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Abstract. We consider multi-physics computations where the Navier-Stokes equations
of compressible fluid flow on some parts of the computational domain are coupled to
the equations of elasticity on other parts of the computational domain. The different
subdomains are separated by well-defined interfaces. We consider time accurate com-
putations resolving all time scales. For such computations, explicit time stepping is
very efficient. We address the issue of discrete interface conditions between the two
domains of different physics that do not lead to instability, or to a significant reduction
of the stable time step size. Finding such interface conditions is non-trivial.
We discretize the problem with high order centered difference approximations with
summation by parts boundary closure. We derive L2 stable interface conditions for the
linearized one dimensional discretized problem. Furthermore, we generalize the in-
terface conditions to the full non-linear equations, and numerically demonstrate their
stable and accurate performance on a simple model problem. The energy stable in-
terface conditions derived here through symmetrization of the equations contain the
interface conditions derived through normal mode analysis by Banks and Sjögreen
in [7] as a special case.

AMS subject classifications: 65M12, 35L60, 35L65

1 Introduction

This work will consider numerical simulation of multi-physics systems where two, or
more, physics models are solved on different parts of a computational domain. These
different multi-physics domains are assumed to be separated by well-defined interfaces.
Coupling conditions which join the various sub-domains are defined on these interfaces.

In the literature, there is a large body of work relating to numerical treatment of this
type of fluid-structure interface. By far the most common approach is to apply mate-
rial motions from the solid domain as boundary conditions to the fluid while using the
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Figure 1: Graphic representation of one possible computational setup in two space dimensions. Blue represents
the fluid and red represents the solid.

fluid stresses as boundary conditions on the solid. However, this approach can become
problematic from a stability perspective for certain cases. As a result, implicit, sometimes
referred to as monolithic, approaches have often been adopted. Such schemes are effec-
tive, but can introduce additional difficulties in terms of linear/nonlinear solvers and
pre-conditioners.

Recent work in [6, 7] has shown that more symmetric approaches to interface con-
dition imposition can result in favorable approximations, possibly with stability across
all ranges of material parameters. The main purpose of the current work is to discuss
the well-posedness of the continuous linearized fluid-structure problem and introduce a
summation-by-parts discretization which mimics the energy behavior or the continuous
operators. The operators which are thus derived have similar structure to those found
in [7]. We will verify the accuracy of this new approach via manufactured solutions, and
apply the schemes to a nontrivial problem of a Navier-Stokes fluid with an elastic-plastic
solid.

The example studied here will be fluid/structure interaction in one space dimension,
but the ideas are intended as more generally applicable. However, the techniques em-
ployed in this work have an impact on the discretization choices available for extension
to, for example, two space dimensions. This is an important point and so we provide a
brief discussion of these issues. The eventual numerical discretization of the governing
equations and interface conditions investigated here requires a set of interface aligned
grids. That is to say that the interface defining the boundary between two, or more,
physics sub-domains must be represented in both computational sub-domains. This is
shown graphically in Fig. 1. Here, the fluid equations are discretized on the blue grids
and the solid is discretized on the red grid. The requirement that both computational
sub-domains align with the material interface implies that other techniques are required
to deal with external boundaries. In Fig. 1, we indicate that an overset grid approach [4]
is used to treat the fluid domain, while a structured deforming grid is used for the solid.
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Other options are of course possible and include embedded boundaries, overset grids,
unstructured grids, or others. The key requirement as it relates to this work is that the
fluid and solid are discretized on grids which align to the material interface.

The remainder of this work is structured as follows. Section 2 describes the equations
in full generality. In Section 3, we perform an energy estimate of the one dimensional
continuous problem, and prove that the standard interface conditions lead to a well-
posed problem with decreasing energy. Section 4 performs the same analysis for finite
difference discretizations that satisfy the summation by parts principle. We find energy
stable discretizations and give explicit formulas for the discrete interface conditions. Sec-
tion 5 shows numerical examples in one space dimension. The method of manufactured
solution is first used to verify the implementation and to study the numerical conver-
gence order obtained for finite difference schemes of different formal accuracies. Finally,
we simulate an elastic rod pulled by gravity into a compressible fluid. Conclusions are
presented in Section 6.

2 Equations

Let the updated Lagrangian equations of motion,

ρ(s)u(s)
t =−∇p(s)+divσ+ρ(s)f(s)

σt =−W(s)σ−σ(W(s))T+λe divu(s) I+2µeD(s) (2.1)

ρ(s)εt =−p(s)divu(s)+(σ : D(s))+div(κe∇T(s))

xt =u(s),

together with the algebraic relation ρ(s) J = ρ
(s)
0 J0 =m0, model the movement and defor-

mation of an elastic-plastic body, see, e.g., [16]. The pressure, p(s), models plastic effects.
The equations of structural mechanics for elastic materials, as described, e.g., in [2], are
obtained from (2.1) by setting p(s)=0.

The density ρ(s), velocity u(s), stress tensor σ, internal energy ε, and temperature T(s),
are functions of (X,t). The Lagrangian coordinates X=(X1, X2, X3) are the coordinates
in a reference configuration at time zero. A volume distributed forcing is given by f(s).
The Eulerian coordinates

x=x(X,t) (2.2)

represent the position at time t of the material point that was located at X at time zero. The
partial derivative of a variable with respect to t with X held fixed is denoted by subscript
t. In the continuum mechanics literature these material time derivatives are often instead
denoted by D/Dt.

The derivative of (2.2) is denoted by

(F)i,j =
∂xi

∂Xj
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and its Jacobian by J = det(F). m0 = J0ρ
(s)
0 denotes J(X,0)ρ(s)(X,0). The gradient, ∇,

and divergence operators act in the Eulerian coordinates, and can be evaluated in the
Lagrangian frame by use of the coordinate mapping (2.2). I is the identity matrix, and
the symmetric and skew-symmetric parts of the velocity gradient are defined as

D(s)=
1
2
(∇u(s)+∇(u(s))T) and W(s)=

1
2
(∇u(s)−∇(u(s))T).

The Lamé parameters µe and λe are in general functions of the spatial coordinate, and
depend on the material. A thermodynamic relation ε = ε(T(s)) relates the temperature
and internal energy. We will use a linear relation

ε=αT(s), (2.3)

where α is a given constant. The pressure, when present, is given through an equation of
state

p(s)= p(s)(ε,ρ(s)) (2.4)

which is a function of the internal energy and density. The superscript s on the density,
velocity, temperature, and pressure denotes that these are quantities defined in the elastic
material.

The compressible Navier-Stokes equations,

ρ
( f )
t +divρ( f )u( f )=0

(ρ( f )u( f ))t+div(ρ( f )u( f )(u( f ))T+p( f ) I)=div(λdivu( f ) I+2µD( f )) (2.5)

et+div(u( f )(e+p( f )))=div(λu( f )divu( f )+2µD( f )u( f ))+div(κ∇T( f ))

models the fluid. The superscript f on the density, velocity, temperature, and pressure
denotes that the quantities are defined in the fluid part of the computational domain.

The pressure obeys the perfect gas law, p( f )=(γ−1)(e−ρ( f )|u( f )|2/2), for a constant
γ, where e is the total energy. The coefficients of viscosity are µ and λ, and κ is the heat
conduction. λ is given by the zero bulk viscosity assumption λ=− 2

3 µ. The equation of
state p( f ) = R

M ρ( f )T( f ) is used to compute the temperature from the other variables. R
is the universal gas constant, and M is the constant molar mass of the fluid. D( f ) is the
symmetric part of the velocity gradient of the fluid velocity. The dependent variables in
(2.5) are functions of the Eulerian coordinates (x,t).

2.1 Interface conditions

The interface conditions at the fluid/solid boundary are the no-slip condition

u( f )=u(s), (2.6)
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Figure 2: Domain for analysis of the one dimensional equations.

normal stress continuity

−p( f )n+λdivu( f )n+2µD( f )n=σn−p(s)n, (2.7)

and continuity of the temperature and of the heat flux

T( f )=T(s) (2.8)

κ
∂T( f )

∂n
=κe

∂T(s)

∂n
. (2.9)

n is a unit vector normal to the interface, and ∂/∂n denotes the derivative in the direction
n in the Eulerian coordinate.

3 Energy estimate in one space dimension

The interface conditions (2.6)-(2.9) are natural conditions from physics considerations,
and should therefore lead to a well-posed problem. In this section we prove that this
is indeed the case. Furthermore, the analysis gives insight into how to construct stable
finite difference discretizations.

Consider the one-dimensional domain outlined in Fig. 2, where an interface at the
Eulerian coordinate xI(t) separates a fluid to the right and an elastic-plastic solid to the
left. In Lagrangian coordinates, the interface is given by X=0.

The equations (2.1), when restricted to one space dimension become

u(s)
t =

1
m0

(
σ−p(s)

)
X

σt =
1

xX
(2µe+λe)u(s)

X (3.1)

m0εt =
(

σ−p(s)
)

u(s)
X +

(
κe

xX
T(s)

X

)
X

xt =u(s),

for the domain −∞<X<0. Mass conservation in one dimension is ρ(s)xX =m0, because
J= xX.
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The fluid equations (2.5) are transformed to the coordinate X by the moving coor-
dinate mapping x = X+xI(t), i.e., to a rigid frame that moves with the interface, and
become

ρ
( f )
t +

(
ρ( f )u( f )−sI(t)ρ( f )

)
X
=0(

ρ( f )u( f )
)

t
+
(

ρ( f )(u( f ))2+p( f )−sI(t)ρ( f )u( f )
)

X
=

4
3

µu( f )
XX (3.2)

et+
(

u( f )(e+p( f ))−sI(t)e
)

X
=

4
3

µ
(

u( f )u( f )
X

)
X
+
(

κT( f )
X

)
X

on the domain 0<X<∞. In (3.2), sI(t) denotes the interface velocity dxI(t)/dt.

3.1 Linearized problem

The Navier-Stokes equations (3.2) can be reformulated in the variables (ρ( f ), u( f ), T( f )),
and become

ρ
( f )
t +

(
u( f )−s(t)

)
ρ
( f )
X +ρ( f )u( f )

X =0

u( f )
t +

(
u( f )−s(t)

)
u( f )

X +
1

ρ( f )
p( f )

X =
1

ρ( f )

4
3

µu( f )
XX (3.3)

T( f )
t +

(
u( f )−s(t)

)
T( f )

X +(γ−1)T( f )u( f )
X =

M
R

γ−1
ρ( f )

(
4
3

µ
(

u( f )
X

)2
+
(

κT( f )
X

)
X

)
.

Linearization is accomplished by considering

(ρ( f ), u( f ), T( f ))=(ρ̂( f ), û( f ), T̂( f ))+(ρ( f )′ , u( f )′ , T( f )′) (3.4)

where (ρ̂( f ), û( f ), T̂( f )) is a constant state, and (ρ( f )′ , u( f )′ , T( f )′) is a small perturbation.
The interface velocity is also linearized about the constant û( f ) as s=û( f )+s′. The equation
of state is linearized according to

p( f )=
R
M

(T̂( f )+T( f )′)(ρ̂( f )+ρ( f )′)=
R
M

T̂( f )ρ̂( f )+
R
M

ρ̂( f )T( f )′+
R
M

T̂( f )ρ( f )′+ . . .,

where terms that are quadratic in the small perturbation have been neglected. We identify
constant and leading order fluid pressure

p̂( f )=
R
M

T̂( f )ρ̂( f ) and p( f )′=
R
M

ρ̂( f )T( f )′+
R
M

T̂( f )ρ( f )′ . (3.5)
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We insert (3.4) and the linearized interface velocity into (3.3) and neglect perturbation
terms occurring with powers two or higher. The final result is the linearized system

ρ
( f )′
t + ρ̂( f )u( f )′

X =0

u( f )′
t +

R
M

T( f )′
X +

RT̂( f )

M ρ̂( f )
ρ
( f )′
X =

1
ρ̂( f )

4
3

µu( f )′
XX (3.6)

T( f )′
t +(γ−1)T̂( f )u( f )′

X =
M
R

γ−1
ρ̂( f )

(
(κT( f )′

X )X

)
,

for 0<X.
Similarly, for (3.1) we first rewrite the energy equation as an equation for the temper-

ature by substituting ε=αT(s) in the last equation and perform the linearization

(u(s), σ, T(s))=(û(s), σ̂, T̂(s))+(u(s)′ , σ′, T(s)′) (3.7)

x=X+û(s)t+x′, (3.8)

where (û(s), σ̂, T̂(s)) is a constant state. Hence, the coordinate mapping is linearized
around a uniform reference configuration. Taking the spatial derivative of (3.8) gives
xX = 1+x′X, and we also obtain the linearization of 1/xX as 1−x′X. The density, which
satsifies ρ(s)xX =m0, is linearized as

ρ(s)=m0/xX =m0(1−x′X)=m0−m0x′X,

and hence we define ρ̂(s) = m0 and ρ(s)
′
=−ρ̂(s)x′X. The pressure, p(s) = p(s)(ε,ρ(s)) is

linearized as

p(s)= p̂(s)+ p̂(s)ρ ρ(s)
′
+ p̂(s)ε ε′= p̂(s)− p̂(s)ρ ρ̂(s)x′X+α p̂(s)ε T(s)′ ,

where p̂(s)ε p̂(s)ρ are the partial derivatives of the equation of state as a function p(s) =
p(s)(ε,ρ(s)) evaluated at the linearization state. The linearization of the system (3.1) be-
comes

u(s)′

σ′

T(s)′

x′X


t

=


0 1/m0 −α p̂(s)ε /m0 p̂(s)ρ

(2µe+λe) 0 0 0
σ̂− p̂(s)

αm0
0 0 0

1 0 0 0




u(s)′

σ′

T(s)′

x′X


X

+


0
0

κe
αm0

T(s)′
XX

0

 (3.9)

for X < 0. We have taken a spatial derivative of the last equation. In the case when
p̂(s)ρ = 0, the equation for the coordinate mapping is not coupled to the equations for
(u(s)′ , σ′, T(s)′). In the remainder of this section we will simplify the notation by dropping
the primes on the perturbation variables and consider the systems (3.6) and (3.9) on X>
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0 and X < 0 respectively. Note that the linearization states should satisfy the interface
conditions. In particular, û(s)= û( f ) and T̂(s)= T̂( f ).

We introduce the vector of unknows in the fluid and the solid respectively as q( f )=
(ρ( f ), u( f ), T( f )) and q(s)=(u(s), σ, T(s), xX), and rewrite (3.6) and (3.9) in matrix form as

q(s)
t +Asq

(s)
X =Bsq

(s)
XX X<0 (3.10)

q( f )
t +A f q( f )

X =B f q( f )
XX X>0, (3.11)

where the definition of the matrices As, Bs, A f , and B f are immediate from (3.6) and (3.9).
Bs and B f are diagonal matrices. The eigenvalues of A f are û( f )− ĉ, û( f ), û( f )+ ĉ where

ĉ=
√

γ p̂( f )/ρ̂( f ), which shows that the fluid equations are hyperbolic in the inviscid limit

for positive pressure and density. As has eigenvalues 0,0, −c(s), and c(s), where

(c(s))2=
2µe+λe

m0
+

p̂(s)−σ̂

m2
0

p̂(s)ε + p̂(s)ρ .

Because p̂( f ) > 0, linearization around a reference state with p̂(s)−σ̂ = p̂( f ) guarantees
that p̂(s)−σ̂ > 0. Hence, (c(s))2 > 0 and As has real eigenvalues under the additional
assumptions p̂(s)ε > 0 and p̂(s)ρ > 0. This is true for example with the ideal gas law p(s)=
(γ−1)ρ(s)ε.

At X=0 the interface conditions (2.6), (2.8), and (2.9) are unchanged for the linearized
problem. Linearization of (2.7) around the reference state with p̂( f )= p̂(s)−σ̂ gives

− T̂( f )R
M

ρ( f )− ρ̂( f )R
M

T( f )+
4µ

3
u( f )

x =σ− p̂(s)ε αT(s)− p̂(s)ρ ρ(s). (3.12)

In order to prove an energy estimate, we first transform the systems (3.10) and (3.11)
to symmetric form. This is done by the diagonal matrix

Ys =diag
(

1/
√

m0,
√

2µe+λe,
√

p̂(s)−σ̂/(α
√

m0 p̂(s)ε ),1/
√

m0 p̂(s)ρ

)
(3.13)

for (3.10) and by

Yf =diag
(√

ρ̂( f )M/(RT̂( f )),1/
√

ρ̂( f ),
√
(γ−1)T̂( f )M/(ρ̂( f )R)

)
(3.14)

for (3.11). Denote w(s)=Y−1
s q(s) and w( f )=Y−1

f q( f ). The symmetrized equations,

w(s)
t +Ssw

(s)
X =Bsw

(s)
XX X<0 (3.15)

w( f )
t +S f w( f )

X =B f w( f )
XX X>0, (3.16)
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are obtained by left multiplication of (3.10) and (3.11) by Y−1
s and Y−1

f respectively. The
symmetric matrices are

Ss =


0 −

√
2µe+λe

m0

√
p̂(s)ε p̂(s)

m0
−
√

p̂(s)ρ

. 0 0 0

. . 0 0

. . . 0

 S f =

0
√

RT̂( f )

M 0

. 0
√

R(γ−1)T̂( f )

M
. . 0


for the solid and fluid respectively. Bs and B f are unchanged by the symmetrizing trans-
formation, because they are diagonal.

Define the scalar product for any two functions on X<0 by

(p,q)−=
∫ 0

−∞
p(X,t)q(X,t)dX,

and similarly on X>0,

(p,q)+=
∫ ∞

0
p(X,t)q(X,t)dX.

The corresponding norms are denoted by ||q||2−=(q,q)− and ||q||2+=(q,q)+. The follow-
ing theorem states well-posedness of the linearized fluid/structure problem.

Theorem 3.1. Consider the equations (3.16) for X > 0 and (3.15) for X < 0, coupled by (2.6),
(3.12), (2.8), and (2.9) at X=0. Assume that the solutions vanish when X→±∞. Furthermore,
assume that p(s)(ε,ρ(s)) has positive partial derivatives, p(s)ε >0 and p(s)ρ >0. Then the estimate

||w(s)(t)||2−+||w( f )(t)||2+≤||w(s)(0)||2−+||w( f )(0)||2+ (3.17)

holds for all t>0.

Proof: The standard estimate

1
2

d
dt
||w||2=(w,wt)=−(w,Swx)+(w,Bwxx)

=−1
2

wTSw|b−(wx,Bwx)+wTBwx|b, (3.18)

for the PDE wt+Swx =Bwxx with symmetric S holds, because integration by parts and
the symmetry of S give

(w,Swx)=−(wx,Sw)+wTSw|b =−(Swx,w)+wTSw|b
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and (w,Swx)=(1/2)wTSw|b follows. The notation |b denotes restriction to the boundary.
It follows that

1
2

d
dt

(
||w(s)(t)||2−+||w( f )(t)||2+

)
=

1
2

(
−(w(s))TSsw(s)|0+(w( f ))TS f w( f )|0

)
+(w(s))TBsw

(s)
x |0

−(w( f ))TB f w( f )
x |0−(w(s)

x ,Bsw
(s)
x )−−(w( f )

x ,B f w( f )
x )+, (3.19)

where |0 is restriction to X=0. The interface condition is obtained by requiring

1
2

(
−(w(s))TSsw(s)|0+(w( f ))TS f w( f )|0

)
+(w(s))TBsw

(s)
x |0−(w( f ))TB f w( f )

x |0=0,

which written out in terms of the original variables is equivalent to

1
2

u(s)
(

σ− p̂(s)ρ ρ(s)−α p̂(s)ε T(s)
)
+

1
2

u( f )
(

R
M

T̂( f )ρ( f )+
R
M

ρ̂( f )T( f )− 4
3

µu( f )
X

)
+

1
T̂

κeT(s)T(s)
X −

1
T̂

κT( f )T( f )
X =0, (3.20)

where all variables are evaluated at X = 0. It is straightforward to verify that interface
conditions (2.6) , (3.12), (2.8), and (2.9) indeed make the left hand side of (3.20) equal to
zero. The remaining terms of (3.19) give,

1
2

d
dt

(
||w(s)(t)||2−+||w( f )(t)||2+

)
=−(w(s)

x ,Bsw
(s)
x )−−(w( f )

x ,B f w( f )
x )+≤0,

because B f and Bs are positive semi-definite. The energy estimate (3.17) follows.

4 Discretization in one space dimension

Introduce a uniform grid with grid spacing h on the domain in Fig. 2, in the Lagrangian
coordinate, Xj = jh. Let the fluid/structure interface be located at the grid point j = 0.

The dependent variables of the fluid equations at the grid point Xj, (ρ
( f )
j , ρ

( f )
j u( f )

j , ej), are

defined for j≥ 0 and the dependent variables of the elasticity equations, (u(s)
j , σj, εj, xj)

are defined for j≤ 0. Hence, both solid and fluid variables are defined at the interface
grid point X0=0.

4.1 Discretization by summation-by-parts finite differences

Consider the domain j≤0. A summation-by-parts finite difference operator is a difference
operator approximating d/dx, DL, that satisfies

(u,DLv)h−=−(DLu,v)h−+u0v0 (4.1)
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for grid functions uj and vj defined on j≤ 0. The discrete weighted scalar product is
defined on j≤0 by,

(u,v)h−=h
0

∑
j=−∞

a(−)j ujvj.

Here DL is a standard centered difference operator away from the boundary. Near the
boundary j = 0, DL is biased toward the left and only uses function values with j≤ 0.
The weights in the norm a(−)j > 0 are equal to one away from the boundary, and are
modified to satisfy (4.1) near the boundary. For details on how to derive operators and
scalar products, see [11,15], where example operators of orders up to 4 at the boundaries
and up to 8 away from the boundaries are given. The scalar product for j≥0 is defined
similarly as

(u,v)h+=h
∞

∑
j=0

a(+)
j ujvj,

and a finite difference operator on j≥ 0, biased to the right at j= 0, DR, can be made to
satisfy

(u,DRv)h+=−(DRu,v)h+−u0v0

for grid functions, uj and vj defined on j≥ 0. The corresponding discrete norms are
denoted by ||u||2h−=(u,u)h− and ||u||2h+=(u,u)h+.

The semi-discrete approximation of (3.11) and (3.10) is obtained by replacing all spa-
tial derivatives by SBP difference operators. In the SBP framework, boundary conditions
can be imposed by projection [11], by a penalty term (so called SAT boundary condi-
tion) [3], or by use of a ghost point [10]. Here, we use projections to impose the inter-
face conditions at j= 0. The projection method introduces a projection operator, P, that
projects a general grid function onto the set of grid functions that satisfy the interface con-
ditions. This operator is applied after each time step. In a semi-discrete approximation,
this amounts to solving the equations

d
dt

q(s)
j +Ps AsDLq(s)

j =PsBsD2
Lq(s)

j j≤0 (4.2)

d
dt

q( f )
j +Pf A f DRq( f )

j =Pf B f D2
Rq( f )

j j≥0, (4.3)

where Ps and Pf are the projections on the solid and fluid variables respectively.
Here we have approximated the second derivatives by two applications of the first

difference operator. The advantage of this approach is that it is easy to generalize to
the case of variable coefficients, e.g., when the viscosity depends on the temperature.
The repeated first difference approximation does not damp the highest modes, but the
discretization is still stable. Indeed, our results below show stability, and even bounded-
ness of the solution for all times, in the L2 norm for the linearized discretized problem
(4.2), (4.3) coupled by an interface condition. The proof of stability only holds for the
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linear problem, the theory is less complete for non-linear PDEs. However, numerical ex-
periments with the non-linear Euler and Navier-Stokes equations of gas dynamics have
shown that repeated application of DL for second derivatives in the Navier-Stokes vis-
cosity can supress non-linear instabilities, see, e.g., [13]. If damping of the highest modes
is desired, the narrow stencil summation by parts operator recently developed in [12] can
be used in (4.2) and (4.3) instead.

The discrete form of the interface conditions is

u(s)
0 =u( f )

0 (4.4)

σ0− p̂(s)ε αT(s)
0 − p̂(s)ρ ρ

(s)
0 =− T̂( f )R

M
ρ
( f )
0 −

ρ̂( f )R
M

T( f )
0 +

4µ

3
DRu( f )

0 (4.5)

T(s)
0 =T( f )

0 (4.6)

κeDLT(s)
0 =κDRT( f )

0 . (4.7)

The following theorem states that if the projections are applied in the symmetric vari-
ables, an energy estimate follows.

Theorem 4.1. Define Ps=YsQsY−1
s and Pf =Yf Q f Y−1

f , where Qs and Q f are projections to the

interface condition acting on the symmetric variables, i.e., grid functions (Qsw(s),Q f w( f )) that
satisfy the discrete interface conditions (4.4)–(4.7), and minimize ||w(s)−Qsw(s)||2h−+||w( f )−
Q f w( f )||2h+. Then the energy estimate for the symmetric variables in the discrete norm,

d
dt

(
||w(s)(t)||2h−+||w( f )(t)||2h+

)
≤0

holds.

Proof: The first step is to transform (4.2) and (4.3) to symmetric form by left multiplica-
tion of (3.13) and (3.14). Symmetrization of the elasticity equations (j≤0) gives

d
dt

w(s)
j +Y−1

s PsYsSsDLw(s)
j =Y−1

s PsYsBsD2
Lw(s)

j ,

and hence
d
dt

w(s)
j +QsSsDLw(s)

j =QsBsD2
Lw(s)

j . (4.8)

Multiplication of (4.8) by Qs and the projection property Q2
s =Qs show that

d
dt

(
w(s)

j −Qsw
(s)
j

)
=0⇒w(s)

j (t)=Qsw
(s)
j (t). (4.9)
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if the initial data satisfies the interface conditions. The estimate for j≤0 becomes,

1
2

d
dt
||w(s)(t)||2h−=

(
w(s),w(s)

t

)
h−

=−
(

QsSsDLw(s),w(s)
)

h−

+
(

QsBsD2
Lw(s),w(s)

)
h−

=−
(

SsDLw(s),w(s)
)

h−
+
(

BsD2
Lw(s),w(s)

)
h−

−
(
(Qs− I)SsDLw(s),w(s)

)
h−

+
(
(Qs− I)BsD2

Lw(s),w(s)
)

h−
(4.10)

where the last two terms are zero because of (4.9), and the orthogonality of the projection.
The SBP property (4.1) gives

1
2

d
dt
||w(s)(t)||2h−=−

(
SsDLw(s),w(s)

)
h−

+
(

BsD2
Lw(s),w(s)

)
h−

=−1
2
(w(s)

0 )TSsw
(s)
0 +(w(s))T

0 BsDLw(s)
0 −

(
DLw(s),BsDLw(s)

)
h−

(4.11)

in the same way as partial integration gives the estimate for the continuous problem. The
estimate for the fluid equations on j≥0 is analogouos and is not give here. The resulting
discrete interface condition,

−1
2
(w(s)

0 )TSsw
(s)
0 +

1
2
(w( f )

0 )TS f w( f )
0 +(w(s)

0 )TBsDLw(s)
0 −(w

( f )
0 )TB f DRw( f )

0 =0, (4.12)

eliminates all interface contributions to the time derivative of the norm. Written out in
original variables, (4.12) becomes identical to (3.20) evaluated at j=0 and with derivatives
in X replaced by DL or DR for solid or fluid variables respectively. It is straightforward
to verify that (4.4)–(4.7) satisfy (4.12). Therefore, the interface terms do not give any
contribution to the time derivative of the norm, and the estimate follows.

In each time step (or Runge-Kutta stage) in the fully discretized computation, the so-
lution is first updated at all grid points, including the interface point j=0, and then this
updated solution is projected to the interface conditions. The projection for the temper-
atures means solving the two equations (4.6), (4.7) directly for the two temperatures T(s)

0

and T( f )
0 . There is always a unique solution, because the coefficients of the j=0 element

in the completely backward operator DL and the completely forward operator DR have
opposite signs. Let us denote the variables after the application of the SBP discretiza-
tion but before imposing the interface condition by w̃. Denote the difference operator
approximating du/dx(x0) by

DRu0=
1
h

r

∑
k=0

βkuk

where r+1 is the stencil width.
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Theorem 4.2. Assume that the interface temperature has been determined by (4.6) and (4.7).
Furthermore, assume that p(s)=0, i.e., that the solid is purely elastic. Then the interface conditions
(4.4) and (4.5) imposed as a projection lead to

u(s)
0 = ũ(s)

0 −l1/(a(+)
0 m0) σ0= σ̃0−(2µe+λe)l2/a(+)

0 (4.13)

for the variables in the solid. Similarly, the projection gives the update

u( f )
0 = ũ( f )

0 +l1/(a(+)
0 ρ̂( f ))+l2

4µ

3ρ̂( f )

β0

a(+)
0 h

u( f )
j = ũ( f )

j +l2
4µ

3ρ̂( f )

β0

a(+)
j h

, j=1,.. .,r (4.14)

for the fluid velocity, and
ρ
( f )
0 = ρ̃

( f )
0 − ρ̂( f )l2/a(+)

0 (4.15)

for the fluid density. The quantities l1 and l2 are two Lagrangian multipliers obtained as the
solution of the linear system of equations(

1
m0

+
1

ρ̂( f )

)
1

a(+)
0

l1+
4µ

3a(+)
0 ρ̂( f )

β0

h
l2=ũ(s)

0 −ũ( f )
0 (4.16)

4µ

3ρ̂( f )

β0

a(+)
0 h

l1+

(
2µe+λe+

RT̂( f )ρ̂( f )

M
+

16µ2

9ρ̂( f )h2

r

∑
k=0

a(+)
0

a(+)
k

β2
k

)
l2

a(+)
0

=

σ̃0+
RT̂( f )

M
ρ̃
( f )
0 +

Rρ̂( f )

M
T0−

4µ

3
DRũ( f )

0 . (4.17)

Proof: The projections are defined as functions w(s) and w( f ) that minimize

||w̃(s)−w(s)||2h−+||w̃( f )−w( f )||2h+
and satisfy the interface conditions (4.4) and (4.5). The interface conditions written out as
constraints, for the case p(s)=0, are

u(s)
0 −u( f )

0 =0 (4.18)

σ0+
T̂( f )R

M
ρ
( f )
0 +

ρ̂( f )R
M

T( f )
0 −

4µ

3
DRu( f )

0 =0 (4.19)

The solution of the constrained minimization problem is a stationary point of the La-
grangian function

1
2
||w̃(s)−w(s)||2h−+

1
2
||w̃( f )−w( f )||2h++

l1
(

u(s)
0 −u( f )

0

)
+

l2

(
σ0+

RT̂( f )

M
ρ
( f )
0 +

ρ̂( f )R
M

T0−
4µ

3
DRu( f )

0

)
. (4.20)
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This function is formed as the sum of the quantity to be minimized, and the constraints
(4.18) and (4.19), multiplied by the Lagrangian multipliers l1 and l2 respectively. The
stationary point is found as the zero of the gradient of (4.20), where the independent
variables are u(s)

j ,σj for j≤0, u( f )
j ,ρ( f )

j for j≥0, l1, and l2. The temperature is assumed to
be already determined by (4.6) and (4.7) and is therefore not considered to be an indepen-
dent variable. Writing out the norm expressions, using symmetric variables and leaving
out the temperature, lead to the explicit expression

L= 1
2

0

∑
j=−∞

a(−)j

(√
m0(ũ

(s)
j −u(s)

j )
)2

+
1
2

∞

∑
j=0

a(+)
j

(√
ρ̂( f )(ũ( f )

j −u( f )
j )

)2

+
1
2

0

∑
j=−∞

a(−)j

(
1

2µe+λe
(σ̃

(s)
j −σ

(s)
j )

)2

+
1
2

∞

∑
j=0

a(+)
j

(√
RT̂( f )

Mρ̂( f )
(ρ̃

( f )
j −ρ

( f )
j )

)2

+l1
(

u(s)
0 −u( f )

0

)
+l2

(
σ0+

RT̂( f )

M
ρ
( f )
0 +

ρ̂( f )R
M

T0−
4µ

3
DRu( f )

0

)
(4.21)

for (4.20). The only variables that need to be modified are the ones that appear in the
interface conditions (4.18) or (4.19). For example, differentiation with respect to u(s)

−2 gives

∂L
∂u(s)
−2

=−a(−)−2 m0

(
ũ(s)
−2−u(s)

−2

)

which is zero for u(s)
−2 = ũ(s)

−2. It is straightforward to see that the same is true for any

variable u(s)
j , σj, u( f )

j , or ρ
( f )
j appearing in neither (4.18) nor (4.19). The zero gradient

condition

∂L
∂u(s)

0

=−m0a(−)0

(
ũ(s)

0 −u(s)
0

)
+l1=0 (4.22)

∂L
∂u( f )

0

=−ρ̂( f )a(+)
0

(
ũ( f )

0 −u( f )
0

)
−l1−l2

4µβ0

3h
=0 (4.23)

∂L
∂u( f )

j

=−ρ̂( f )a(+)
j

(
ũ( f )

j −u( f )
j

)
−l2

4µβ j

3h
=0 j=1,.. .,r (4.24)

∂L
∂σ0

=
a(−)0

2µe+λe
(σ̃0−σ0)+l2=0 (4.25)

∂L
∂ρ

( f )
0

= a(−)0
RT̂( f )

Mρ̂( f )

(
ρ̃
( f )
0 −ρ

( f )
0

)
+l2

RT̂( f )

M
=0

(4.26)
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gives (4.13)–(4.15). Note that a(−)0 = a(+)
0 , since the same summation by parts norm is

used on the two domains. The interface conditions (4.18) and (4.19) are obtained from
∂L/∂l1 =0 and ∂L/∂l2 =0 respectively. Finally, insertion of (4.13)–(4.15) into these inter-
face conditions gives (4.16) and (4.17).

Note that by combining the velocities from (4.13) and (4.14), the common interface veloc-
ity can be written

ρ̂( f )ũ( f )
0 +m0ũ(s)

0

ρ̂( f )+m0
+l2

4µ

3
1

ρ̂( f )+m0

β0

a(+)
0 h

. (4.27)

In the inviscid case, µ = 0, (4.27) is the same mass weighted average for the boundary
velocity that was independently derived from a characteristic boundary condition and
proved to be stable for explicit time discretizations in [7]. Similarly, by using the notation

σ̃
( f )
0 =−Rρ̂( f )

M
T0−

RT̂( f )

M
ρ̃
( f )
0 +

4µ

3
DRũ( f )

0

and

p̂( f )=
RT̂( f )ρ̂( f )

M
, (4.28)

the common interface stress can be written

p̂( f )σ̃
(s)
0 +(2µe+λe)σ̃

( f )
0

p̂( f )+2µe+λe
+(2µe+λe)

4µ

3

(
l1β0

a(+)
0 ρ̂( f )h

+l2
4µ

3ρ̂( f )h2

r

∑
k=0

1

a(+)
k

β2
k

)

which again, in the inviscid case, is the same weighted average stress that was proved
stable for explict time discretizations in [7].

4.2 Non-linear coupled problem

The straightforward generalization of (4.2) and (4.3) to the complete non-linear equations
(3.1) and (3.2) is

d
dt


u(s)

σ

T(s)

x


j

=



1
m0

DL

(
σj−p(s)j

)
2µe+λe

DLxj
DLu(s)

j
σj−p(s)j

m0
DLu(s)

j +DL

(
κe

DLxj
DLT(s)

j

)
u(s)

j

 (4.29)
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on j≤0, and

d
dt

 ρ( f )

ρ( f )u( f )

e


j

+


DR

(
ρ
( f )
j u( f )

j −u( f )
0 ρ

( f )
j

)
DR

(
ρ
( f )
j (u( f )

j )2+p( f )
j −u( f )

0 ρ
( f )
j u( f )

j

)
− 4

3 µD2
Ru( f )

j

DR

(
u( f )

j (ej+p( f )
j )−u( f )

0 ej

)
− 4

3 µDR

(
u( f )

j DRu( f )
j

)
−DR

(
κDRT( f )

j

)
=0. (4.30)

on j≥ 0. The grid derivative xX was linearized to one in the analysis in Sec. 4.1, but it
should be present in the full equations. Therefore, the temperature interface conditions
also takes into account that the gradient is defined in the Eulerian frame, and become

T(s)
0 =T( f )

0 κe
1

DLx0
DLT(s)

0 =κDRT( f )
0 , (4.31)

which determine the two unknowns T(s)
0 and T( f )

0 . The projection conditions (4.13)–(4.14)
are kept without changes. There are several possibilities for the linearization density ρ̂( f ).
In Section 5 we have used the value one point into the fluid, i.e., ρ̂( f )=ρ

( f )
1 . Similarly, the

linearization pressure needed below is set to p̂( f ) = p( f )
1 in the numerical experiments.

(4.15) is replaced by the similar update for the pressure,

p( f )
0 = p̃( f )

0 − p̂( f )l2/a(+)
0 , (4.32)

where

p̃( f )
0 =

Rρ̃
( f )
0 T0

M
.

The Lagrangian multipliers l1 and l2 are, in the non-linear case, computed as the solution
of the system (

1
m0

+
1

ρ̂( f )

)
l1

a(+)
0

+
4µ

3ρ̂( f )

β0

a(+)
0 h

l2=ũ(s)
0 −ũ( f )

0 (4.33)

4µ

3ρ̂( f )

β0

a(+)
0 h

l1+

(
2µe+λe+ p̂( f )+

16µ2

9ρ̂( f )h2

r

∑
k=0

a(+)
0

a(+)
k

β2
k

)
l2

a(+)
0

=σ̃0+ p̃( f )
0

− 4µ

3
DRũ( f )

0 , (4.34)

which is the same as (4.16) and (4.17), but with the second equation written in terms of
the pressure. To summarize, the interface conditions for the non-linear coupled problem



18

hh
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δ

Figure 3: Grid points with boundary between points 1 and 2.

is (4.31), (4.13), (4.14), and (4.32), where the parameters l1 and l2 are determined by (4.33)
and (4.34). Finally, after the fluid interface pressure and temperature are determined, the
interface fluid density ρ

( f )
0 , is adjusted to satisfy the perfect gas law.

Note that (4.32) is equivalent to the stress continuity condition

σ0=−p( f )
0 +

4µ

3
DRu( f )

0 (4.35)

for any choice of linearization states ρ̂( f ) and p̂( f ). This is seen by using (4.14) and the
stress update σ0 = σ̃0−(2µe+λe)l2/a(+)

0 to eliminate ũ( f )
j and σ̃0 from (4.34). In practical

computations, we use (4.35) instead of (4.32) to determine p( f )
0 .

The interface is always located at j=0, but because the grid moves in both domains, a
fixed boundary for the fluid in the Eulerian domain becomes a moving boundary in the
frame of the grid, and has to be treated specially.

4.3 Wall boundary

In some of the numerical examples below, the grids are moving while the boundary of the
computational domain is fixed. In this case the boundary condition at the fixed domain
boundary is treated as a moving embedded boundary in the frame of the moving grid.
The situation is outlined in Fig. 3. The points x2, x3, . . ., are interior to the computational
domain, x1 is the ghost point. The boundary is located at xΓ(t) and it is fixed, but when
viewed in the moving grid frame, the location of the boundary obeys the equation

dxΓ

dt
=−s (4.36)

where s is the velocity of the grid. Solving (4.36) together with the other equations de-
termines the boundary location at each time level. In Fig. 3, the ghost point x1 is the first
point outside the domain. The distance between the ghost point and the boundary is
denoted δh, where h is the grid spacing. The Dirichlet boundary condition

u(xΓ)= g,
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0 1 2 3 4

Figure 4: Boundary has moved backwards, 1 becomes interior point and 0 becomes the new ghost point.

Lw

F S F

x(1,t) x(2,t)

Figure 5: Computational domain for the numerical experiments.

with given data g, is imposed by the second order extrapolation formula

(1−δ)(2−δ)

2
u1+δ(2−δ)u2+

δ(1−δ)

2
u3+η(u1−2u2+u3)= g. (4.37)

η is an artificial parameter that is used to prevent division by zero, see [8]. The value of
the solution at the ghost point, x1, is found by solving (4.37) for u1. A similar formula for
Neumann boundary conditions is easily derived, see [9]. Equation (4.37) is straightfor-
ward to formally generalize to fourth order by increasing the extrapolation order, and the
order of difference in the artificial term. This fourth order generalization worked well in
the numerical experiments below, a proof of stability is outside the scope of this article.

If the boundary moves to the left in Fig. 3, it is possible that a ghost point becomes an
interior point, and a new ghost point will have to be added. In Fig. 4, x1 is the ghost point
at time tn that becomes an interior point at tn+1, and x0 becomes the new ghost point. To
handle this, (4.37) is used to give values to both u1 and u0 at tn+1 (shifted one point left
for u0). δ will then be negative for x1, but the coefficient in front of the ghost point, will
be bounded away from zero, making it a well-defined boundary condition.

5 Numerical examples

The equations solved in this section are (4.29) and (4.30), coupled by the interface condi-
tions described in Section 4.2. The time integration is explicit by the fourth-order accu-
rate Runge-Kutta method. The time step is uniform in the domain, and determined as
the smallest of the time steps required by the CFL constraints from the convection in the
fluid, the diffusion in the fluid, the elastic wave speed in the solid, and the heat diffusion
in the solid. The CFL number is 0.8. The computational domain is w< x< L, in the Eu-
lerian coordinate. The domain of the fluid equations is X< 1 and 2<X, the domain for
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the solid equations is 1<X< 2. The grid mapping for the fluid is x=X−1+x(1,t) and
x=X−2+x(2,t) for the left and right part of the fluid respectively. The lower and upper
boundaries x=w and x= L are embedded boundaries, as described in Section 4.3. The
grid sizes in the computations below are always such that the two fluid/solid interfaces
at X=1 and X=2 coincide with grid points. Figure 5 outlines the computational domain.

5.1 Test with the method of manufactured solutions

The implementation and formal accuracy is first verified by the method of manufactured
solutions. Forcing functions on the right hand side of the equations are determined to
give the exact solutions

ρ( f )=1+
1
2

sin(ωX)cos(t) (5.1)

u( f )=sin(t)cos(ωX+φ) (5.2)

T( f )=10+sin(3t)cos(2X) (5.3)

in the fluid, and

u(s)=dx(X,t)/dt (5.4)

σ=sin(t2)sin(ωX) (5.5)

T(s)=5+cos(t)sin(3X) (5.6)

x(X,t)=X+
t2

2
(1+X+εsin(2πX)) (5.7)

in the solid. The computational domain is 1/4<x<4 with the solid in 1<X<2. The exact
solution is enforced by Dirichlet boundary conditions at the embedded boundaries at
x=1/4 and x=4. The interface conditions are enforced at X=1 and X=2. The parameter
values ε=0.2, ω=2, φ=0.47 are used. The material parameters are set to, 2µe+λe =10,
µ=0.01, κ=0.03, κe =0.02, α=1, R/M=1, m0 =2, γ=1.4. At the fluid/solid interfaces,
the manufactured solutions are not continuous. The jump is prescribed as a forcing in
the interface conditions, e.g., u( f )

0 −u(s)
0 =gu(t), where gu is the jump in the velocity at the

interface. These forcings are straightforward to introduce into the interface conditions.
Figure 6 shows the errors in L2-norm in the fluid and solid parts of the domain at time
0.45 for a sequence of computations with increasing grid refinements. The coarsest grid
has h = 0.05, which corresponds to 75 grid points in the domain. The formal orders of
the summation by parts difference operators are given as two numbers, x/y, for interior
accuracy x and boundary accuracy y. The higher order methods 6/3 and 8/4 are clearly
seen to give more accurate results than 2/1 and 4/2. The formal order in the boundary
conditions at the embedded boundaries x = w and x = L are two for the 2/1 and 4/2
methods, and four for the 6/3 and 8/4. The explanation for the small difference in results
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Figure 6: Errors in solution at time 0.45 in L2-norm for the fluid domain (left) and solid domain (right).
Summation by parts finite difference approximation of formal orders interior/boundary, 2/1 (green), 4/2 (blue),
6/3 (red), and 8/4 (black).

with 6/3 and 8/4 could be that the errors from the embedded boundaries dominate over
other errors on fine grids.

In hyperbolic problems with exact Dirichlet inflow data, there is a gain of one order
in the numerical boundary conditions, so that the 8/4 method should converge with 5th
order, the 6/3 with 4th order, etc. However at the fluid/solid interface the situation is
not necessarily the same, because the imposed data at inflow is the value of the outflow
variable of the neighboring domain. Therefore any error in the outflow variable from one
domain, is transmitted to the inflow boundary on the other domain. Furthermore, in the
computations here there are also diffusion terms present in the equations. Assuming lo-
cal errors of order p at the boundary and/or interfaces for the 2p/p method, the L2 norm
error would have convergence exponent of p+1/2. The observed convergence rates pre-
sented in Table 1 are in reasonable agreement with this, only the 6/3 method converges
somewhat faster than expected. There is reasonable confidence that the implementation
is correct.
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Fluid Solid
Order 8/4 6/3 4/2 2/1 8/4 6/3 4/2 2/1
Conv. exp. 4.9 4.7 2.4 1.6 4.3 4.1 2.6 1.8

Table 1: Observed convergence exponents in L2-norm between the two finest grids.

Fig. 7 shows the error vs. the CPU time for five different grid sizes. The error is
computed as the maximum of the L2 errors over the two domains. Figure 7 clearly shows
that the higher order schemes are more efficient than the lower order schemes. The gain
in CPU time with the higher order schemes becomes larger as the desired error level is
made smaller.

5.2 Elastic rod in compressible fluid

Consider a test with an elastic rod in a compressible fluid. There is a gravitational force
acting in the negative x-direction. The domain is the same as outlined in Fig. 5, with a
solid wall boundary at w = 0, where adiabatic boundary conditions are imposed. The
upper boundary of the fluid, L = 6, is treated as an open boundary with the artificial
boundary conditions described in [5]. Initially the rod at rest is released and falls by its
own weight towards the lower boundary x=0. The fluid to the left of the rod is heated
and compressed as it moves left. Eventually the rod bounces back right and a new cycle of
left/right movement begins. Figures 8a–8d display the temperature during the left/right
cycle. Red indicates the elasticity equations and blue the Navier-Stokes equations. The
material parameters for the elastic material are

κe =0.5, 2µe+λe =105, m0=2700, α=1

and the pressure is identically zero, i.e., the material is purely elastic. The gravitational
force is set as f (s)=−10 (see (2.1)). The material parameters for the fluid are

µ=0.5 ,κ=0.7, γ=1.4, R/M=8.3145/0.029

These values were selected to obtain visible effects of many aspects of the equations,
over a reasonable time. They do not necessarily represent physically reasonable mate-
rials. Figure 8a shows how the gas to the left is heated and compressed during the left
movement. The leftmost point is reached in Fig. 8b. During the right movement in Fig. 8c,
the gas is cooled by expansion. Back at the original position, shown in Fig. 8d, a minor
temperature peak remains because the solid is not cooled as quickly as the fluid. Figure
9 shows the velocity for the same computation at the same times as the temperatures
in Fig. 8. The movement of the object is illustrated by inspecting the magnitude and
direction of the velocity. Fig. 10 gives another illustration of the bouncing character of
the solution, by displaying the positions of the two interfaces as function of time. The
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Figure 8: Temperature of the falling rod problem at four different times using the 4/2 method and h=0.0125.
Blue and red represent fluid and solid quantities respectively.
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Figure 9: Velocity of the falling rod problem at four different times using the 4/2 method and h=0.0125. Blue
and red represent fluid and solid quantities respectively.
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function of time (right). The 4/2 method with h=0.0125 was used.

figure shows how the dissipation mechanisms acts to reduce the oscillation amplitude
with time. The right subfigure shows the length of the object, computed as the difference
between the two positions in the left subfigure. The computations in Figs. 8–10 were all
made using the 4/2 method on a grid with h=0.0125.

Finally in Fig. 11 we show a closeup of the velocity near the lower fluid/solid interface
at time 0.908 computed using grids of different resolutions. Results are presented for
each of the three methods of formal accuracy 2, 4, and 6 (away from the boundaries).
The reference solution, shown in black, was obtained with an extreme resolution, and
verified to not change visibly in the plot under a factor two of grid refinement. The
results with a coarser resolution of h=0.05, shown in cyan/magenta (for fluid/solid), are
compared with results obtained with the finer resolution h = 0.025, shown in blue/red
(for fluid/solid). From Fig. 11 we infer that the higher order methods show considerably
faster grid convergence than the second order method. The 6/3 method shows somewhat
better convergence than the 4/2 method, but as shown in Fig. 6, the difference would be
more pronounced if the grids were refined further.

6 Conclusions

We have presented stable interface conditions for fluid/structure coupling in the context
of high order accurate finite difference schemes. The method has been developed in a
Lagrangian formulation for the equations of elasticity. The fluid solution is computed
using the Navier-Stokes equations on a moving grid. The interface conditions, which
includes viscous effects and heat conduction, is proved to be linearly stable for semi-
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Figure 11: Grid convergence study. Close up view of the velocity at time 0.908 for h = 0.05 (fluid-cyan,
solid-magenta), h=0.025 (fluid-blue, solid-red). Reference solution shown in black.

discrete approximations through norm estimates. Numerical experiments have shown
the method to be stable with explicit time stepping up to the CFL limit given by the
methods in the two subdomains. The interface conditions do not require any additional
time step reduction.

We are currently generalizing the interface conditions to two and three space dimen-
sions. If symmetrizers can be found for the multidimensional equations, the norm es-
timate technique presented here generalizes straightforwardly. The linearized three di-
mensional Navier-Stokes equations have known symmetrizers, see [1]. Symmetrizers for
the three dimensional equations of linear elasticity are also well known. However, we
have found that the linearization of the system (2.1) cannot be symmetrized as a result
of the the term Wσ+σWT associated with the Jaumann objective rate. We are therefore
investigating properties of alternative models for the objective rate. The results of these
multi dimensional investigations will be reported in a forthcoming paper.

In this work we have only considered smoothly varying flow variables. However,
there are many applications of fluid structure interaction where high-speed flows and
shock waves are of interest. Such flows can be computed by hybridizing the stable and
accurate methods developed here with a more robust but less accurate shock capturing
scheme. This is a well-known technique for computing compressible flows with both
shock waves and small scale oscillatory behavior, see, e.g., [14].
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