . . , n− rn + p+ 1. (3.4)

Away from the initial and final times, we set rn = r. In case the interval [tn, tn+1] is
near the initial or final times, the value of rn is adjusted accordingly. The interpolant
in time is of degree p + 1 by necessity to achieve optimal approximation properties
for the computable error estimate; this property will be clarified in Theorem 4.1.

The polynomial degree p can be chosen based on the accuracy of the finite volume
method to ensure an optimal rate of convergence for smooth solutions. Since the
computable error estimate requires evaluation of first derivatives, this means the first
derivative in space and in time of the reconstruction should ideally converge at the
same rate as the finite volume data, since in general the convergence rate of the
finite volume data should limit the convergence rate of any approximations based on
this data. The following result is the first step to proving rigorously the asymptotic
properties of the computable error estimate and to justifying this statement.

We prove the result in two spatial dimensions. The generalization to more di-
mensions is straight-forward, though notationally quite cumbersome. The maximum
time step size ∆t is defined by

∆t = max
n=0,1,...,N−1

(∆tn+1 = tn+1 − tn).

Lemma 3.1. Let {wn
α} be a finite volume data set approximating some function

U(x, t) ∈ C∞
(

ΩT

)

for x ∈ R
2 with periodic boundary conditions in space, and denote

the cell average errors by en
α = U

n

α − wn
α, where U

n

α satisfies

U
n

α =
1

|KH
α |

∫

KH
α

U(x, tn) dx.

Assume a regular series of space-time grids as defined above with H ≤ H ∈ R
+, such

that there exists ρ > 0 satisfying

ρH ≤ min
αd=1,2,...,Md

d=1,2

(Hd)αd
and ρ∆t ≤ min

n=0,1,...,N−1
∆tn+1, (3.5)

independent of N or Md, and that there is a fixed λ > 0 such that

∆t ≤ λ min
αd=1,2,...,Md

d=1,2

(Hd)αd
. (3.6)

Further assume that the following approximation properties hold for constants C0, C1 >
0 and C2 > 0 independent of N or Md:

max
n=0,1,...,N

max
α

|en
α| ≤ C0H

s, (3.7)

max
n=0,1,...,N

max
α1=1,2,...,M1

|en
(α1,α2) − en

(α1−1,α2)| ≤ C1H
s+1, (3.8)

max
n=0,1,...,N

max
α2=1,2,...,M2

|en
(α1,α2) − en

(α1,α2−1)| ≤ C1H
s+1, (3.9)

and max
n=0,...,N−1

max
αd=1,...,Md

d=1,2

|en+1
α − en

α| ≤ C2H
s ∆t. (3.10)
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Let w̃ be the space-time reconstruction of w, and approximate U , as defined in (3.1)-
(3.4), using piece-wise polynomials of degree p in space and a stencil shift index r.
Then the following approximation properties hold:

‖U − w̃‖L∞(ΩT ) = O(Hp+1 +Hs), (3.11)

‖∂xd
(U − w̃)‖L∞(ΩT ) = O(Hp +Hs), d = 1, 2, (3.12)

max
αd=1,...,Md

d=1,2

‖[U − w̃]α‖L∞(ΓH,T
α ) = O(Hp+1 +Hs+1), (3.13)

and ‖∂t(U − w̃)‖L∞(ΩT ) = O(Hp+1 +Hs), (3.14)

where the jumps [U − w̃]α are defined by (2.4).
Remark 3.1. Given a consistent finite volume method, the assumptions (3.7)-

(3.10) are usually valid for some s > 0. The particular value of s will depend upon

the method and the problem. Regardless, once the value of s has been identified, the

ensuing analysis holds.

Proof. Uniform bounds will be derived on an arbitrary space-time cell KH
α ×

[tn, tn+1] in 2D. At each time tµ for µ = n− rn, n− rn +1, . . . , n− rn +p+1, Ũµ
α (x) is

defined as the unique polynomial of degree at most p in each coordinate of the form

Ũµ
α (x) =

p
∑

i1=0

p
∑

i2=0

c(i1,i2)(x1)
i1 (x2)

i2 (3.15)

that preserves the cell averages of U on the stencil Sα (see (3.1) above). That is,

1
∣

∣

∣KH
β

∣

∣

∣

∫

KH
β

Ũµ
α (x) dx = U

µ

β , ∀β ∈ Sα. (3.16)

Then Ũµ
α (x) is restricted to KH

α . Given any x ∈ KH
α , the function Ũα(x, t) is then

defined to be the unique polynomial of degree p + 1 in time interpolating Ũµ
α (x) for

µ = n− rn, n− rn +1, . . . , n− rn +p+1. The necessary error bounds are then derived
by decomposing the errors into components U − Ũα and Ũα − w̃, then applying the
triangle inequality:

|U − w̃| ≤
∣

∣

∣U − Ũα

∣

∣

∣+
∣

∣

∣Ũα − w̃
∣

∣

∣ , (3.17)

|∂xd
(U − w̃)| ≤

∣

∣

∣∂xd
(U − Ũα)

∣

∣

∣+
∣

∣

∣∂xd
(Ũα − w̃)

∣

∣

∣ , d = 1, 2, (3.18)

|[U − w̃]α|∂KH
α
≤
∣

∣

∣[U − Ũα]α

∣

∣

∣

∂KH
α

+
∣

∣

∣[Ũα − w̃]α

∣

∣

∣

∂KH
α

, (3.19)

and |∂t(U − w̃)| =
∣

∣

∣∂t(U − Ũα)
∣

∣

∣+
∣

∣

∣∂t(Ũα − w̃)
∣

∣

∣ . (3.20)

The first errors occurring on the right hand side of (3.17)-(3.20) can be bounded
by writing them as interpolation errors as follows. Let V (x, t) be defined on ΩT by

V (x, t) =

∫ x1

(x1)−r−3/2

∫ x2

(x2)−r−3/2

U(x, t) dx.

This is just the primitive function concept used in the derivation of the PPM and
ENO schemes, [12, 22, 23]. The integration domain is large enough to include all the
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necessary grid points, taking into account reconstruction stencils, but is not infinite
since then V would be infinite. Differentiation of the primitive function V recovers
the function U ; U(x, t) = ∂x1

∂x2
V (x, t). The primitive function may be calculated in

terms of cell averages of U . If jd ≥ 1 − r, d = 1, 2, then

V (x(j1−1/2,j2−1/2), t
µ) =

2
∑

d=1

jd−1
∑

βd=−r

(H1)β1
(H2)β2

U
µ

β. (3.21)

At each time tµ for µ = n − rn, n − rn + 1, . . . , n − rn + p + 1, polynomials
Ṽ µ

α (x) are defined on Sα as the unique interpolants satisfying Ṽ µ
α (x) = V (x, tµ) with

x = x(j1−1/2,j2−1/2) for jd ∈ {αd − r, . . . , αd − r + p + 1}, d = 1, 2. Define Ṽα(x, t)

as the polynomial interpolant in time of degree p + 1 of the data {Ṽ µ
α (x)} for µ =

n− rn, n− rn + 1, . . . , n− rn + p+ 1. It is easily verified using (3.21) (e.g. [11]) that
Ũα(x, t) = ∂x1

∂x2
Ṽα(x, t) on Sα × [tn−rn , tn−rn+p+1], and it holds that

U(x, t) − Ũα(x, t) = ∂x1
∂x2

(

V (x, t) − Ṽα(x, t)
)

on Sα× [tn−rn , tn−rn+p+1]. Applying standard interpolation results and the time step
restriction (3.6), the first errors on the right of (3.17)-(3.20) satisfy uniform estimates
of the form

∣

∣

∣U − Ũα

∣

∣

∣ = O
(

Hp+1
)

,
∣

∣

∣∂xd
(U − Ũα)

∣

∣

∣ = O (Hp) , d = 1, 2,
∣

∣

∣[U − Ũα]α

∣

∣

∣

∂KH
α

= O
(

Hp+1
)

, and
∣

∣

∣∂t(U − Ũα)
∣

∣

∣ = O
(

Hp+1
)

.







(3.22)

The results (3.11)-(3.14) follow from (3.17)-(3.20) and (3.22) after showing that
∣

∣

∣Ũα − w̃
∣

∣

∣ = O (Hs) ,
∣

∣

∣∂xd
(Ũα − w̃)

∣

∣

∣ = O (Hs) , d = 1, 2,
∣

∣

∣[Ũα − w̃]α

∣

∣

∣

∂KH
α

= O
(

Hs+1
)

, and
∣

∣

∣∂t(Ũα − w̃)
∣

∣

∣ = O (Hs) .







(3.23)

These details are quite cumbersome in 2D and are presented for completeness in
Appendices A-E.

4. Asymptotic properties of the computable error estimate. The rate
at which the computable error estimate for a quantity of interest converges to the
true error will be derived, given smooth data for the problems (1.1) and (2.17). The
solutions u(x, t) and φ(x, t) are approximated using the reconstructions ũ(x, t) and
φ̃(x, t), respectively, as defined in Section 3.

It may be desirable to compute the finite volume approximations used to define
ũ and φ̃ on different grids. The finite volume data sets are therefore not defined here
relative to the grid Kh. Consider a finite volume data set U defined with respect to a
potentially coarser grid KH with grid size H ≥ h, requiring that Kh is a refinement of
KH . Let w̃ be the continuum reconstruction for U as defined in Section 3. Note that
if VB∗ is the broken space defined relative to KH , then VB∗ ⊂ VB, hence w̃ ∈ VB as
required. In other words, we may compute a finite volume approximation for u on
one grid and define ũ, compute a finite volume approximation for φ on another grid
and define φ̃, and if Kh is taken to be the union of the two grids then it will follow
ũ ∈ VB and φ̃ ∈ VB.

The reconstructed solution ũ consists of piece-wise polynomials of degree pu that
are based on finite volume data v = {vn

α} defined relative to a grid KHu , where Kh is
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a refinement of KHu . The associated maximum time step size is ∆tu. The exact cell
average data is {un

α}, and the errors in the finite volume data are denoted by

(eu)n
α = un

α − vn
α. (4.1)

Similarly, the adjoint solution φ is reconstructed using piece-wise polynomials of de-
gree pφ that are based on finite volume data w = {wm

β } defined relative to a grid

KHφ , where Kh is also a refinement of KHφ . The associated maximum time step size
is ∆tφ. The exact cell average data is {φ

m

β }, and the errors in the finite volume data
are denoted by

(eφ)m
β = φ

m

β − wm
β . (4.2)

Theorem 4.1. Let the solution u(x, t) of (1.1) and the solution φ(x, t) of (2.17)
be in C∞(ΩT ). If the errors (4.1) satisfy (3.7) - (3.10) with s = su ∈ R

+, ∆t = ∆tu
and H = Hu, and if the errors (4.2) satisfy (3.7) - (3.10) with s = sφ ∈ R

+, ∆t = ∆tφ
and H = Hφ, then under the assumptions of Lemma 3.1 it follows that

eM(ũ) = ẽM(ũ, φ̃) + O(Hqu
u H

qφ

φ ), (4.3)

qu ≥ min{pu + 1, su}, (4.4)

qφ ≥ min{pφ, sφ}, (4.5)

where pu and pφ are defined in the two preceding paragraphs.

Remark 4.1. The relationships (4.4)-(4.5) are not presented as equalities to

emphasize the possibility of superconvergent results that have been observed in practice.

The key point is that a minimum order of accuracy for the computable error estimate

may be expected under the assumptions of the theorem.

Proof. The result is proved in two spatial dimensions since Lemma 3.1 is required,
though both Lemma 3.1 and hence this theorem could be extended to three spatial
dimensions; this is notationally cumbersome. It follows from (2.9) and (2.23) that

eM(ũ) − ẽM(ũ, φ̃) = A((u − ũ), φ− φ̃) +
∑

α∈A

∫

Kh
α

(

φ− φ̃
) ∣

∣

∣

t=0
(u0 − ũ|t=0) dx

=
∑

α∈A

∫

K
h,T
α

(∂t(u − ũ)) (φ − φ̃) dx dt−
∑

α∈A

∫

K
h,T
α

(u− ũ)∇ ·
(

~a(φ − φ̃)
)

dx dt

+
∑

α∈A

∫

G+
α (~a)

~a · n̂α (u− ũ)α−(φ− φ̃)α−dσ dt+
∑

α∈A

∫

G−

α (~a)

~a · n̂α (u− ũ)α+(φ− φ̃)α−dσ dt

+
∑

α∈A

∫

Kh
α

(

φ− φ̃
) ∣

∣

∣

t=0
(u0 − ũ|t=0) dx. (4.6)

Due to the periodic boundary conditions, the terms evaluated at cell interfaces can
be regrouped as described in Section 2.2, so that

eM(ũ) − ẽM(ũ, φ̃) =
∑

α∈A

∫

Kh
α

(

φ− φ̃
) ∣

∣

∣

t=0
(u0 − ũ|t=0) dx

+
∑

α∈A

∫

K
h,T
α

(∂t(u − ũ)) (φ − φ̃) dx dt−
∑

α∈A

∫

K
h,T
α

(u− ũ)∇ ·
(

~a(φ − φ̃)
)

dx dt

+
∑

α∈A

∫

G+
α (~a)

~a · n̂α (u − ũ)α−[φ− φ̃]αdσ dt.

(4.7)
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Proceeding term by term, (4.7) can be bounded using Lemma 3.1. The first term on
the right hand side is bounded using (3.11) and (3.14):

∣

∣

∣

∣

∣

∑

α∈A

∫

K
h,T
α

∂t(u− ũ) (φ− φ̃) dx dt

∣

∣

∣

∣

∣

≤ |ΩT | ‖∂t(u− ũ)‖L∞(ΩT ) ‖φ− φ̃‖L∞(ΩT )

= O
(

(Hpu+1
u +Hsu

u )(H
pφ+1
φ +H

sφ

φ )
)

. (4.8)

Similarly,

∣

∣

∣

∣

∣

∑

α∈A

∫

K
h,T
α

(u− ũ)∇ ·
(

~a(φ− φ̃)
)

dx dt

∣

∣

∣

∣

∣

= O
(

(Hpu+1
u +Hsu

u )(H
pφ

φ +H
sφ

φ )
)

,

by (3.11)-(3.12). The next term on the right hand side of (4.7) satisfies

∣

∣

∣

∣

∣

∑

α∈A

∫

G+
α (~a)

~a · n̂α (u− ũ)α−[φ− φ̃]αdσ dt

∣

∣

∣

∣

∣

= O
(

C(Hφ) (Hpu+1
u +Hsu

u )(H
pφ+1
φ +H

sφ+1
φ )

)

. (4.9)

by (3.11)-(3.13), where C(Hφ) = maxd=1,2 |ad|T
{

Mφ,1(x
R
2 − xL

2 ) +Mφ,2(x
R
1 − xL

1 )
}

.
Here Mφ,d, d = 1, 2, is the number of cells across the spatial domain Ω in the coordi-

nate direction xd for the grid KHφ . This corresponds to where φ̃ may be discontinuous,
since otherwise [φ− φ̃]α = 0. It is easily verified that

{

Mφ,1(x
R
2 − xL

2 ) +Mφ,2(x
R
1 − xL

1 )
}

≤
2 |Ω|

ρHφ

so that

∣

∣

∣

∣

∣

∑

α∈A

∫

G+
α (~a)

~a · n̂α (u− ũ)α−[φ− φ̃]αdσ dt

∣

∣

∣

∣

∣

= O

(

max
d=1,2

|ad|T
2 |Ω|

ρHφ
(Hpu+1

u +Hsu
u )(H

pφ+1
φ +H

sφ+1
φ )

)

= O
(

(Hpu+1
u +Hsu

u )(H
pφ

φ +H
sφ

φ )
)

. (4.10)

The last term on the right hand side of (4.7) satisfies

∣

∣

∣

∣

∣

∑

α∈A

∫

Kh
α

(u0 − ũ|t=0)(φ − φ̃)|t=0 dx

∣

∣

∣

∣

∣

= O
(

(Hpu+1
u +Hsu

u )(H
pφ+1
φ +H

sφ

φ )
)

. (4.11)

by (3.11). It follows that

eM(ũ) − ẽM(ũ, φ̃) = O
(

Hpu+1
u H

pφ

φ +Hpu+1
u H

sφ

φ +Hsu
u H

pφ

φ +Hsu
u H

sφ

φ

)

,

from which the desired result is extracted.
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5. Computational examples. Numerical tests for validation of the theory are
presented that include various finite volume solvers, polynomial reconstructions, and
quantities of interest. An example with a nonsmooth adjoint solution is included for
reference, even though the derivation of the error representation formula does not
apply directly in this case. In all the tests, (1.1) is unforced, i.e. F (x, t) = 0.

5.1. 1D test cases. The space-time domain is taken to be [0, 1]× [0, 1], and the
advection coefficient is a = 1. The initial condition for the forward problem is

u0(x) = sin(2π(x − 1/4)). (5.1)

The quantities of interest are defined as final time conditions for the adjoint problem
(i.e. (2.17)), denoted by ψj(x) for j = 1, 2, 3. Specifically,

M(u) =

∫ 1

0

ψj(x)u(x, t = 1) dx,

where

ψ1(x) = exp(−i 2πx), (Fourier coefficient) (5.2)

ψ2(x) = δ(x − x∗), (evaluate at x = x∗) (5.3)

ψ3(x) =
1

2
u(x, T ). (solution energy) (5.4)

The centering of ψ2(x) about x∗ = (1 + π/16)/2 ∈ (1/2, 1) is chosen to avoid the
collocation of x∗ with any cell centers (where errors may be misleadingly small) or
interfaces (where the reconstructed solution is not defined). The third quantity of
interest is nonlinear with respect to the forward solution. We follow the standard ap-
proach [5,6] and linearize about the reconstructed solution ũ. Normally one computes
a Fréchet derivative as part of the linearization process, but for the solution energy,
some algebraic arguments suffice to derive the approximation:

M(u) −M(ũ) =
1

2

∫ 1

0

(u|t=T )2 dx−
1

2

∫ 1

0

(ũ|t=T )2 dx

=
1

2

∫ 1

0

(u+ ũ) |t=T (u− ũ) |t=T dx ≈

∫ 1

0

ũ|t=T (u− ũ) |t=T dx. (5.5)

The adjoint data ψ3(x) is approximated by ψ3(x) = ũ(x, T ). The additional error
committed by this approximation is

(M(u) −M(ũ)) −

∫ 1

0

ψ3(x)(u − ũ)|t=T dx =
1

2

∫ 1

0

(u− ũ)2 |t=T dx. (5.6)

The finite volume cells in space are defined relative to the same uniform grid Kh

for approximation of both the forward and adjoint solutions, and the same time steps
are used. Three upwind finite volume methods are employed. The first solver is a
first-order upwind scheme:

un+1
j = un

j − a
∆t

h

(

un
j − un

j−1

)

. (5.7)

Note that the scheme is linear since a is constant. The second solver is the second-
order upwind scheme of Fromm [20], implemented using unlimited piece-wise linear
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reconstruction of the data on each cell Kh
j at time tn in the manner of a MUSCL

scheme [33]:

un+1
j = un

j − a
∆t

h

(

un
j − un

j−1 +
h− a∆t

2
(σn

j − σn
j−1)

)

, (5.8)

σn
j =

un
j+1 − un

j−1

2h
. (5.9)

The third solver is a high-fidelity, total variation diminishing (TVD) MUSCL scheme
that is the same as the second-order upwind scheme, except that the slopes are locally
restricted using the minimum modulus limiter. In this case, the slopes are given by

µn
j =

1

h
MinMod

(

un
j+1 − un

j , u
n
j − un

j−1

)

, (5.10)

MinMod(η1, η2) =







η1, if |η1| < |η2| and η1η2 > 0,
η2, if |η2| < |η1| and η1η2 > 0,
0, otherwise.

(5.11)

Limiting the slopes in this way is a common procedure used to capture discontinuities
without numerical oscillations.

We now define a system of labeling the numerical tests, which will be organized
by QoI. Let the approximation ũ of the solution u of (1.1) be constructed by taking
finite volume data generated by one of the above methods and performing a space-
time reconstruction of the data as described in Section 3. Given one of the quantities
of interest implied by (5.2)-(5.4), let φ̃ be constructed in an analogous way as an
approximation to the solution φ of (2.17). The stencil shift index is r = 1 (Section
3) in the tests, for both linear and quadratic reconstructions. There is an associated
error in the quantity of interest, eM(ũ), and a computable estimate of this error,
ẽM(ũ, φ̃), as defined in (2.23)-(2.24). We denote by

acc(ũ, φ̃) = eM(ũ) − ẽM(ũ, φ̃) (5.12)

the accuracy of the error estimate. In each case there are four choices to be made:
• forward finite volume solver, denoted by FSk for k = 1, 2, 3;
• adjoint finite volume solver, denoted by ASk for k = 1, 2, 3; and
• spatial reconstructions (forward and adjoint), denoted by Rk for k = 1, 2.

We used these codes to label each test. For example, the test label FS3-R2 AS1-
R1 corresponds to choosing the high-fidelity forward solver with piece-wise quadratic
spatial reconstruction, and the first-order upwind adjoint solver with piece-wise linear
spatial reconstruction. Table 5.1 makes these definitions precise.

Each test consists of a convergence analysis for the quantities ẽM(ũ, φ̃) and
acc(ũ, φ̃), with a fixed CFL number of a∆t/h = 6/7. In all the tests throughout
Section 5 the convergence rates are computed as the slope of the line fitted by least-
squares linear regression through the logarithm of the absolute values of the error data
and grid sizes. Figures 5.1-5.6 plot the absolute values of ẽM(ũ, φ̃) and acc(ũ, φ̃). Solid
black lines without markers are included in these plots that show the slopes associated
with integer convergence rates, for reference.

5.1.1. 1D Fourier coefficient estimation. The results in this section pertain
to the first non-constant Fourier coefficient quantity of interest, (5.2). This is an
example where the solution of the adjoint problem is smooth, and the results of
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Table 5.1

Convention for labeling finite volume solvers.

Label FS1 or AS1 FS2 or AS2 FS3 or AS3
Solver order 1 upwind order 2 upwind high fidelity (MinMod)

Theorem 4.1 apply directly. Since the finite volume approximations are defined on
the same uniform grid we have Hu = Hφ = h. The conclusion of Theorem 4.1 may
be restated in the simplified form

eM(ũ) = ẽM(ũ, φ̃) + O
(

hqu+qφ
)

. (5.13)

The computed convergence rates q = qu + qφ in (5.13), for the real and imaginary
parts of the QoI, correspond to the two right-most columns in Table 5.2; the minimum
values for q from Theorem 4.1 are listed alongside, in parentheses, for reference.
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Fig. 5.1. Left: an example with first-order linear solvers. Right: A suboptimal reconstruction
of the forward data is detrimental to the error estimate.

Table 5.2

Convergence rates for the tests in Section 5.1.1.

Rate for Rate for Rate for Rate for

Test Re{ẽM(ũ, φ̃)} Im{ẽM(ũ, φ̃)} Re{acc(ũ, φ̃)} Im{acc(ũ, φ̃)}

FS1-R1 AS1-R1 0.96 2.00 2.24 (2.0) 2.64 (2.0)
FS2-R1 AS1-R1 2.99 1.85 2.99 (2.0) 3.46 (2.0)
FS2-R2 AS1-R1 3.00 1.95 3.96 (3.0) 3.35 (3.0)
FS2-R2 AS2-R2 3.00 1.99 5.06 (4.0) 5.26 (4.0)
FS3-R2 AS1-R1 2.04 1.87 3.04 (2.3) 3.32 (2.3)
FS3-R2 AS2-R2 2.05 1.92 5.17 (3.3) 4.14 (3.3)

It is expected that q ≥ 2 with the first-order upwind finite volume method for the
forward and adjoint problems. This is consistent with the results in Table 5.2 for the
accuracy of the real and imaginary parts of the error estimate. A superconvergence
result is observed for the imaginary part of the error. Though the imaginary part of
the error is estimated reasonably well, this is not predicted (again, we can only predict
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q ≥ 2 but need q > 2) since superconvergence results for eM need not translate to
similar results for acc(ũ, φ̃).

An example where eM converges at a superoptimal rate but acc(ũ, φ̃) does not is
provided by test FS2-R1 AS1-R1, where the forward solution is estimated using the
second-order upwind method and piece-wise linear reconstruction in space, (Figure
5.1). In this case, Theorem 4.1 predicts q ≥ 3, so although the theory is not contra-
dicted, an important limitation of the theory is illuminated. The accuracy of the real
part of the computable error estimate is not very good, in the sense that it is highly
desirable for Re{acc(ũ, φ̃)} to be smaller than the error Re{eM(ũ)}. Predicting this
phenomenon would require an estimate of the form

∣

∣

∣eM(ũ) − ẽM(ũ, φ̃)
∣

∣

∣ ≤ C∆xq |eM(ũ)| . (5.14)

In the a posteriori literature for elliptic-type problems, there is a measurement
of quality, ǫ, for the computable error estimate known as the effectivity index, (see
e.g., [1]), which is the size of the ratio of the computable error estimate to the true
error: ǫ = ẽM(ũ, φ̃)/eM(ũ). It is desirable to be able to say ǫ → 1 asymptotically
as h → 0. Clearly, this would follow from the result (5.14). Such a result is not
currently known to exist in the literature for hyperbolic conservation laws. However,
test FS2-R1 AS1-R1 does not represent a cause for concern in practice, since the
reconstruction of the forward solution chosen is suboptimal; it makes little sense to
compute the finite volume approximation to second-order and then only reconstruct
to first-order. This is improved in test FS2-R2 AS1-R1, as seen in Table 5.2. In the
tests herein (as well as numerous other tests not reported), the only cases where the
effectivity index was not observed to converge to unity were when pu < su or pφ < sφ.
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Fig. 5.2. Convergence tests with a second-order forward solver.

The tests in Figures 5.2-5.3 serve as examples of how the accuracy of the com-
putable error estimate can be improved using higher-order finite volume methods for
the adjoint problem. Conversely, if a highly accurate method is used for the forward
problem, the error can still be estimated with some success using only a first-order
solver for the adjoint problem. The adjoint error estimation technique is also effective
when a nonlinear solver is used for the forward problem, e.g. Figure 5.3.
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Fig. 5.3. Convergence tests with a nonlinear forward solver.

We note that there is a decrease in the convergence rate of Re{acc(ũ, φ̃)} at the
finest grid size for tests FS2-R2 AS2-R2 and FS3-R2 AS2-R2. At the larger grid sizes,
the convergence rates of this quantity are unexpectedly high (≈ 5 − 6), and it is not
uncommon in this situation to see the rate decline on finer grids due to the limits
of machine precision. Also, the predicted values of q in Table 5.2 are lower for the
tests using the TVD forward solver instead of the second-order upwind solver. This
is because the converence rate of the cell averages was measured as su ≈ 4/3, in the
sense of (3.7), for tests FS3-R2 AS1-R1 and FS3-R2 AS2-R2. The convergence rate
is 2 for both Re{eM(ũ)} and Im{eM(ũ)}. This is not surprising since the method
is second-order accurate except on a finite number of cells where the true solution
has extrema. Superconvergence was never observed for the true error using the TVD
method.

5.1.2. Evaluation of the solution at a point in 1D. The quantity of interest
is defined by (5.3). In this case, the adjoint data is a distribution, and Theorem 4.1
does not strictly apply. The goal is to demonstrate the practical limitations of using
the proposed computable error estimate.

Convergence rates for the tests in this section are in Table 5.3. The absolute
values of the computable error estimates and of the associated accuracy are plotted
in Figure 5.4. The erratic convergence behavior of the error using the nonlinear
forward solver is a known phenomenon, caused by the fact that the Min-Mod limiter
invalidates Taylor’s theorem. This was noted by Roache [30] to be a complication for
applying Richardson extrapolation. The accuracy of the computable error estimate
does not exhibit a clear convergence behavior for any of the tests in Figure 5.4. In this
case, the accuracy values pass through zero during the sequence of grid refinements,
causing the unpredictable behavior.

Though the relative scaling of the errors between consecutive grids is not pre-
dictable by the theory, it was observed that the error and the accuracy of the com-
putable error estimate tend to be smaller using the higher-order finite volume meth-
ods. In all the tests, it was observed that the computable error estimate matched the
true error in size, and usually the first 1-2 digits were correct. Also, most of the tests
we have performed (including many not reported herein) have shown that the relative
accuracy generally improves as the grid is refined for this quantity of interest.
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Fig. 5.4. Left: computable error estimate values for the solution value at a point. Right:
accuracy of the computable error estimates.

Table 5.3 also includes the ranges of effectivity indices ǫ and the values of ǫ on
the finest grid. The values of ǫ help to understand the quality of the error estimates
without relying on asymptotic properties like convergence rates. The values of ǫ vary
the most for test FS3-R2 AS2-R2. However, on the finest grid ǫ is much closer to unity
in all cases than what is indicated by the ranges for ǫ, which indicates the general
improvement of the error estimates upon grid refinement.

Table 5.3

Convergence rates for the tests in Section 5.1.2.

FS1-R1 FS1-R1 FS2-R2 FS3-R2
AS1-R1 AS2-R2 AS2-R2 AS2-R2

Rates: ẽM(ũ, φ̃) 0.99 1.00 2.09 2.20

Rates: acc(ũ, φ̃) 1.65 2.30 3.13 3.07
ǫ: range 0.993 − 1.059 0.997 − 1.106 0.990 − 1.138 0.823 − 1.879

ǫ: fine grid 0.997 0.999 0.996 1.006

5.1.3. Final time solution energy in 1D. The linearization (5.5) is applied
for the solution energy functional, committing an additional error in the estimation
of the solution energy, shown in (5.6). The order of accuracy q = qu + qφ in (5.13) for
the computable error estimate is thus amended:

q ≥ min {pu + pφ + 1, pu + sφ + 1, su + pφ, su + sφ, 2su, 2pu + 2} . (5.15)

The value on the right of this inequality is listed in Table 5.4, in parentheses, alongside
the computed rate q.

Table 5.4

Convergence rates for the tests in Section 5.1.3.

FS1-R1 AS1-R1 FS1-R1 AS2-R2 FS3-R2 AS1-R1

Rates: ẽM(ũ, φ̃) 0.93 0.96 2.03

Rates: acc(ũ, φ̃) 2.12 (2.0) 1.98 (2.0) 3.10 (2.3)

In Table 5.4, the convergence rates for the accuracy of the computable error
estimates are consistent with (5.15). Due to the linearization error, the accuracy
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is limited to rate 2 for test FS1-R1 AS2-R2. Since the linearization error scales
like order 2 min{su, pu + 1}, this limitation is much less severe when a higher-order
method is used for the forward problem. Indeed, in Table 5.4, the results using the
TVD solver for the forward problem with a first-order upwind adjoint solver show
that the accuracy increases to the expected nominal order of 3.

5.2. 2D Fourier coefficient estimation. The space-time domain is Ω×[0, T ] =
[0, 1]2 × [0, 0.5], and the advection vector is ~a =< 0.5, 0.65 >. A uniform grid is used
for each test with the total number of finite volume cells at each time step and the
number of time steps both listed in the results. The ratio of time step size to cell size
is ∆t/∆x = 5/9. The initial data for the forward advection problem is

u0(x1, x2) = sin(2π(x1 − 0.25)) cos(2π(x2 − 0.25)). (5.16)

The quantity of interest is again a Fourier coefficient. In this case, the quantity of
interest takes the form

M(u) =

∫

Ω

ψ(x)u(x, T ) dx, where

ψ(x) = exp(−2π i k · x), k =< 1, 1 > .

Two finite volume methods are considered, the first being a first-order accurate
method, derived by approximating the solution as constant on each cell and solving the
corresponding Riemann problems in each coordinate direction. The second method
is derived by a method of lines approach. The spatial discretization is performed by
applying a second-order upwind flux approximation in each coordinate direction (this
is just the 2D extension of (5.8)-(5.9)). The time stepping is performed using the
classical explicit, fourth-order Runge-Kutta method. The same labeling scheme as
was employed for the 1D tests is reused here, except FS1 and AS1 now refer to the
two-dimensional, first-order method, while FS2 and AS2 refer to the second-order
method of lines discretization. Also, R1 and R2 refer to the 2D reconstruction by a
tensor product of linear polynomials, and of quadratic polynomials, respectively.
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Fig. 5.5. Errors for 2D tests FS2-R2 AS1-R1 and FS2-R2 AS2-R2.
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Table 5.5

Convergence rates for the tests in Section 5.2.

Rate for Rate for Rate for Rate for

Test Re{ẽM(ũ, φ̃)} Im{ẽM(ũ, φ̃)} Re{acc(ũ, φ̃)} Im{acc(ũ, φ̃)}

FS1-R1 AS1-R1 0.88 0.92 2.27 (2.0) 2.35 (2.0)
FS1-R1 AS1-R1-coarse 0.82 0.85 2.09 (2.0) 2.11 (2.0)

FS1-R1 AS2-R2 0.96 0.97 3.05 (3.0) 3.31 (3.0)
FS2-R2 AS1-R1 1.85 2.18 2.94 (3.0) 3.12 (3.0)
FS2-R2 AS2-R2 1.87 2.20 4.20 (4.0) 3.87 (4.0)

In every test with the exception of one, the same grid is used to estimate the
solutions of the forward and adjoint problems. The forward and adjoint solutions
are smooth, and the results of Theorem 4.1 apply directly. The results of the tests,
varying the finite volume solvers used, are shown in Table 5.5 and Figures 5.5-5.6.
The convergence rates of Re{acc(ũ, φ̃)} in test FS2-R2 AS1-R1 and Im{acc(ũ, φ̃)} in
test FS2-R2 AS2-R2 are computed using only the two finest grids; in Figure 5.5 it is
clear that at larger grid sizes this data is not in the asymptotic regime.
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Im{ẽM(ũ, φ̃)}
Re{acc(ũ, φ̃)}
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Fig. 5.6. Errors for 2D test FS1-R1 AS1-R1. Left: using the same grid for the forward and
adjoint approximations. Right: using a coarser grid for the adjoint approximation.

One test is performed that is the same as test FS1-R1 AS1-R1, with the distinction
that the finite volume approximation for the adjoint problem is now coarser than that
used for the approximation of the forward solution. The same sequence of grids
is used for the forward approximation, but the grids for the adjoint approximation
contain cells that are a factor of 2 wider in space with time steps twice as large. This
corresponds to a factor of eight reduction in the cost of running the adjoint solver.
The convergence results are listed in Table 5.5 with the test label “FS1-R1 AS1-R1-
coarse”, and the data is plotted in Figure 5.6. The expected behavior is confirmed:
using the coarser grid for the adjoint approximation results in some loss of accuracy
of the computable error estimate compared to the results using the finer grid, but the
convergence rate of acc(ũ, φ̃) is 2, which is consistent with Theorem 4.1.

No superconvergence results were observed in 2D. It is likely that, for many
applications in multiple dimensions using nonlinear schemes, there would also not be
a superconvergence of the true error. Thus it is promising that a first-order adjoint
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solver with piece-wise linear reconstruction would suffice to estimate the error such
that the effectivity index would converge asymptotically to 1.

6. Conclusions and future work. A method of computing a posteriori esti-
mates of the error in a quantity of interest has been defined in the case of constant-
coefficient linear advection with periodic boundary conditions. This method allows
any suitable numerical discretization to be used to estimate the solution of the adjoint
problem. A statement of the asymptotic behavior of the computable error estimate
has been rigorously proven in Theorem 4.1 when the solutions to the forward and
adjoint problems are smooth.

Several tests have been supplied that support the claims of Theorem 4.1. The re-
sults also show the theory to be pessimistic in some cases. Since the goal is to estimate
the error in quantities of interest reliably, there are only two cases to consider. The
first case is when the true error in a quantity of interest converges at the nominal rate
associated with the forward solver method. In this case only a first-order accurate ad-
joint solver is required to guarantee that the effectivity index (Section 5.1.1) converges
to 1. This is desirable in the absence of a computable upper bound for the error. The
second case is due to the fact that superconvergence is sometimes observed for the true
error. This needs to be accounted for when estimating the adjoint variable, since the
error cancellation does not necessarily carry through to improve the accuracy of the
computable error estimate. Therefore a higher-order adjoint solver may be needed to
guarantee that the effectivity index converges to unity in this second case. However,
superconvergence has not been observed in any of our tests in multiple dimensions
nor when a nonlinear scheme has been applied for the forward problem.

A natural next step in further developing the proposed error estimation technique
is the extension to the problem of a nonlinear hyperbolic conservation law with non-
periodic boundary conditions. The method cannot currently be considered robust in
the presence of shocks, though usually reasonable error estimates can be obtained.
Also, it would be useful to characterize precisely when the ratio of the computable
error estimate to the true error converges to 1, which remains an open problem.
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Appendix A. Proof of Lemma 3.1. The proof is continued by defining
W̃α(x, t) on Sα × [tn−rn , tn−rn+p+1] to be the polynomial interpolant in space and
time constructed the same way as W̃α(x, t), except that at grid vertices the approxi-
mate cell average data wµ

β replaces the exact cell average data:

W̃ (x(j1−1/2,j2−1/2), t
µ) =

2
∑

d=1

jd−1
∑

βd=−r

(H1)β1
(H2)β2

wµ
β , (A.1)

with jd ≥ 1 − r for d = 1, 2. Then just as it was shown that

U(x, t) − Ũα(x, t) = ∂x1
∂x2

(

V (x, t) − Ṽα(x, t)
)

on Sα × [tn−rn , tn−rn+p+1], it also holds that

Ũα(x, t) − w̃α(x, t) = ∂x1
∂x2

(

Ṽα(x, t) − W̃α(x, t)
)

.

Given an arbitrary time level tµ with µ ∈ {n − rn, . . . , n − rn + p + 1}, define the
polynomial eµ

α(x) as the difference eµ
α(x) = Ṽ µ

α (x) − W̃µ
α (x). Error bounds will first

be derived at time tµ on KH
α , then the extension of the error bounds in time will be

described. The goal is to show that

max
x∈KH

α

|∂x1
∂x2

eµ
α(x)| = O (Hs) , (A.2)

and max
x∈KH

α

|∂xd
∂x1

∂x2
eµ

α(x)| = O (Hs) . (A.3)

Let Zd = αd − r for d = 1, 2. Then eµ
α(x) satisfies

eµ
α(x) =

2
∑

d=1

jd−1
∑

βd=−r

(H1)β1
(H2)β2

eµ
β , (A.4)

where x = ((x1)j1−1/2, (x2)j2−1/2) for jd = Zd, . . . , Zd + p + 1 and d = 1, 2. Given
an arbitrary x ∈ KH

α , eµ
α(x) may be expanded using the Newton divided difference

form of the interpolant (Atkinson [2]) in the coordinate x1, since it is a polynomial of
degree p+ 1 in x1 interpolating the data eµ

α((x1)j1−1/2, x2):

eµ
α(x) = eµ

α((x1)Z1−1/2, x2) + ((x1) − (x1)Z1−1/2)e
µ
α

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

+ ((x1) − (x1)Z1−1/2)((x1) − (x1)Z1+1/2) e
µ
α

(

[(x1)Z1−1/2, . . . , (x1)Z1+3/2], x2

)

+ . . .+

p
∏

m1=0

((x1) − (x1)Z1+m1−1/2) e
µ
α

(

[(x1)Z1−1/2, . . . , (x1)Z1+p+1/2], x2

)

. (A.5)

The divided difference notation

eµ
α

(

[(x1)j1−1/2, (x1)j1+1/2, . . . , (x1)l1+j1+1/2], x2

)
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for l1 = 0, 1, . . . , p and j1 = Z1, . . . , Z1 + p − l1 is defined first in case l1 = 0, for
j1 = Z1, . . . , Z1 + p, by setting

eµ
α

(

[(x1)j1−1/2, (x1)j1+1/2], x2

)

=
eµ

α((x1)j1+1/2, x2) − eµ
α((x1)j1−1/2, x2)

(x1)j1+1/2 − (x1)j1−1/2

Then inductively with respect to l1, for j1 = Z1, . . . , Z1 + p− l1,

eµ
α

(

[(x1)j1−1/2, . . . , (x1)j1+l1+1/2], x2

)

=
eµ

α

(

[(x1)j1+1/2, . . . , (x1)j1+l1+1/2], x2

)

(x1)j1+l1+1/2 − (x1)j1−1/2
−
eµ

α

(

[(x1)j1−1/2, . . . , (x1)j1+l1−1/2], x2

)

(x1)j1+l1+1/2 − (x1)j1−1/2
.

The mixed partial derivative ∂x1
∂x2

eµ
α(x) must be bounded. Differentiate (A.5)

to obtain the expression

∂x1
∂x2

eµ
α(x) = ∂x2

eµ
α

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

+

p
∑

j1=1

j1
∑

l1=0

Ψ(l1, j1, α1, x1) ∂x2
eµ

α

(

[(x1)Z1−1/2, . . . , (x1)Z1+j1+1/2], x2

)

, (A.6)

where for l1 = 0, 1 . . . , j1 and j1 = 1, 2, . . . , p,

Ψ(l1, j1, α1, x1) =

j1
∏

m1=0
m1 6=l1

(x1 − (x1)Z1+m1−1/2). (A.7)

The problem is reduced to bounding errors along grid lines as x2 varies. The following
result is used, proved in Appendix B:

Claim A1

There exists a fixed C > 0, independent of µ, H or α, such that if (x2)α2−1/2 ≤ x2 ≤
(x2)α2+1/2, then

∣

∣∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)∣

∣ ≤ C Hs, (A.8)

for m1 = Z1, . . . , Z1 + p. It follows that

∣

∣∂x2
eµ

α

(

[(x1)m1−1/2, . . . , (x1)m1+3/2], x2

)∣

∣

≤

∣

∣

∣

∣

∣

∂x2
eµ

α

(

[(x1)m1+1/2, (x1)m1+3/2], x2

)

(x1)m1+3/2 − (x1)m1−1/2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

(x1)m1+3/2 − (x1)m1−1/2

∣

∣

∣

∣

∣

≤
2CHs

2ρH
=
C Hs−1

ρ
, (A.9)

for m1 = Z1, . . . , Z1 + p− 1. Using induction on j1, it is shown that

∣

∣∂x2
eµ

α

(

[(x1)m1−1/2, . . . , (x1)m1+j1+1/2], x2

)∣

∣ ≤ C
2j1 Hs−j1

(j1 + 1)!ρj1
, (A.10)

where m1 = Z1, . . . , Z1 + p − j1, for j1 = 1, . . . , p. Case j1 = 1 holds by (A.9).
Assuming case j1 holds, apply the definition of the divided difference to show case
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j1 +1 holds (explicit details are provided in the proof of Claim A1). Then the desired
uniform bound on ∂x1

∂x2
eµ

α is derived by first bounding (A.7) as follows:

|Ψ(l1, j1, α1, x1)| =

∣

∣

∣

∣

∣

∣

∣

∣

j1
∏

m1=0
m1 6=l1

(x1 − (x1)Z1+m1−1/2)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ((p+ 1)H)
j1 . (A.11)

Inserting this result in (A.6) and applying (A.8) and (A.10) with m1 = Z1:

|∂x1
∂x2

eµ
α(x)| ≤ C Hs + C

p
∑

j1=1

(j1 + 1) ((p+ 1)H)
j1 2j1 Hs−j1

(j1 + 1)!ρj1

= C



1 +

p
∑

j1=1

(j1 + 1) (p+ 1)
j1 2j1

(j1 + 1)!ρj1



 Hs. (A.12)

This bound holds on any cell KH
α , proving (A.2). In proving the result (A.3), we may

choose d = 1 without loss of generality, as the proof may be repeated in an analogous
way for case d = 2. In (A.6)-(A.7), differentiate with respect to x1 to obtain

∂(2)
x1
∂x2

eµ
α(x) = 2∂x2

eµ
α

(

[(x1)Z1−1/2, . . . , (x1)Z1+3/2], x2

)

+

p
∑

j1=2

j1
∑

l1=0

(∂x1
Ψ(l1, j1, α1, x1)) ∂x2

eµ
α

(

[(x1)Z1−1/2, . . . , (x1)Z1+j1+1/2], x2

)

, (A.13)

where

∂x1
Ψ(l1, j1, α1, x1) =

j1
∑

i1=0
i1 6=l1

j1
∏

m1=0
m1 6=l1,i1

(x1 − (x1)Z1+m1−1/2) (A.14)

for l1 = 0, 1 . . . , j1 and j1 = 2, . . . , p. Another claim is made, bounding the first term
on the right hand side of (A.13) by a fixed positive constant, again denoted by C > 0.
The proof is provided in Appendix C.

Claim A2

There exists a fixed C > 0, independent of µ, H or α, such that if (x2)α2−1/2 ≤ x2 ≤
(x2)α2+1/2, then for m1 = Z1, . . . , Z1 + p− 1,

∣

∣∂x2
eµ

α

(

[(x1)m1−1/2, . . . , (x1)m1+3/2], x2

)∣

∣ ≤ C Hs. (A.15)

Proceeding as above, an inductive argument is used to show the following bound,
derived using Claim A2:

∣

∣∂x2
eµ

α

(

[(x1)m1−1/2, . . . , (x1)m1+j1+1/2], x2

)∣

∣ ≤ C
2j1 Hs+1−j1

(j1 + 1)! ρj1−1
(A.16)

for m1 = Z1, . . . , Z1 + p− j1 and j1 = 2, 3, . . . , p. Bound (A.14) by

|∂x1
Ψ(l1, j1, α1, x1)| ≤

j1
∑

i1=0
i1 6=l1

j1
∏

m1=0
m1 6=l1,i1

∣

∣x1 − (x1)Z1+m1−1/2

∣

∣ ≤ j1 ((p+ 1)H)
j1−1
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and insert this result with (A.15) and (A.16) (with m1 = 0) into (A.13), yielding

∣

∣

∣∂(2)
x1
∂x2

eµ
α(x)

∣

∣

∣ ≤ C Hs



2 +

p
∑

j1=2

j1
∑

l1=0

j1 (p+ 1)
j1−1 2j1

(j1 + 1)! ρj1−1



 . (A.17)

This bound holds on every cell KH
α , proving (A.3).

Next, the jump of the error across a cell wall at time tn is bounded. The arguments
are shown here for the cell wall x1 = (x1)α1−1/2 and (x2)α2−1/2 ≤ x2 ≤ (x2)α2+1/2,
without loss of generality. The goal is to show that

∂x1
∂x2

eµ
(α1+1,α2)((x1)α1−1/2, x2)−∂x1

∂x2
eµ
(α1,α2)

((x1)α1−1/2, x2) = O(Hs+1). (A.18)

Applying (A.6)-(A.7), the difference (A.18) is

∂x1
∂x2

eµ
(α1+1,α2)

(x1, x2) − ∂x1
∂x2

eµ
(α1,α2)(x1, x2) =

∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, (x1)Z1+3/2], x2

)

− ∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

+

p
∑

j1=1

j1
∑

l1=0

Ψ(l1, j1, α1 + 1, x1) ∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, . . . , (x1)Z1+j1+3/2], x2

)

−

p
∑

j1=1

j1
∑

l1=0

Ψ(l1, j1, α1, x1) ∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, . . . , (x1)Z1+j1+1/2], x2

)

(A.19)

with x1 = (x1)α1−1/2. Applying (A.15) the last two terms on the right hand side can
be bounded, first by using

∣

∣

∣∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, . . . , (x1)Z1+1+3/2], x2

)

∣

∣

∣ ≤ C Hs,
∣

∣

∣∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, . . . , (x1)Z1+1+1/2], x2

)

∣

∣

∣ ≤ C Hs, (A.20)

and then proceeding inductively with respect to j1,

∣

∣

∣
∂x2

eµ
(α1+1,α2)

(

[(x1)Z1+1/2, . . . , (x1)Z1+j1+3/2], x2

)

∣

∣

∣
≤

C Hs 2j1

(j1 + 1)! ρj1−1Hj1−1
,

∣

∣

∣∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, . . . , (x1)Z1+j1+1/2], x2

)

∣

∣

∣ ≤
C Hs 2j1

(j1 + 1)! ρj1−1Hj1−1
. (A.21)

Insert (A.20)-(A.21) and (A.11) into (A.19) to obtain

∣

∣

∣∂x1
∂x2

eµ
(α1+1,α2)((x1)α1+1/2, x2) − ∂x1

∂x2
eµ
(α1,α2)

((x1)α1+1/2, x2)
∣

∣

∣ ≤
∣

∣

∣

∣

∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, (x1)Z1+3/2], x2

)

−∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

∣

∣

∣

∣

+ 2

p
∑

j1=1

j1
∑

l1=0

((p+ 1)H)j1 C
2j1 Hs+1−j1

(j1 + 1)! ρj1−1
. (A.22)

The last term on the right hand side is of order Hs+1. The remaining terms are also
of order Hs+1, which we list here as Claim A3, proved in Appendix D.
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Claim A3

There exists a fixed C > 0, independent of µ, H or α, such that if (x2)α2−1/2 ≤ x2 ≤
(x2)α2+1/2, then

∣

∣

∣

∣

∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, (x1)Z1+3/2], x2

)

− ∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

∣

∣

∣

∣

≤ C Hs+1. (A.23)

Uniform bounds in space on cell KH
α have been shown at an arbitrary time tµ. The

error bounds must be extended to be uniform in time, and the time derivative of the
error also needs to be bounded. Define eα(x, t) on KH

α × [tn, tn+1] for each x ∈ KH
α

as the unique polynomial interpolant in time of degree p+ 1 such that

eα(x, tµ) = eµ
α(x), (A.24)

for µ = n− rn, . . . , n− rn + p+ 1. The Newton form of the interpolant is

eα(x, t) = eα(x, tn−rn) + (t− tn−rn)eα(x, [tn−rn , tn−rn+1]) + . . . (A.25)

Proceeding as described above it can be shown that a uniform bound exists in terms
of the interpolated data:

max
t∈[tn,tn+1]

∣

∣∂ω
xd
∂x1

∂x2
eα(x, t)

∣

∣ ≤ C max
µ

∣

∣∂ω
xd
∂x1

∂x2
eµ

α(x)
∣

∣ , (A.26)

with C independent of n, α, or H , for ω = 0, 1. Then the uniform bounds derived
above are used for the right hand side, and an analogous result follows for the jump
across ∂KH

α . Taking derivatives in (A.25),

∂t∂x1
∂x2

eα(x, t) = ∂x1
∂x2

eα(x, [tn−rn , tn−rn+1]) + . . . (A.27)

and to bound the time derivative of the error it suffices to show that:

Claim A4

∂x1
∂x2

eα(x, [tmt , tmt+1]) ≤ C Hs, (A.28)

with C independent of n, α, or H , for mt = n− rn, . . . , n− rn + p. This is shown in
Appendix E. Then the remainder of the proof procedes again as described above.

Appendix B. Proof of Claim A1.

Proof. Let x1 satisfy (x1)Z1−1/2 ≤ x1 ≤ (x1)Z1+p+1/2. Then ∂x2
eµ

α (x1, x2) may
be expanded in x2 using the Newton form of the interpolant:

∂x2
eµ

α (x1, x2) = ∂x2
eµ

α

(

x1, (x2)Z2−1/2

)

+ ∂x2

p
∑

j2=0

j2
∏

l2=0

(x2 − (x2)Z2+l2−1/2)e
µ
α

(

x1, [(x2)Z2−1/2, . . . , (x2)Z2+j2+1/2]
)

= eµ
α

(

x1, [(x2)Z2−1/2, (x2)Z2+1/2]
)

+

p
∑

j2=1

j2
∑

q2=0

j2
∏

l2=0
l2 6=q2

(x2 − (x2)Z2+l2−1/2)e
µ
α

(

x1, [(x2)Z2−1/2, . . . , (x2)Z2+j2+1/2]
)

.

(B.1)
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The divided difference that must be bounded is

∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

=
∂x2

eµ
α

(

(x1)m1+1/2, x2

)

− ∂x2
eµ

α

(

(x1)m1−1/2, x2

)

(H1)m1

.
(B.2)

for m1 = Z1, . . . , Z1 + p. The numerator is expanded in x2 by choosing x1 =
(x1)m1+1/2 in (B.1), subtracting the analogous result with x1 = (x1)m1−1/2, and
inserting the difference in (B.2). This expression is

∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

=

eµ
α

(

(x1)m1+1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

− eµ
α

(

(x1)m1−1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

(H1)m1

+

p
∑

j2=1

j2
∑

q2=0

Φ(q2, j2, α2)

(H1)m1

eµ
α

(

(x1)m1+1/2, [(x2)Z2−1/2, . . . , (x2)Z2+j2+1/2]
)

−

p
∑

j2=1

j2
∑

q2=0

Φ(q2, j2, α2)

(H1)m1

eµ
α

(

(x1)m1−1/2, [(x2)Z2−1/2, . . . , (x2)Z2+j2+1/2]
)

, (B.3)

where Φ(q2, j2, α2) =
∏j2

l2=0
l2 6=q2

(x2 − (x2)Z2+l2−1/2). The first two terms on the right

hand side of (B.3) may be calculated in terms of the cell average errors, using the
values of eµ

α(x) with x = ((x1)Z1+j1−1/2, (x2)Z2+j2−1/2), defined in (A.4):

eµ
α(x) =

2
∑

d=1

Zd+jd−1
∑

βd=−r

(H1)β1
(H2)β2

eµ
β , (B.4)

for jd = 0, 1, . . . , p+ 1 and d = 1, 2. It follows that

eµ
α

(

(x1)m1+1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

(H1)m1

=

∑m1

β1=−r

∑Z2

β2=−r(H1)β1
(H2)β2

eµ
β −

∑m1

β1=−r

∑Z2−1
β2=−r(H1)β1

(H2)β2
eµ

β

(H1)m1
(H2)Z2

=
1

(H1)m1

m1
∑

β1=−r

(H1)β1
eµ
(β1,Z2),

(B.5)

and

eµ
α

(

(x1)m1−1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

(H1)m1

=
1

(H1)m1

m1−1
∑

β1=−r

(H1)β1
eµ
(β1,Z2)

. (B.6)

Therefore,

eµ
α

(

(x1)m1+1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

− eµ
α

(

(x1)m1−1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

(H1)m1

=
1

(H1)m1







m1
∑

β1=−r

(H1)β1
eµ
(β1,Z2)

−

m1−1
∑

β1=−r

(H1)β1
eµ
(β1,Z2)







= eµ
(m1,Z2)

(B.7)

29



for m1 = Z1, . . . , Z1 + p. Similar arguments show that

eµ
α

(

(x1)m1+1/2, [(x2)m2−1/2, (x2)m2+1/2]
)

(H1)m1

−
eµ

α

(

(x1)m1−1/2, [(x2)m2−1/2, (x2)m2+1/2]
)

(H1)m1

= eµ
(m1,m2)

(B.8)

for m1 = Z1, . . . , Z1 + p and m2 = Z2, . . . , Z2 + p. An induction argument for j2 is
used to show the final result, i.e. bounding (B.3). Indeed, for case j2 = 1,

∣

∣

∣

∣

1

(H1)m1

eµ
α

(

(x1)m1+1/2, [(x2)m2−1/2, . . . , (x2)m2+j2+1/2]
)

−
1

(H1)m1

eµ
α

(

(x1)m1−1/2, [(x2)m2−1/2, . . . , (x2)m2+j2+1/2]
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

eµ
(m1,m2+1) − eµ

(m1,m2)

(H2)m2+1 + (H2)m2

∣

∣

∣

∣

∣

≤
C1H

s+1

2ρH
(B.9)

for m1 = Z1, . . . , Z1 + p and m2 = Z2, . . . , Z2 + p− j2, by assumption (3.9) of Lemma
3.1. Then expanding out the divided difference it is shown that case j2 implies case
j2 + 1, and it holds that
∣

∣

∣

∣

1

(H1)m1

eµ
α

(

(x1)m1+1/2, [(x2)m2−1/2, . . . , (x2)m2+j2+1/2]
)

−
1

(H1)m1

eµ
α

(

(x1)m1−1/2, [(x2)m2−1/2, . . . , (x2)m2+j2+1/2]
)

∣

∣

∣

∣

≤ C1
2j2 Hs+1−j2

(j2 + 1)! ρj2
,

for m1 = Z1, . . . , Z1 + p and m2 = Z2, . . . , Z2 + p − j2, where j2 = 1, . . . , p. Insert
this result and (B.8) into (B.3), yielding the bound

∣

∣∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)∣

∣ ≤ C1

p
∑

j2=1

j2
∑

q2=0

|Φ(q2, j2, α2)|
2j2 Hs+1−j2

(j2 + 1)! ρj2

+
∣

∣

∣e
µ
(m1,Z2)

∣

∣

∣ ≤ C1H
s+1

p
∑

j2=1

(j2 + 1)(p+ 1)j2
2j2

(j2 + 1)! ρj2
+ C0H

s (B.10)

by the assumption (3.7) of Lemma 3.1. Recall from the statement of Lemma 3.1 that
H ≤ H , hence Hs+1 ≤ H ·Hs and the desired result is achieved, choosing

C = C0 + C1H

p
∑

j2=1

(j2 + 1)(p+ 1)j2
2j2

(j2 + 1)! ρj2
.

Appendix C. Proof of Claim A2.

Proof. This result follows largely from the arguments in Appendix B. Expand
the divided difference ∂x2

eµ
α

(

[(x1)m1−1/2, . . . , (x1)m1+3/2], x2

)

as follows:

∂x2
eµ

α

(

[(x1)m1−1/2, . . . , (x1)m1+3/2], x2

)

=
∂x2

eµ
α

(

[(x1)m1+1/2, (x1)m1+3/2], x2

)

(H1)m1+1 + (H1)m1

−
∂x2

eµ
α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

(H1)m1+1 + (H1)m1

. (C.1)
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The goal is to show the numerator is uniformly of order Hs+1, and the desired result
follows by applying the bound

1

(H1)m1+1 + (H1)m1

≤
1

2ρH

for the denominator. Note that in (B.10) it is shown that all of the terms are uniformly
of order Hs+1 except for eµ

(m1,Z2), and in fact

∂x2
eµ

α

(

[(x1)m1+1/2, (x1)m1+3/2], x2

)

= eµ
(m1+1,Z2) + O(Hs+1)

and ∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

= eµ
(m1,Z2) + O(Hs+1).

Subtracting,

∂x2
eµ

α

(

[(x1)m1+1/2, (x1)m1+3/2], x2

)

− ∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

= eµ
(m1+1,Z2)

− eµ
(m1,Z2)

+ O(Hs+1) = O(Hs+1), (C.2)

by assumption (3.8) of Lemma 3.1.

Appendix D. Proof of Claim A3.

Proof. In this case the proof is almost the same as for Claim A2, using (B.10).
Following the steps in the proof of Claim A1, it is shown that

∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, (x1)Z1+3/2], x2

)

= eµ
(Z1+1,Z2)

+ O(Hs+1)

and ∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

= eµ
(Z1,Z2)

+ O(Hs+1).

Subtracting,

∂x2
eµ
(α1+1,α2)

(

[(x1)Z1+1/2, (x1)Z1+3/2], x2

)

−∂x2
eµ
(α1,α2)

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

= eµ
(Z1+1,Z2)

− eµ
(Z1,Z2) + O(Hs+1) = O(Hs+1), (D.1)

by assumption (3.8) of Lemma 3.1.

Appendix E. Proof of Claim A4.

Proof. The divided difference to be bounded is

∂x1
∂x2

eα(x, [tmt , tmt+1]) =
∂x1

∂x2
emt+1

α (x) − ∂x1
∂x2

emt
α (x)

∆tmt+1
(E.1)

for mt = n− rn, . . . , n− rn + p. It suffices to show that
∣

∣∂x1
∂x2

emt+1
α (x) − ∂x1

∂x2
emt

α (x)
∣

∣ ≤ C Hs ∆t, (E.2)

so that by (E.1) the final result follows:
∣

∣∂x1
∂x2

eα(x, [tmt , tmt+1])
∣

∣ ≤ C Hs ∆t
∆tmt+1 ≤ C Hs

ρ .

The difference in (E.2) is rewritten via (A.6)-(A.7) from Lemma 3.1, so that

∂x1
∂x2

eµ+1
α (x) − ∂x1

∂x2
eµ

α(x) =

∂x2
eµ+1

α

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

− ∂x2
eµ

α

(

[(x1)Z1−1/2, (x1)Z1+1/2], x2

)

+

p
∑

j1=1

j1
∑

l1=0

Ψ(l1, j1, α1, x1) ∂x2
eµ+1

α

(

[(x1)Z1−1/2, . . . , (x1)Z1+j1+1/2], x2

)

−

p
∑

j1=1

j1
∑

l1=0

Ψ(l1, j1, α1, x1) ∂x2
eµ

α

(

[(x1)Z1−1/2, . . . , (x1)Z1+j1+1/2], x2

)

, (E.3)
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where Ψ(l1, j1, α1, x1) =
∏j1

m1=0
m1 6=l1

(x1 − (x1)Z1+m1−1/2) for l1 = 0, 1 . . . , j1 and j1 =

1, 2, . . . , p. Here µ = mt for any arbitrary but fixed mt ∈ {n − rn, . . . , n − rn + p}.
The result (E.2) can be shown first by proving that

∣

∣

∣

∣

∂x2
eµ+1

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

− ∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

∣

∣

∣

∣

≤ C∗Hs ∆t (E.4)

for any m1 = Z1, . . . , Z1 + p, where C∗ > 0 is independent of x2, α, µ and H . Then
by induction, one proves (analogous to Appendix B-C) that

∣

∣

∣

∣

∂x2
eµ+1

α

(

[(x1)m1−1/2, (x1)m1+j1+1/2], x2

)

− ∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+j1+1/2], x2

)

∣

∣

∣

∣

≤ C∗ 2j1 Hs−j1 ∆t

(j1 + 1)! ρj1
, (E.5)

for m1 = Z1, . . . , Z1 + p − j1 and j1 = 1, 2, . . . , p. Then (E.2) follows by applying
(E.4)-(E.5) to (E.3) with the bound |Ψ(l1, j1, α1, x1)| ≤ ((p+ 1)H)j1 . The inequality
(E.4) is shown by using this result from Appendix B:

∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

=

eµ
α

(

(x1)m1+1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

− eµ
α

(

(x1)m1−1/2, [(x2)Z2−1/2, (x2)Z2+1/2]
)

(H1)m1

+

p
∑

j2=1

j2
∑

q2=0

Φ(q2, j2, α2)

(H1)m1

eµ
α

(

(x1)m1+1/2, [(x2)Z2−1/2, . . . , (x2)Z2+j2+1/2]
)

−

p
∑

j2=1

j2
∑

q2=0

Φ(q2, j2, α2)

(H1)m1

eµ
α

(

(x1)m1−1/2, [(x2)Z2−1/2, . . . , (x2)Z2+j2+1/2]
)

. (E.6)

As described in Appendix B, the first two terms on the right hand side of (E.6) sum
to be precisely eµ

(m1,Z2)
, and hence

∂x2
eµ+1

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

− ∂x2
eµ

α

(

[(x1)m1−1/2, (x1)m1+1/2], x2

)

= eµ+1
(m1,Z2)

− eµ
(m1,Z2)

+ . . . , (E.7)

where
∣

∣

∣
eµ+1
(m1,Z2) − eµ

(m1,Z2)

∣

∣

∣
≤ C2H

s ∆t, by the assumption (3.10) of Lemma 3.1.

Starting with this base case, the remaining terms in (E.7) are bounded using the
usual induction arguments to prove (E.4) and hence the final result. This is tedious
and follows previous arguments, so the remainder of the proof is omitted.
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