
Upwind schemes for the wave equation in second-order form

Jeffrey W. Banksa,1,∗, William D. Henshawa,1

aCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

Abstract

We develop new high-order accurate upwind schemes for the wave equation in second-order form. These
schemes are developed directly for the equations in second-order form, as opposed to transforming the
equations to a first-order hyperbolic system. The schemes are based on the solution to a local Riemann-type
problem that uses d’Alembert’s exact solution. We construct conservative finite difference approximations,
although finite volume approximations are also possible. High-order accuracy is obtained using a space-time
procedure which requires only two discrete time levels. The advantages of our approach include efficiency
in both memory and speed together with accuracy and robustness. The stability and accuracy of the
approximations in one and two space dimensions are studied through normal-mode analysis. The form of
the dissipation and dispersion introduced by the schemes is elucidated from the modified equations. Upwind
schemes are implemented and verified in one dimension for approximations up to sixth-order accuracy, and
in two dimensions for approximations up to fourth-order accuracy. Numerical computations demonstrate
the attractive properties of the approach for solutions with varying degrees of smoothness.

Keywords: second-order wave equations, upwind discretization, Godunov methods, high-order
accurate, finite-difference, finite-volume
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1. Introduction

Upwind methods for first-order systems of hyperbolic of partial differential equations (PDEs) have made
a significant impact on computational science. They have facilitated the simulation of a wide variety of
physical problems (e.g. fluid dynamics, solid mechanics, electromagnetics, plasma physics, as well as other
wave propagation phenomena), using a wide variety of numerical methods (e.g. finite volume, finite difference,
finite element, spectral element and discontinuous Galerkin). Upwind methods generally incorporate some
aspects of the characteristic wave-structure of the hyperbolic system and thus include some of the attractive
features of a method based on characteristics. An alternative approach to upwinding is based on the use of
centered approximations and the explicit addition of artificial dissipation (artificial viscosity) or filters. This
approach usually requires some tuning of the coefficients of the artificial dissipation and for difficult problems
may require a matrix form of the dissipation that takes into account the characteristic structure [1, 2].
Therefore, from one point of view, the success of upwind schemes is attributable to their ability to naturally
add the appropriate amount and form of dissipation to the approximation by using the characteristic structure
of the equations.

Upwinding was explicitly introduced by Godunov in his 1959 landmark paper [3]. In that work, a
first-order accurate upwind method was devised for systems of hyperbolic partial differential equations in
first-order form, including a treatment of the inviscid Euler equations. The key idea was to incorporate an
exact solution of the Riemann problem into the numerical technique2. Also recognized in that work was the
inability for linear schemes to both maintain monotone profiles and at the same time achieve higher than
first order accuracy for smooth flows (Godunov’s theorem). Since the pioneering work of Godunov, there
have been many extensions to the upwind approach including, for example, the flux-corrected transport
method [5], the piecewise-parabolic-method (PPM) [6], essentially-non-oscillatory (ENO) schemes [7, 8],
discontinuous Galerkin (DG) approximations [9], and the weighted-essentially-non-oscillatory (WENO) class
of methods [10].

In this paper, we demonstrate how to construct high-order accurate upwind schemes for wave equations
in second-order form without transforming the equations to a first-order system. This is, to our knowledge,
the first systematic attempt to develop such schemes. The approach usually used to incorporate upwind
discretizations into hyperbolic PDEs in second-order form is to transform the equations into a first-order
system of equations. For example, the equations of linear elasticity, which take the form of a system
of second-order hyperbolic PDEs for the displacements, can be transformed into a system of first-order
hyperbolic PDEs for velocity and stress [11]. This is, of course, a valid and useful approach but there are a
variety of reasons to consider solving the second-order PDEs directly.

One advantage of directly solving the equations in second-order form is that there are often significantly
fewer dependent variables, and thus the schemes can be more efficient. For example, for Maxwell’s equations
of electromagnetism, the number of dependent variables can be reduced by a factor of two [12]. For the
equations of linear elasticity in three dimensions, the second-order form has just three dependent variables
(for the displacement) compared to between nine and fifteen for the first-order system (depending on which
components of the displacement, velocity and stress are retained). Another advantage of solving the second-
order form of the equations is the removal of issues related to the equivalence, or lack thereof, between
the first- and second-order systems. In general, first-order systems derived from second-order equations

2This philosophy is embodied by Greengard’s axiom; “It never hurts to start by writing down the exact solution
to the problem” [4].
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can admit a wider class of solutions and thus constraints must be imposed to ensure that solutions to
the first-order system are also solutions to the second-order equations (e.g. the Saint-Venant compatibility
conditions for elasticity). For some systems, such as for the equations of general relativity, the number of
constraint equations can become inordinately large which significantly complicates numerical approximation.
In addition, many systems occur naturally as PDEs in second-order form and from a philosophical perspective
there should be no particular reason why upwind style discretizations can’t be derived in the native form.
Finally we note that when solving problems in multiple space dimensions, it is often the case that a larger
time-step can be taken for the second-order form of the equations compared to the first-order form [11].

An outline of the remainder of the manuscript follows. We begin, in Section 2 by developing a first-order
accurate upwind scheme for the second-order wave equation that uses the d’Alembert solution to exactly
advance a piecewise smooth representation of the solution. This geometric approach is analogous to Go-
dunov’s construction for advancing a piecewise constant representation of the solution to the first-order wave
equation. In Section 3 we generalize this preliminary approach (which relies on a global representation of the
exact solution) to a method that only requires the solution to local problems at cell faces. These localized
problems are a generalization of the Riemann problem for the first-order system. This localized form is the
key ingredient needed for extending the scheme to multiple space dimensions, high-order accuracy, variable
coefficients and systems of equations (we leave variable coefficients and systems to future work). From the
localized form we then derive high-order accurate space-time schemes using the Cauchy-Kowalewski proce-
dure. We choose to develop conservative finite-difference approximations, although finite volume schemes
are also possible. Schemes with orders of accuracy one, two, four and six are developed and analyzed using
normal mode theory and modified equations. A second-order accurate high-resolution scheme (based on the
use of nonlinear limiters) is also developed. The ideas are then generalized to two space dimensions in Sec-
tion 4 where first-order accurate, second-order accurate, high-resolution and fourth-order accurate schemes
are constructed and analyzed. The relationships between the modified equations, the solution error and the
accuracy requirements in terms of points per wavelength is discussed in Section 5. Numerical examples are
presented in Section 6. Smooth solutions in one space dimension (traveling sine wave) and two space dimen-
sions (surface waves) are used to verify that the max-norm errors in the schemes converge at the expected
rates. A top-hat problem, in both one and two space dimensions, is used to demonstrate the robust and
high-quality approximations that result from the schemes when they are applied to difficult problems with
discontinuous initial conditions. Section 7 provides concluding remarks while the stencil coefficients for the
one-dimensional fourth- and sixth-order accurate schemes are given in appendices.

2. Construction of an upwind scheme for the second-order wave equation in one di-
mension

Godunov’s method and its extensions are well established for solving first-order systems of hyperbolic
equations. These upwind-type methods use solutions to a set of Riemann problems defined at cell faces of
a computational grid to construct a discrete approximation to the solution of a hyperbolic PDE. For linear
problems, the Riemann solution is defined in terms of the characteristics of the hyperbolic operator. By
using the characteristic variables, these methods naturally incorporate upwinding by tracing the influence
of each characteristic variable along its respective space-time path.

It is useful to begin the discussion by reviewing a geometrically motivated derivation of a first-order
accurate Godunov scheme for the initial value problem for the scalar first-order wave equation (FOWE),

∂q

∂t
+ c

∂q

∂x
= 0, −∞ < x < ∞, (1)

q(x, 0) = q0(x).

Here q = q(x, t) and for simplicity we assume that c is constant with c > 0. Introduce a uniform grid with
cell centers xi = ihx and cell faces xi+ 1

2
= (i + 1

2 )hx, where hx > 0 is the grid spacing and i = 0,±1± 2, . . ..
Let qn

i ≈ q(xi, t
n), be a grid function representing the solution at time tn = n∆t, where ∆t is the time-step.

At a given time tn we assume a known discrete solution at cell centers, qn
i and form the piecewise constant

function

Q0(x) = qn
i , for x ∈ (xi− 1

2
, xi+ 1

2
).
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Figure 1: This figure illustrates the geometric construction of the first-order Godunov scheme for the first-order wave
equation qt + cqx = 0. The piecewise constant function that equals to qn

i on cell (xi− 1
2
, xi+ 1

2
) is exactly advanced to

to time t + ∆t. This is used to define discrete cell centered values, qn+1
i , by integrating the solution over the cell.

The resulting scheme is the standard first-order accurate upwind scheme.

For τ = t − tn, the exact solution to (1) with initial conditions Q0(x) can be found using the method of
characteristics and is given by

Q(x, τ) = qn
i , for x− cτ ∈ (xi− 1

2
, xi+ 1

2
).

The discrete cell-centered solution at the next time-step tn+1 is defined as the cell average of Q(x,∆t),

qn+1
i =

1
hx

∫ x
i+ 1

2

x
i− 1

2

Q(x,∆t)dx.

For time steps satisfying ∆t ≤ hx/c this construction is illustrated in Figure 1 and gives the standard
first-order accurate upwind scheme,

qn+1
i =

1
hx

[
c∆tqn

i−1 + (hx − c∆t)qn
i

]
,

= qn
i −

c∆t

hx
(qn

i − qn
i−1). (2)

Remark. Stability analysis reveals that the upwind scheme (2) is stable under the constraint ∆t ≤ hx/c.
We now pursue a similarly intuitive construction applied to the one-dimensional second-order wave

equation. Consider the initial value problem for the second-order wave equation (SOWE) in one-dimension,

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x < ∞,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v(x, 0) = v0(x).

In analogy with elasticity, we call u = u(x, t) the displacement and v = ∂u/∂t the velocity. An upwind
method to solve the SOWE can be constructed as follows. Let un

i and vn
i , denote grid functions that are

approximations to u(xi, t
n) and v(xi, t

n), respectively. Define a piecewise smooth representation of the
discrete solution at time tn (as shown in Figure 2) by

U0(x) = un
i +

x− xi

hx
(un

i+1 − un
i ), for x ∈ (xi, xi+1), (3)

V0(x) = vn
i for x ∈ (xi− 1

2
, xi+ 1

2
). (4)

Here U0(x) is the continuous and piecewise linear function that passes through the values (xi, u
n
i ). V0(x) is

the piecewise constant function that passes through the points (xi, v
n
i ) and is constant on cells (xi− 1

2
, xi+ 1

2
).

The exact solution corresponding to the initial conditions U0(x) and V0(x) can be determined from the
well known d’Alembert solution to the second-order wave equation [13]. Letting τ = t− tn, this solution is
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Figure 2: The approximate solution for the second-order wave equation in one-dimension is represented by the discrete
grid functions un

i (displacement) and vn
i (velocity) along with the corresponding piecewise smooth functions shown

in the figure.

given by

U(x, τ) =
1
2

(U0(x + cτ) + U0(x− cτ)) +
1
2c

∫ x+cτ

x−cτ

V0(ξ)dξ, (5)

V (x, τ) =
∂

∂t
U(x, τ) =

c

2
(U ′

0(x + cτ)− U ′
0(x− cτ)) +

1
2

(V0(x + cτ)− V0(x− cτ)) . (6)

As shown in Fig. 3, the form of this solution depends on the representation of U0(x) and V0(x) given in

x

t

xi− 3
2

xi− 1
2

xi+ 1
2

xi+ 3
2

xi

C+C− C+C− C+C−

∆t

Figure 3: The x− t diagram showing the characteristics emanating from the cell centers and cell faces.

(3)-(4) and by the characteristics, C+ : dx/dt = c, and C− : dx/dt = −c, that emanate from the points
xi± 1

2
and xi. To reconstruct the discrete solution at tn+1 we compute cell averaged values of U(x,∆t) and

V (x,∆t),

un+1
i =

1
hx

∫ x
i+ 1

2

x
i− 1

2

U(ξ,∆t)dξ, vn+1
i =

1
hx

∫ x
i+ 1

2

x
i− 1

2

V (ξ,∆t)dξ.

These integrals can be evaluated explicitly using the expressions (5)-(6) and the equations (3)-(4) for U0(x)
and V0. For c∆t/hx < 1

2 this procedure gives the following scheme, denoted by UW1a (for upwind scheme
of order 1, version a),

un+1
i = un

i + ∆t vn
i + (

c2∆t2

2
+

h2
x

8
)D+D−un

i +
c∆t2

4
hxD+D−vn

i , (7)

vn+1
i = vn

i + c2∆t D+D−un
i +

c∆t

2
hxD+D−vn

i . (8)

Here D+ and D− are the usual forward and backward divided difference operators defined by D+wi =
(wi+1 − wi)/hx and D−wi = (wi − wi−1)/hx. For future reference we also note that the undivided forward
and backward difference operators are defined by ∆+wi = wi+1−wi and ∆−wi = wi−wi−1. Equations (7)-(8)
define a first-order accurate upwind scheme for the one-dimensional second-order wave equation. A normal
mode analysis shows that the scheme is stable provided ∆t ≤ Λ1ahx/c where Λ1a = (1 +

√
5)/4 ≈ .809. The

formal accuracy of this scheme can be determined by computing the truncation error. However, we proceed
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further and derive the so-called modified equations from which further properties of the discrete scheme can
be gleaned. The modified equation is a continuous PDE whose solution describes the approximate behavior
of the well resolved components of the discrete equations. The modified equation is derived by substituting
continuous functions U(x, t) and V (x, t) into the discrete equations (7)-(8) by setting un

i = U(xi, t
n) and

vn
i = V (xi, t

n), and expanding all terms in Taylor series about the point (x, t) = (xi, t
n). This leads to the

expansion

∂U

∂t
= V − ∆t

2
∂2U

∂t2
+

c2∆t

2
∂2U

∂x2
− ∆t2

6
∂3U

∂t3
+

c∆thx

4
∂2V

∂x2
+

h2
x

8∆t

∂2U

∂x2
+O((∆t + hx)3), (9)

∂V

∂t
= c2 ∂2U

∂x2
− ∆t

2
∂2V

∂t2
+

chx

2
∂2V

∂x2
− ∆t2

6
∂3V

∂t3
+ c2 h2

x

12
∂4U

∂x4
+O((∆t + hx)3). (10)

The time derivatives on the right hand sides of (9)-(10) can be eliminated by differentiating (9)-(10) with
respect to time and recursively substituting the result back into the right hand sides of (9)-(10). This leads
to the following modified equations satisfied by U and V

∂2U

∂t2
= c2 ∂2U

∂x2
+

chx

8λ

(
(−4λ2 + 4λ + 1)

∂3U

∂t∂x2

)
+O((∆t + hx)2), (11)

∂2V

∂t2
= c2 ∂2V

∂x2
+

chx

8λ

(
(−4λ2 + 4λ + 1)

∂3V

∂t∂x2

)
+O((∆t + hx)2), (12)

where λ = c∆t/hx is the CFL parameter. From the modified equations (11)-(12) we see the scheme is
formally first-order accurate since the first correction term is O(hx). Note that this correction term, (the
term involving ∂3U/∂t∂x2 for the U equation (11)), is dissipative in nature, and is a reflection of the upwind
approximation.

The behavior of the upwind scheme (7)-(8) is illustrated for a particularly difficult problem. The initial
conditions consist of a top-hat function for the displacement and zero initial velocity,

u(x, 0) = H

(
x +

1
4

)
−H

(
x− 1

4

)
, (13)

v(x, 0) = 0. (14)

Here H(x) is the Heaviside function defined by H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0. The exact
solution can be found by appealing to d’Alembert’s solution and is given as

u(x, t) =
1
2

[
H

(
x + ct +

1
4

)
−H

(
x + ct− 1

4

)
+ H

(
x− ct +

1
4

)
−H

(
x− ct− 1

4

)]
, (15)

v(x, t) =
c

2

[
δ

(
x + ct +

1
4

)
− δ

(
x + ct− 1

4

)
− δ

(
x− ct +

1
4

)
+ δ

(
x− ct− 1

4

)]
. (16)

Solving this problem numerically is difficult since the solution for u does not have a continuous first derivative,
while v is defined in terms of Dirac delta functions. Figure 4 shows the discrete solution for the displacement
and velocity at a number of times, computed using the scheme (7)-(8). For this computation we took c = 1
and used N = 201 grid points on the interval [−1, 1] with hx = 2/(N − 1). The time-step ∆t was chosen to
be a factor of 0.9 of the maximum allowed by stability.

For comparison we show, in Figure 5, results from the UW1a scheme, results from the UW1 scheme (47)-
(48) (which is derived in Section 3.2 using a more general procedure), and results computed using the standard
centered finite difference scheme to the SOWE given by

un+1
i − 2un

i + un−1
i

∆t2
= c2D+D−un

i . (17)

We denote the scheme (17) as the C2 scheme (for centered scheme of second-order accuracy). The velocity
for the C2 scheme, as shown in this figure, is a derived quantity computed using a centered second-order
finite difference operator in time as vn

i = 1
2∆t

(
un+1

i − un−1
i

)
. Notice the qualitative differences between

the standard centered approximation to the new upwind approximations. The centered scheme displays the
usual highly oscillatory phenomena near discontinuities. The upwind schemes are much smoother near the
discontinuities with scheme UW1 having a sharper resolution than UW1a.
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Figure 4: Results for the top-hat initial condition of Section 6.2 using the preliminary first-order accurate upwind
scheme UW1a. Results are shown at t = 0.1, 0.3 and 0.5 for u (left) and v (right). Notice that the location of the
Dirac delta functions in the exact solution for v are indicated by vertical black lines.

Remark: We have found that care must be taken in imposing initial conditions for the C2 scheme. For
example if the exact solution at t = 0 and t = ∆t are used, convergence to the intended weak solution is
not guaranteed even in an L1 sense. The approximation presented in Figure 5 was obtained by applying a
second-order Runge-Kutta procedure from t = 0 to t = ∆t and then moving to the C2 scheme for subsequent
time-stepping. This choice for starting the computation was primarily made for convenience; other methods
such as those based on Taylor expansion could also be considered.
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Figure 5: Results for the top hat initial condition of Section 6.2 using the preliminary first-order scheme UW1a, the
C2 scheme, and the alternative first-order upwind scheme UW1 (47)-(48). Left: displacements u. Right: velocity v
(note the vertical scale). The exact (weak) solution for the velocity is given by four traveling delta functions which
are displayed as vertical black lines.

Remark. The scheme of (7) and (8) is conservative since, letting S(fi) =
∑ν

i=µ fihx denote a discrete
approximation to the integral, then

S(un+1
i ) = S(un

i ) + ∆t S(vn
i )hx + boundary terms,

S(vn+1
i ) = S(vn

i ) + boundary terms.

Remark. The step of forming the piecewise polynomial solution U0(x) and V0(x) in (3)-(4) from the grid
functions un

i and vn
i is often called the reconstruction step [14]. There are many choices for this reconstruction

and we present just one. This one has the property that the d’Alembert solution given by (5)-(6) has the
same degree of smoothness as the initial conditions; i.e. U(x, t) remains continuous and piecewise linear
and V (x, t) remains piecewise constant. In contrast, choosing a piecewise constant reconstruction for U0(x),
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would result in a d’Alembert solution with Dirac delta functions in V (x, t). It seems wise to avoid such a
singular solution in our discrete representation. In addition, for consistency it seems appropriate to choose a
reconstruction for U0(x) that is one derivative smoother than the reconstruction for V0(x). This is consistent
with the fact that v is a time derivative of u and that for the wave equation the time derivative has the same
degree of smoothness as a space derivative.

3. A general construction for high-order upwind schemes – the one-dimensional case

We now consider a more general development of upwind schemes for the SOWE. This construction is
similar in nature to the construction of upwind methods for the first-order system using solutions to Riemann
problems at cell faces rather than direct integration of exact solutions as presented in Section 2. Consider
the initial value problem for second order wave equation in one space dimension,

∂2u

∂t2
= Lu, x ∈ Ω, (18)

L ≡ c2 ∂2

∂x2
,

u(x, 0) = u0(x), ut(x, 0) = v0(x),

where u = u(x, t) is taken to be periodic in x on the interval Ω = [0, 1] and where c is constant with c > 0.
We write (18) in the form of a conservation law,[

u
v

]
t

=
[

0
c2ux

]
x

+
[

v
0

]
.

Introduce a uniform Cartesian grid for Ω with N + 1 grid points. Let hx = 1/N denote the grid spacing.
Denote the grid cell centers by xi = (i + 1

2 )hx, i = 0, 1, . . . , N − 1 and the grid vertices by xi− 1
2

= ihx,
i = 0, 1, . . . , N . We choose to pursue a so-called conservative finite-difference approach by discretizing the
time integrated equations. One could alternately follow a finite-volume approach and integrate the equations
over a space-time cell. This choice is largely one of personal preference, and the mechanics of developing
finite-volume schemes should be clear from the following discussion.

The derivation of the scheme begins by integrating the equation for the velocity in time,

v(x, t) =v(x, 0) + c2

∫ t

0

∂2u

∂x2
(x, τ) dτ. (19)

This expression can be transformed into a form that resembles a discrete conservation approximation by first
writing ∂2u/∂x2 as the forward divided difference of the face centered flux function f(x− hx

2 , t),

∂2u

∂x2
(x, t) = D+f(x− hx

2
, t), (20)

f(x, t) ≡ Dx
∂u

∂x
(x, t), (21)

where the application of D+ to continuous functions is defined to be D+f(x, t) = (f(x+hx, t)− f(x, t))/hx.
The differential-difference operator Dx is defined to satisfy the identity

∂w

∂x
(x) = D+

(
Dxw(x− hx

2
)
)

, (22)

for any sufficiently smooth function w and is formally given by the expansion

Dxw(x, t) =
∞∑

j=0

αj h2j
x

∂2jw

∂x2j
(x, t), (23)

= w(x, t)− h2
x

24
∂2w

∂x2
(x, t) +

7h4
x

5760
∂4w

∂x4
(x, t)− 31h6

x

967680
∂6w

∂x6
(x, t) + ... .
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The coefficients αj can be computed from the identity 2ζ = sinh(ζ/2)
∑∞

j=0 αjζ
2j by equating coefficients

of ζ in the Taylor series expansion, following the approach described in [15, 16]. Using (20) in (19) gives the
following equation for v(x, t)

v(x, t) =v(x, 0) + c2D+

[∫ t

0

f(x− hx

2
, τ) dτ

]
.

This equation is integrated in time to give an exact equation for u(x, t),

u(x, t) = u(x, 0) + t v(x, 0) + c2D+

[∫ t

0

∫ τ

0

f(x− hx

2
, τ ′) dτ ′ dτ

]
.

Taking these integrations over a single time-step leads to the following conservation form for the solution at
time tn+1

v(x, tn+1) = v(x, tn) + c2∆tD+

[
Fv(x− hx

2
, tn)

]
, (24)

u(x, tn+1) = u(x, tn) + ∆t v(x, tn) + c2∆t2D+

[
Fu(x− hx

2
, tn)

]
, (25)

Fv(x, tn,∆t) ≡ 1
∆t

∫ ∆t

0

f(x, tn + τ) dτ, (26)

Fu(x, tn,∆t) ≡ 1
∆t2

∫ ∆t

0

∫ τ

0

f(x, tn + τ ′) dτ ′ dτ. (27)

We emphasize that (24)-(27) is a formally exact differential-difference equation for the solution. Different
numerical schemes are developed by considering various upwind approximations to f(x−hx/2, tn+τ) in (26)-
(27).

3.1. The upwind flux for the second-order system
One way to incorporate upwinding into the scheme (24)-(27) is to use x-derivatives of the d’Alembert

solution (5) to derive expressions for derivatives of u on the face in terms of the solution at the previous
time step tn,

∂p

∂xp
u(x, tn + τ) =

1
2

(
∂p

∂xp
u(x + cτ, tn) +

∂p

∂xp
u(x− cτ, tn)

)
+

1
2c

[
∂p−1

∂xp−1
v(x + cτ, tn)− ∂p−1

∂xp−1
v(x− cτ, tn)

]
, for p = 1, 2, . . .. (28)

Use of (28) in (24)-(25) could be used as a starting point for a characteristic-based upwind scheme for the
SOWE. We do not, however, follow this line of approximation here. Instead, we use another approach to
incorporating upwinding that can be more easily incorporated into conservative finite difference approxima-
tions. This alternative approach makes use of the fact that taking the limit τ → 0 in (28) gives

∂p

∂xp
u(x, t+) =

1
2

(
∂p

∂xp
u(x+, t) +

∂p

∂xp
u(x−, t)

)
+

1
2c

[
∂p−1

∂xp−1
v(x+, t)− ∂p−1

∂xp−1
v(x−, t)

]
, for p = 1, 2, . . .. (29)

Here t+ denotes the limit of t+ε as ε → 0 with ε > 0. Similarly, x+ and x− denote values of x infinitesimally
larger and smaller than x, respectively. Formula (29) is the key result that we will use to derive upwind
schemes to any order of accuracy. It specifies how to define an upwind biased flux on a face, given left
and right approximations to the spatial derivatives of the displacement and velocity on either side of the
face. In particular, the upwind flux approximation for the pth x-derivative of u is the average of the pth

x-derivative of the left and right displacement states, plus the reciprocal of 2c times the difference of the
(p− 1)st x-derivative of the left and right velocity states.

Our assumed form of the discrete solution for a low order approximation was previously shown in Figure 2
and consists of a piecewise linear representation for u and a piecewise constant representation for v. For this
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form we note that the first derivative of u is continuous at the cell faces while v may jump. More generally
we will not assume any particular piecewise smooth representation for the solution. Rather we proceed in
the usual manner used to derive high-order finite different methods. We assume that the analytic solution
has as many continuous derivatives as needed and formally expand the solution in Taylor series. In deriving
our scheme we use a staggered approach3 which expands ∂pu(x, t)/∂xp in a truncated Taylor series centered
at faces while expanding ∂pv(x, t)/∂xp in a Taylor series about cell centers. As a result, the truncated series
approximation to u and it’s derivatives are continuous at faces while the series approximations to v and it’s
derivatives will in general jump at faces. With this assumed form of approximation we can simplify (29)
(which will be applied at faces) by replacing the average of the left and right approximations to ∂p

∂xp u(x, t)
in (29) with a centered approximation,

∂p

∂xp
u(x, t+) =

∂p

∂xp
u(x, t) +

1
2c

[
∂p−1

∂xp−1
v(x+, t)− ∂p−1

∂xp−1
v(x−, t)

]
, for p = 1, 2, . . .. (30)

Definition The upwind flux function f̌ is defined to be

f̌(x +
hx

2
, tn + τ) ≡Dx

∂u

∂x
(xi+ 1

2
, tn + τ) +

1
2c

[
Dxv+(xi+ 1

2
, tn + τ)−Dxv−(xi+ 1

2
, tn + τ)

]
, (31)

where v− and v+ denote left and right limits, respectively, to v on the face.

The upwind flux function (31) replaces f in the scheme (24)-(25) to define an upwind scheme. Upwind
schemes with different orders of accuracy are determined by approximating terms in (31) with the appropriate
accuracy. The Cauchy-Kowalewski process, also known as the Lax-Wendroff procedure [17], is used to develop
space-time schemes using data from only two time levels. In this approach, equation (31) is expanded
using Taylor series in space and time, and the governing equations are used to replace temporal by spatial
derivatives. Specifically, Taylor expansions of ∂u/∂x about the face position xi+ 1

2
and v about the cell center

xi give

∂u

∂x
(xi+ 1

2
, tn + τ) =

∞∑
m=0

τm

m!
∂m

∂tm
∂u

∂x
(xi+ 1

2
, tn), (32)

v(xi ±
hx

2
, tn + τ) =

∞∑
m=0

m∑
n=0

(
m

n

)
1
m!

τm−n
(±hx

2

)n ∂mv(xi, t
n)

∂tm−n∂xn
. (33)

From (33), left and right biased expressions for the velocity on the face are given as

v−(xi+ 1
2
, tn + τ) ≡ v(xi +

hx

2
, tn + τ), (34)

v+(xi+ 1
2
, tn + τ) ≡ v(xi+1 −

hx

2
, tn + τ). (35)

Note that the expansion determining v− originates from xi, while that for v+ originates from xi+1. Time
derivatives can be converted to space derivatives using the governing equation utt = Lu. Letting,

Lm(u, v) ≡

{
Lm/2u if m is even
L(m−1)/2v if m is odd

, (36)

it follows that ∂m
t u = Lm(u, v) and ∂m

t v = Lm+1(v, u). Using (32)-(33) together with (23) and definitions
(34) and (35) in (31) gives,

Proposition 3.1. The space-time expansion for the upwind flux (31) is given by

f̌(xi+ 1
2
, tn + τ) =

∞∑
j=0

∞∑
m=0

αjh
2j
x

{
τm

m!
∂2j+1

∂x2j+1
Lm(u, v)(xi+ 1

2
, tn)

+
1
2c

m∑
n=0

(
m

n

)
τm−n

m!

(hx

2

)n ∂n+2j

∂xn+2j
[(−1)nLm−n+1(v, u)(xi+1, t

n)− Lm−n+1(v, u)(xi, t
n)]

}
. (37)

3The use of a staggered approximation seems to be an important ingredient in the overall approach because it
leads to more compact approximations that are generally preferable for stability and accuracy reasons.
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The single and double time integrals of the expansion for the upwind flux (37) required for (26)-(27) can be
easily obtained, which leads to,

Proposition 3.2. Let {kp} denote a set of numbers {kp}∞p=0 where the form of each kp is to be specified.
Upwind approximations to the time averaged flux functions (26)-(27) are given by

Fv(xi+ 1
2
, tn,∆t) ≈ Fv

i+ 1
2
(tn,∆t) = F (∆t, {kp = 1/(p + 1)}) , (38)

Fu(xi+ 1
2
, tn,∆t) ≈ Fu

i+ 1
2
(tn,∆t) = F (∆t, {kp = 1/((p + 1)(p + 2))}) (39)

where

F (τ, {kp}) =
∞∑

j=0

∞∑
m=0

αjh
2j
x

{
kmτm

m!
∂2j+1

∂x2j+1
Lm(u, v)(xi+ 1

2
, tn)

+
1
2c

m∑
n=0

(
m

n

)
km−nτm−n

m!

(hx

2

)n ∂n+2j

∂xn+2j
[(−1)nLm−n+1(v, u)(xi+1, t

n)− Lm−n+1(v, u)(xi, t
n)]

}
. (40)

Letting L = c2∂2
x, the first few terms in the expansion for F (τ, {kp}) are given by

F (τ, {kp}) = k0
∂u

∂x
(xi+ 1

2
, tn) +

k0

2c
∆+v(xi, t

n)

+ k1τ
∂v

∂x
(xi+ 1

2
, tn) +

k1cτ

2
∆+

∂2u

∂x2
(xi, t

n)− k0hx

2c
A+

∂v

∂x
(xi, t

n)

+ (
k2c

2τ2

2
− k0h

2
x

24
)
∂3u

∂x3
(xi+ 1

2
, tn) + (

k2cτ
2

4
+

k0h
2
x

24c
)∆+

∂2v

∂x2
(xi, t

n)− k1cτhx

2
A+

∂3u

∂x3
(xi, t

n)

+ (
k3c

2τ3

6
− k1τh2

x

24
)
∂3v

∂x3
(xi+ 1

2
, tn) + (

k3c
3τ3

12
+

k1cτh2
x

24
)∆+

∂4u

∂x4
(xi, t

n)

− k2cτ
2hx

4
A+

∂3v

∂x3
(xi, t

n) +O((hx + ∆t)4). (41)

Here A+ is the forward averaging operator, A+u(xi, t
n) = 1

2 (u(xi+1, t
n) + u(xi, t

n)).
Remark. Note that most of the terms in (41) can be approximated in a natural way by using a compact

centered approximation. For example, a second-order accurate approximation to ∂u(xi+ 1
2
, tn)/∂x is the com-

pact centered approximation D+u(xi, t
n). There is, however, some choice in approximating the un-centered

terms involving A+, such as ∂v(xi, t
n)/∂x. For a second-order accurate approximation to ∂v(xi, t

n)/∂x one
could use either a centered difference approximation (which is not compact) or a forward or backward dif-
ference approximation. As a result, it is natural to consider limiting these terms by choosing an appropriate
approximation to the derivative. For example, one might dynamically choose the approximation that has
the smallest magnitude. Limiters are discussed further in Section 3.3.

From an implementation point of view it may be more efficient to use a quadrature rule, rather than
integrating exactly in time. In particular, if one uses Gaussian quadrature with quadrature points ξj ,
j = 1, 2, . . . ,M for the interval [0, 1], then approximations to both Fv(xi+ 1

2
, tn,∆t) and Fu(xi+ 1

2
, tn,∆t)

can be computed from M evaluations of an approximation to the flux function (41)

F j

i+ 1
2
≈ F (ξj∆t, {1}), j = 1, 2, . . . ,M,

Fv(xi+ 1
2
, tn,∆t) ≈ Fv

i+ 1
2
(tn,∆t) =

M∑
j=1

bjF
j

i+ 1
2
, (42)

Fu(xi+ 1
2
, tn,∆t) ≈ Fu

i+ 1
2
(tn,∆t) =

M∑
j=1

djF
j

i+ 1
2
. (43)

Here the weights bj and dj are given by the integrals of the interpolation basis function φj(τ),

φj(τ) =

∏M
k=1,k 6=j(τ − ξk)∏M
k=1,k 6=j(ξj − ξk)

, bj =
∫ 1

0

φj(τ) dτ, dj =
∫ 1

0

∫ τ ′

0

φj(τ ′) dτ ′ dτ, (44)
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and the quadrature points ξk for an M -point quadrature are the roots of the Mth Legendre polynomial
scaled to the interval [0, 1] (see [18] for details). Note that for the special case M = 1, the basis function is
given by φ1(τ) = 1. Since Gaussian quadrature is exact for polynomials up to degree 2M − 1 and accurate
to O(∆t2M ), we can choose M = q for an approximation of order 2q, q = 1, 2, . . ..

Upwind approximations of different orders of accuracy can now be defined by approximating the terms
in (41) to different orders of accuracy and substituting into

vn+1
i = vn

i + c2∆t D+

[
Fv

i− 1
2
(tn,∆t)

]
, (45)

un+1
i = un

i + ∆t vn
i + c2∆t2D+

[
Fu

i− 1
2
(tn)

]
. (46)

3.2. A first-order accurate upwind scheme
A first-order accurate upwind scheme is defined by keeping the first two terms in (41)

F (∆t, {kp}) ≈ k0
∂u

∂x
(xi+ 1

2
, tn) +

k0

2c
∆+v(xi, t

n),

and approximate these using

Fi+ 1
2
(∆t, k0) ≡ k0D+un

i +
k0

2c
∆+vn

i .

The scheme can be efficiently evaluated using Gaussian quadrature in time with M = 1 and quadrature node
ξ1 = 1

2 , and b1 = 1, d1 = 1
2 , to give

F 1
i− 1

2
= Fi− 1

2
(ξ1∆t, k0 = 1),

gi = ∆t c2D+F 1
i− 1

2
,

vn+1
i = vn

i + gi,

un+1
i = un

i + ∆t vn
i +

∆t

2
gi.

In this case, using exact integration in time leads to the same approximation. Written out in detail, the
approximation, denoted by UW1, is given by

vn+1
i = vn

i + ∆t c2D+D−un
i +

∆t

2
chxD+D−vn

i (47)

un+1
i = un

i + ∆t vn
i +

∆t2

2
c2D+D−ui +

∆t2

4
chxD+D−vn

i . (48)

This scheme (47)-(48) differs slightly from the UW1a scheme (7)-(8) derived in Section 2. The time step
restriction is larger as noted below, and this scheme is generally less dissipative (see Figure 5).

The modified equations for the scheme (47)-(48) are given by

∂U

∂t
= V +

h2
xλ2

12
∂2V

∂x2
+O((∆t + hx)3),

∂V

∂t
= c2 ∂2U

∂x2
+

chx

2
(1− λ)

∂2V

∂x2
+

c2h2
x

12
(1− 3λ + λ2)

∂4U

∂x4
+O((∆t + hx)3),

where, as before, λ = c∆t/hx. This system of equations for U and V can be written as decoupled equations by
differentiating with respect to time and substitution. This results in the set of decoupled modified equations

∂2U

∂t2
= c2 ∂2U

∂x2
+

chx

2
(1− λ)

∂3U

∂t∂x2
+

c2h2
x

12
(1− 3λ + 2λ2)

∂4U

∂x4
+O((∆t + hx)3), (49)

∂2V

∂t2
= c2 ∂2V

∂x2
+

chx

2
(1− λ)

∂3V

∂t∂x2
+

c2h2
x

12
(1− 3λ + 2λ2)

∂4V

∂x4
+O((∆t + hx)3). (50)

Note that the modified equations for U and V are the same to the order given. From equations (49) and (50)
we see that (for λ 6= 1) the approximation is first order accurate in space, O(hx), and first order accurate in
time, O(∆t) (note the definition of λ). The terms proportional to hx on the right hand sides of (50) and (49)
represent dissipation terms which will damp the solution (higher-frequencies will be damped more strongly)
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provided λ ∈ (0, 1). The terms proportional to h2
x on the right hand sides add dispersion to the equations.

The damping and dispersion properties can be seen by Fourier transforming the equations.
Remark: The modified equations (50)-(49) indicate that at λ = 1 the scheme actually becomes higher

than first-order accurate. In fact scheme UW1 has an infinite order of accuracy (spectrally accurate) for
λ = 1 (see below).

Lemma 3.3. The UW1 scheme (47)-(48) is first-order accurate and stable provided

∆t ≤ hx

c
. (51)

Proof The accuracy and stability of the scheme can be determined through a normal mode analysis [19].
To this end we seek solutions to (47)-(48) of the form[

un
j

vn
j

]
= zn

[
û
v̂

]
e2πik xj ,

where z is a complex valued amplification factor, and û and v̂ are Fourier coefficients. The wave number k
takes the discrete values k = 0,±1,±2, . . .±N/2 (in the case N is an even integer). Substitution into (47)
and (48) leads to an eigenvalue problem for z with eigenvector [û v̂]T ,[

1− z − λ2

2 ξ̂2 ∆t(1− λ
4 ξ̂2)

− 1
∆tλ

2ξ̂2 1− z − λ
2 ξ̂2

] [
û
v̂

]
=

[
0
0

]
.

Here ξ = 2πk/N , with ξ ∈ [−π, π], while ξ̂2 = 4 sin2(ξ/2) is the Fourier symbol of −∆+∆−. Nontrivial
solutions to this problem exist when the determinant is zero. This leads to a quadratic equation for z with
roots z = z± where

z± = 1− b±
√

b2 − a, (52)

a = λ2ξ̂2, b =
1
4
(a + λξ̂2). (53)

Expanding (52) for small |ξ| yields

z± = 1± iλξ − 1
4
λ(1 + λ)ξ2 +O(ξ3) = e±iλξ +O(ξ2).

Since z = exp(±iλξ) corresponds to the exact solution to the continuous problem, it follows that z± are
second-order accurate approximations to exp(±iλξ) and thus the overall discrete solution is first-order ac-
curate at times of order 1 (i.e. after O(1/∆t) time-steps). Stability requires that the roots satisfy |z±| ≤ 1.
Contour plots of the magnitude of the two roots as a function of ξ ∈ [−π, π] and λ ∈ [0, 1.5] are shown in
Figure 6. The scheme is seen to be stable for λ ≤ 1. Indeed, assuming λ ≤ 1 it is easily shown that

|z±|2 = 1− ξ̂2

2
λ(1− λ),

and thus |z±| ≤ 1 for λ ≤ 1 since ξ̂2 ≤ 4. The time-step restriction (51) follows. For a fully algebraic proof
of this result see the proof for the two-dimensional scheme, Lemma 4.2, which includes the one-dimensional
result as a special case. �

Remark: For λ = 1 the roots z± in (52) reduce to

z± = cos(ξ)± i sin(ξ) = e±iξ. (54)

This shows that scheme UW1 has spectral accuracy when λ = 1. The only error comes from representing
the initial conditions as a finite discrete Fourier series.
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Figure 6: Region of stability for the first-order accurate scheme UW1: contours of the magnitude of the two roots
z±, as a function of the CFL parameter λ and the Fourier parameter ξ. The contour level 1 is shown as a thick black
line. The scheme is unstable where the magnitude of either root exceeds 1.

3.3. A second-order accurate scheme and a high-resolution scheme
A second-order accurate upwind scheme is defined by keeping the first five terms in (41)

F (∆t, {kp}) ≈ k0
∂u

∂x
(xi+ 1

2
, tn) +

k0

2c
∆+v(xi, t

n)

+ k1∆t
∂v

∂x
(xi+ 1

2
, tn) +

k1c∆t

2
∆+

∂2u

∂x2
(xi, t

n)− k0hx

2c
A+

∂v

∂x
(xi, t

n), (55)

and using the approximation

Fi+ 1
2
(∆t, k0, k1) ≡ k0D+un

i +
k0

2c
∆+vn

i + k1∆tD+vn
i +

k1c∆t

2
∆+D+D−un

i −
k0hx

2c
A+D0v

n
i .

The scheme using exact time integration is then defined by

Fv
i+ 1

2
(tn,∆t) ≈ Fi+ 1

2
(∆t, k0 = 1, k1 =

1
2
),

Fu
i+ 1

2
(tn,∆t) ≈ Fi+ 1

2
(∆t, k0 =

1
2
, k1 =

1
6
).

The scheme using Gaussian quadrature in time with M = 1 and quadrature node ξ1 = 1
2 , and b1 = 1, d1 = 1

2 ,
is defined by

F 1
i+ 1

2
= Fi+ 1

2
(ξ1∆t, k0 = 1, k1 = 1),

Fv
i+ 1

2
(tn,∆t) = F 1

i+ 1
2
, Fu

i+ 1
2
(tn,∆t) =

1
2
F 1

i+ 1
2
.

The Gaussian quadrature scheme can be efficiently evaluated as

gi = ∆t c2D+F 1
i− 1

2
,

vn+1
i = vn

i + gi,

un+1
i = un

i + ∆t vn
i +

∆t

2
gi.

Writing out the approximations in detail leads to the scheme (denoted by UW2)

vn+1
i = vn

i + ∆t c2D+D−un
i ,+

∆t2

2
c2D+D−vn

i

+
∆t2

4
c3hx(D+D−)2un

i −
∆t

8
ch3

x(D+D−)2vn
i (56)

un+1
i = un

i + ∆t vn
i +

∆t2

2
c2D+D−ui +

∆t3

4
c2D+D−vn

i

+
∆t3

8
c3hx(D+D−)2un

i −
∆t2

16
ch3

x(D+D−)2vn
i . (57)

14



As for the case of first-order systems, slope limiters can be introduced into the approximation to reduce
oscillations near discontinuities in the solution or its derivatives. The limited scheme will be referred to as a
high-resolution scheme following Harten [20]. The high-resolution variant of the second-order scheme (56)-
(57) uses a limited approximation to the term involving A+∂v(xi, t

n)/∂x in (55)

A+
∂v

∂x
(xi, t

n) ≈ 1
2

[
SL(D+vn

i+1, D−vn
i+1) + SL(D+vn

i , D−vn
i )

]
. (58)

Here SL is a slope-limiter function that in this case attempts to limit the magnitude of the discrete approx-
imation that is used for ∂v/∂x. There are many possible choices for limiter functions. A common choice,
the one used here, is the minimum modulus function defined by

MinMod(a, b) =

 a if |a| < |b| and ab > 0
b if |a| ≥ |b| and ab > 0
0 if ab ≤ 0.

(59)

The high-resolution scheme, denoted by HR2, uses SL(a, b) = MinMod(a, b) in (58). Note that the choice
SL(a, b) = 1

2 (a + b) results in the original centered approximation.
Figure 7 compares the solution from the first-order (UW1), second-order (UW2) and second-order high-

resolution (HR2) schemes for the top-hat problem (13)-(14). The time step was chosen for each scheme to
be 0.9 times the maximum allowable time-step for that scheme (i.e. a CFL number equal to 0.9). The high-
resolution scheme HR2 is seen to have significantly smaller undershoots and over-shoots compared to UW2.
The first-order scheme UW1 gives the best solution in this case although this is somewhat fortuitous since
the UW1 scheme becomes spectrally accurate at λ = 1. Later in Section 6.2 the discrete L1-norm errors for
this problem are shown (Figure 18). While scheme UW1 convergences more slowly than the other schemes,
the L1-norm errors are smaller than the UW2 and HR2 schemes for a wide range of hx. These advantages
of the UW1 scheme disappear, however, in two or three space dimensions since the stable time-step will lead
to much smaller values of λ being used.

Remark: We note, as shown by the results in Figure 7, that the limited high-resolution scheme HR2 does
not yield the same type of monotone behaviour exhibited by the first-order upwind scheme UW1. We have
so far not made any attempt to analyse or optimize the use of limiters for these new upwind schemes. We
envision that the investigation of more sophisticated limiting procedures, including limiting for the fourth-
and higher-order accurate schemes, is an interesting avenue for future research.

Remark: It might seem that the high-resolution scheme should remain second-order accurate for smooth
solutions. However, as shown in Section 6.1, while the max-norm errors in u converge at order 2, the max-
norm errors for v are degraded to a convergence rate of 4/3. This degradation can be traced to the lack of
smoothness in the MinMod limiter.

In order to understand the accuracy of the scheme (56)-(57), the leading terms of the modified equation
are derived through Taylor expansion. Following the steps discussed previously for the first-order accurate
scheme leads to the following system of modified equations

∂2U

∂t2
= c2 ∂2U

∂x2
+ c2h2

x M2(λ)
∂4U

∂x4
+ ch3

x C2(λ)
∂5U

∂t∂x4
+O((∆t + hx)4), (60)

∂2V

∂t2
= c2 ∂2V

∂x2
+ c2h2

x M2(λ)
∂4V

∂x4
+ ch3

x C2(λ)
∂5V

∂t∂x4
+O((∆t + hx)4), (61)

M2(λ) =
1
12

(1 + 3λ− λ2), C2(λ) = −1
8
(1 + λ2). (62)

The modified equations (60)- (61) are second order accurate approximations to the true equations in both
space and time (i.e. O(∆x2) for ∆t = λ∆x/c). The first error term in the modified equations is a dispersion
term and the second is a dissipation term (provided C2(λ) ≤ 0).

Lemma 3.4. The scheme UW2 (56)-(57) is second-order accurate and stable provided

∆t ≤ Λ2
hx

c
, (63)

where Λ2 =
√

5−1
2 ≈ 0.618034.
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Figure 7: Results for the top hat initial condition of (13)-(14) using the first-order accurate scheme UW1, the second-
order accurate scheme UW2, and second-order accurate high-resolution scheme, HR2. Solution u at t = 0.5 using
N = 201 grid points.

Proof The accuracy and stability for the second-order accurate scheme follows the same normal mode
approach as for the first-order scheme. Similar steps lead to the eigenvalue problem[

1− z − 1
2γ + 1

8η ∆t(1− 1
4γ − 1

16ζ)
− 1

∆t (γ −
1
4η) 1− z − 1

2γ − 1
8ζ

] [
û
v̂

]
=

[
0
0

]
.

where

γ ≡ λ2ξ̂2, δ ≡ λξ̂2, η ≡ δγ, ζ ≡ λξ̂4.

The two eigenvalues z = z± are given by

z± = 1− b±
√

b2 − a, (64)

a = γ(1− 1
4
δ), b =

1
2
(γ − 1

8
η +

1
8
ζ). (65)

Expanding (64) for small |ξ| gives

z± = 1± iλξ − 1
2
(λξ)2 ± (i)3

λ

24
(1 + 3λ− λ2)ξ3 +O(ξ4) = e±iλξ +O(ξ3), (66)

and thus the solution is second-order accurate. Note that the coefficient of the ξ3 term in (66) is closely
related to the coefficient M2(λ) of the leading error term in the modified equation (60). This is not a
coincidence and the general relationship is discussed later in Section 5 (see Figure 13). Contour plots of the
magnitude of the two roots are shown in Figure 8. The figures show that the scheme first becomes unstable
on ξ = ±π. These are the most oscillatory plus-minus modes. For ξ = ±π the stability condition reduces to

λ2 + λ ≤ 1,

which leads to the time-step restriction (63). For a fully algebraic proof of this result see the proof for the
two-dimensional scheme, Lemma 4.3, which includes the one-dimensional result as a special case. �
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Figure 8: Region of stability for the second-order accurate scheme UW2: contours of the magnitude of the two roots
z± as a function of the CFL parameter λ and the Fourier parameter ξ. The contour level 1 is shown as a thick black

line. The scheme is stable for λ ≤
√

5−1
2

≈ 0.618. The modes which determine the stability bound are at ξ = ±π.

3.4. A fourth-order accurate upwind scheme
For fourth-order accuracy, (41) is approximated using

F (∆t, {kp}) ≈ k0
∂u

∂x
(xi+ 1

2
, tn) +

k0

2c
∆+v(xi, t

n)

+ k1∆t
∂v

∂x
(xi+ 1

2
, tn) +

k1c∆t

2
∆+

∂2u

∂x2
(xi, t

n)− k0hx

2c
A+

∂v

∂x
(xi, t

n)

+ (
k2c

2∆t2

2
− k0h

2
x

24
)
∂3u

∂x3
(xi+ 1

2
, tn) + (

k2c∆t2

4
+

k0h
2
x

24c
)∆+

∂2v

∂x2
(xi, t

n)− k1c∆thx

2
A+

∂3u

∂x3
(xi, t

n)

+ (
k3c

2∆t3

6
− k1∆th2

x

24
)
∂3v

∂x3
(xi+ 1

2
, tn) + (

k3c
2∆t3

12
+

k1c∆th2
x

24
)∆+

∂4u

∂x4
(xi, t

n)

− k2c∆t2hx

4
A+

∂3v

∂x3
(xi, t

n), (67)

with the discrete approximation

Fi+ 1
2
(∆t, k0, k1, k2, k3) ≡ k0D+(1− h2

x

24
D+D−)un

i +
k0

2c
∆+vn

i

+ k1∆tD+(1− h2
x

24
D+D−)vn

i +
k1c∆t

2
∆+D

(2)
4h un

i

− k0hx

2c
A+D0(1−

h2
x

6
D+D−)vn

i + (
k2c

2∆t2

2
− k0h

2
x

24
)D2

+D−un
i

+ (
k2c∆t2

4
+

k0h
2
x

24c
)∆+D

(2)
4h vn

i −
k1c∆thx

2
A+D0D+D−un

i

+ (
k3c

2∆t3

6
− k1∆th2

x

24
)D2

+D−vn
i + (

k3c
3∆t3

12
+

k1c∆th2
x

24
)∆+(D+D−)2un

i

− k2c∆t2hx

4
A+D0D+D−vn

i . (68)

Here

D
(2)
4h = D+D−(1− h2

x

12
D+D−),

defines a cell-centered fourth-order accurate approximation to ∂2/∂x2. Gaussian quadrature in time with
M = 2 uses the quadrature nodes ξ1 = 1

2 (1−
√

3) and ξ2 = 1
2 (1 +

√
3) along with b1 = b2 = 1

2 , d1 = 1
4 +

√
3

12 ,
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d2 = 1
4 −

√
3

12 . The Gaussian quadrature scheme can be evaluated using

F 1
i+ 1

2
= Fi+ 1

2
(ξ1∆t, {1}), F 2

i+ 1
2

= Fi+ 1
2
(ξ2∆t, {1}), (69)

F v
i+ 1

2
= b1F

1
i+ 1

2
+ b2F

2
i+ 1

2
, Fu

i+ 1
2

= d1F
1
i+ 1

2
+ d2F

2
i+ 1

2
, (70)

vn+1
i = vn

i + c2∆tD+F v
i+ 1

2
(71)

un+1
i = un

i + ∆t vn
i + c2∆t2D+Fu

i+ 1
2
. (72)

Written out in detail, the fourth-order accurate upwind scheme is (denoted by UW4)

vn+1
i = vn

i + c2∆t Gi(k0 = 1, k1 =
1
2
, k2 =

1
3
, k4 =

1
4
), (73)

un+1
i = un

i + ∆tvn
i + c2∆t2 Gi(k0 =

1
2
, k1 =

1
6
, k2 =

1
12

, k3 =
1
18

), (74)

Gi(kp) = k0D
(2)
4h un

i + k1∆tD
(2)
4h vn

i +
k2

2
c2∆t2(D+D−)2ui +

k3

6
c2∆t3(D+D−)2vi

+
(

5k0

288c
h5

x −
k2

12
c∆t2h3

x

)
(D+D−)3vi +

(
−k1

8
c∆th3

x +
k3

12
c3∆t3hx

)
(D+D−)3ui. (75)

The stencil coefficients for this scheme are given in Appendix A.1.

Lemma 3.5. The scheme UW4 (73)-(75) is fourth-order accurate and stable provided

∆t ≤ Λ4
hx

c
,

where Λ4 is given by the smallest real positive root of the polynomial equation

4λ5 − 14λ4 − 12λ3 + 12λ2 + 15 = 0, (76)

and is given approximately by Λ4 ≈ 1.09.

Proof To determine the accuracy and stability of this fourth order scheme, a normal mode analysis is
performed as before, giving the eigenvalue problem[

1− z − λ2

2 β4 + λ4

24 ξ̂4 + λ3

1 ( 1
48 −

1
216λ2)ξ̂6 ∆t(1− λ2

6 β4 + λ4

108 ξ̂4 + λ
36 (− 5

16 + 1
4λ2)ξ̂6)

1
∆t (−λ2β4 + λ4

6 ξ̂4) + λ3

1 ( 1
16 −

1
48λ2)ξ̂6) 1− z − λ2

2 β4 + λ4

24 ξ̂4 + λ
36 (− 5

8 + λ2)ξ̂6

] [
û
v̂

]
=

[
0
0

]
,

where β4 = ξ̂2(1 + 1
12 ξ̂2).

The determinant condition is of the same form as before and there will be two roots z±. Expanding the
roots for small |ξ| we find that

z± = 1± iλξ +
1
2
(iλξ)2 ± 1

3!
(iλξ)3 +

1
4!

(iλξ)4 ± i
λ

2
M4(λ)ξ5 +O(ξ6),

= e±iλξ +O(ξ5),

showing that the solution is fourth-order accurate (the coefficient M4(λ) is given below (77)). Contour plots
of the magnitude of the two roots are shown in Figure 9. Interestingly, the modes which determine the
stability bound occur near the lowest frequency mode, ξ = 0 (The mode ξ = 0 is itself stable with amplitude
1). For |ξ| � 1

|z±|2 = 1− P6(λ)ξ6 +O(ξ8),

where P6(λ) is a polynomial in λ. The requirement |z±|2 ≤ 1 requires P6(λ) ≥ 0. This leads to the stability
limit being given by the smallest real positive root of the polynomial equation (76), resulting in a stability
bound of Λ4 ≈ 1.09. �

18



The modified equation for the fourth order scheme is

∂2U

∂t2
= c2 ∂2U

∂x2
+ c2h4

x M4(λ)
∂6U

∂x6
+ ch5

x C4(λ)
∂7U

∂t∂x6
+O((∆t + hx)6),

M4(λ) =
1

2600
(−24− 135λ + 60λ2 + 45λ3 − 16λ4), (77)

C4(λ) =
1

864
(15 + 12λ2 − 12λ3 − 14λ4 + 4λ5),

where V satisfies the same equation as U . As was the case for the modified equations (60)-(61) for the
second-order accurate scheme UW2, the leading error term in the modified equations for scheme UW4 is a
dispersive term while the following term provides the dissipation (assuming C4(λ) ≥ 0).
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Figure 9: Region of stability for the fourth-order accurate scheme UW4: contours of the magnitude of the two roots
z± as functions of the CFL parameter λ and the Fourier parameter ξ. The contour level 1 is shown as a thick black
line. The modes which determine the stability bound are near ξ = 0 for λ ≈ 1.09.

3.5. A sixth-order accurate upwind scheme
The sixth-order accurate upwind scheme UW6 is constructed following the same procedures as outlined

for the lower order schemes. We do not write down all the details here since the process for developing
the scheme should be clear from the previous cases. The stencil coefficients for the UW6 scheme are given
in Appendix A.2.

Lemma 3.6. The scheme UW6 is sixth-order accurate and stable provided

∆t ≤ Λ6
hx

c
, (78)

where Λ6 is given by the smallest real positive root of the polynomial equation

−303750 + 139500 λ + 459000 λ2 − 99000 λ3 − 274600 λ4 + 55200 λ5 + 61600 λ6

−33615 λ7 − 4836 λ8 + 5262 λ9 + 1456 λ10 + 165 λ11 − 208 λ12 = 0, (79)

and is given approximately by Λ6 ≈ 0.9502.

Proof The accuracy and stability analysis of the UW6 scheme proceeds as before. The roots z± satisfy

z± = e±iλξ ∓ i
λ

2
M6(λ)ξ7 +O(ξ8),

and thus the solution is sixth-order accurate (the coefficient M6(λ) is given below (80)). Figure 10 shows
contours of the magnitudes of the two roots z± from which it is seen that the high-frequency modes determine
the stability bound. Examination of the magnitude of the roots z± for ξ = ±π leads to the the stability
condition (78).
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The modified equation for scheme UW6 is given by (V satisfies the same equation as U)

∂2U

∂t2
= c2 ∂2U

∂x2
− c2h6

x M6(λ)
∂8U

∂x8
+ ch7

x C6(λ)
∂9U

∂t∂x8
+O((∆t + hx)8),

M6(λ) =
1

1008000
(1800 + 14700λ− 4900λ2 − 7000λ3 + 2100λ4 − 197λ5), (80)

C6(λ) =
1

864000
(−3100− 4100λ2 + 2100λ3 + 3300λ4 − 1200λ5 − 513λ6 + 126λ7).

As for schemes UW2 and UW4, the error terms in the modified equations for the sixth-order accurate
scheme begin with a dispersive term, followed by a dissipation term. A summary of the form of the modified
equations for the different schemes is given in the Section 5 (see Figure 13).

ξ

λ

Sixth−order scheme UW6: |z
+
|

 

 

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ξ

λ

Sixth−order scheme UW6: |z
−
|

 

 

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 10: Region of stability for the sixth-order accurate scheme UW6: contours of the magnitude of the two roots
z± as functions of the CFL parameter λ and the Fourier parameter ξ. The contour level 1 is shown as a thick black
line. The scheme first becomes unstable on ξ = ±π for λ ≈ .95.

4. Upwind schemes in two space dimensions

The one-dimensional upwind schemes devised in previous sections can be extended to more space di-
mensions and in this section we show how to construct schemes in two space dimensions. The generalization
to three space dimensions should be clear given the subsequent discussion. The approach in two-dimensions
will closely follow the developments of Section 3. The two-dimensional wave equation in second-order form
will be integrated in time and put into the form of a conservation equation for the displacement, u, and
velocity, v. Upwind flux functions in the x- and y-directions will be defined to be of the same form as
the one-dimensional upwind flux function (31). Space-time schemes will then be defined using the Cauchy-
Kowalewski procedure. Two-dimensional schemes with orders of accuracy up to four will be constructed and
analyzed.

Consider the initial-value problem for the following second order wave equation in two space dimensions

∂2u

∂t2
= Lu, x ∈ Ω, (81)

L ≡ c2
x

∂2

∂x2
+ c2

y

∂2

∂y2
, (82)

u(x, 0) = u0(x), ut(x, 0) = v0(x),

where x = (x, y), and u = u(x, y, t) = u(x, t) is the displacement. Let Ω = [0, 1]2 be the unit square and
take u to be periodic in both x and y directions. Furthermore, assume that cx and cy are constant, with
cx > 0 and cy > 0. As for the one-dimensional case, we introduce the velocity v(x, t) = ut(x, t) and rewrite
(81) as the equivalent system [

u
v

]
t

=
[

0
c2
xux

]
x

+
[

0
c2
yuy

]
y

+
[

v
0

]
. (83)
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4.1. Discretization in two space dimensions
Discrete approximations to (81) will be defined based on conservative finite differences. Introduce a

uniform Cartesian grid on Ω with (Nx +1)× (Ny +1) grid points. Let hx = 1/Nx and hy = 1/Ny denote the
grid spacings. Denote the grid cell centers by xi,j = (xi, yj) = ((i + 1

2 )hx, (j + 1
2 )hy), i = 0, 1, . . . , Nx − 1,

j = 0, 1, . . . , Ny − 1 and the grid vertices by xi− 1
2 ,j− 1

2
= (ihx, jhy), i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny. For

compactness we also write ui = ui,j and xi = xi,j where i = (i, j) is a multi-index.
Let un

i ≈ u(xi, t
n) and vn

i ≈ v(xi, t
n) denote discrete approximations to the displacement and velocity.

Let D+x, D−x, D+y, D−y, denote the forward, and backward divided difference operators in the x and y
directions, and ∆+x, ∆−x, ∆+y, and ∆−y the related undivided difference operators. Let A+x and A+y

denote the forward averaging operators in the x- and y-directions. For example, D+xwi = (wi+1,j−wi,j)/hx,
D−ywi = (wi,j − wi,j−1)/hy, ∆+ywi = (wi,j+1 − wi,j) and A+ywi = (wi,j+1 + wi,j)/2.

Following the procedure developed in Section 3, equation (83) is integrated in time over a time step ∆t
to obtain equations for v(x, tn+1) and u(x, tn+1) in terms of the solution at time tn. The continuous spatial
derivatives are transformed into the form of a discrete conservation law. This leads to the following formally
exact differential-difference equations for the solution,

v(x, tn+1) = v(x, tn) + c2
x∆t D+xFv

x (x− hx

2
, y, tn) + c2

y∆t D+yFv
y (x, y − hy

2
, tn), (84)

u(x, tn+1) = u(x, tn) + ∆t v(x, tn) + c2
x∆t2 D+xFu

x (x− hx

2
, y, tn) + c2

y∆t2 D+yFu
y (x, y − hy

2
, tn), (85)

where

Fv
x (x, tn) =

1
∆t

∫ ∆t

0

f̌x(x, tn + τ) dτ, Fv
y (x, tn) =

1
∆t

∫ ∆t

0

f̌y(x, tn + τ) dτ, (86)

Fu
x (x, tn) =

1
∆t2

∫ ∆t

0

∫ τ

0

f̌x(x, tn + τ ′) dτ ′ dτ, Fu
y (x, tn) =

1
∆t2

∫ ∆t

0

∫ τ

0

f̌y(x, tn + τ ′) dτ ′ dτ, (87)

and where the upwind flux functions are given by

f̌x(x +
hx

2
, y, tn + τ) ≡Dx

∂u

∂x
(x +

hx

2
, y, tn + τ)

+
1

2cx

[
Dxv+x(x +

hx

2
, y, tn + τ)−Dxv−x(x +

hx

2
, y, tn + τ)

]
,

f̌y(x, y +
hy

2
, tn + τ) ≡Dy

∂u

∂y
(x, y +

hy

2
, tn + τ)

+
1

2cy

[
Dyv+y(x, y +

hy

2
, tn + τ)−Dyv−y(x, y +

hy

2
, tn + τ)

]
.

Here the differential-difference operator Dy is defined in a similar way to Dx but for differences and derivatives
in the y-direction instead of the x-direction. The left and right biased velocity states are defined by

v+x(xi +
hx

2
, y, tn + τ) = Dxv(xi+1 −

hx

2
, y, tn + τ),

v−x(xi +
hx

2
, y, tn + τ) = Dxv(xi +

hx

2
, y, tn + τ),

v+y(x, yj +
hy

2
, tn + τ) = Dyv(x, yj+1 −

hy

2
, tn + τ),

v−y(x, yj +
hy

2
, tn + τ) = Dyv(x, yj +

hy

2
, tn + τ).

Following the developments in Section 3.1 we are led to

Proposition 4.1. Upwind approximations to the time averaged flux functions (86)-(87) are given by

Fv
x (xi+ 1

2
, yj , t

n) ≈ Fv
i+ 1

2 ,j(t
n,∆t) = F x(∆t, {1/(p + 1)}), (88)

Fv
y (xi, yj+ 1

2
, tn) ≈ Fv

i,j+ 1
2
(tn,∆t) = F y(∆t, {1/(p + 1)}), (89)

Fu
x (xi+ 1

2
, yj , t

n) ≈ Fv
i+ 1

2 ,j(t
n,∆t) = F x(∆t, {1/((p + 1)(p + 2))}), (90)

Fu
y (xi, yj+ 1

2
, tn) ≈ Fu

i,j+ 1
2
(tn,∆t) = F y(∆t, {1/((p + 1)(p + 2))}), (91)
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where

F x(τ, {kp}) =
∞∑

j=0

∞∑
m=0

αjh
2j
x

{
kmτm

m!
∂2j+1

x Lm(u, v)(xi+ 1
2
, yj , t

n)

+
1

2cx

m∑
n=0

(
m

n

)
km−nτm−n

m!

(hx

2

)n

∂n+2j
x [(−1)nLm−n+1(v, u)(xi+1, yj , t

n)− Lm−n+1(v, u)(xi, t
n)]

}
, (92)

F y(τ, {kp}) =
∞∑

j=0

∞∑
m=0

αjh
2j
y

{
kmτm

m!
∂2j+1

y Lm(u, v)(xi, yj+ 1
2
, tn)

+
1

2cy

m∑
n=0

(
m

n

)
km−nτm−n

m!

(hy

2

)n

∂n+2j
y [(−1)nLm−n+1(v, u)(xi, yj+1, t

n)− Lm−n+1(v, u)(xi, t
n)]

}
. (93)

Note that the operator Lm(u, v) in (92)-(93) is defined by (36), with L given by (82). The first few terms
in F x(τ, {kp}) and F y(τ, {kp}) are given by

F x(τ, {kp}) = k0
∂u

∂x
(xi+ 1

2
, yj , t

n) +
k0

2cx
∆+xv(xi, t

n) + k1τ
∂v

∂x
(xi+ 1

2
, yj , t

n)

+
k1τ

2cx
∆+xLu(xi, t

n)− k0hx

2cx
A+x

∂v

∂x
(xi, t

n) +O((hx + ∆t)2), (94)

F y(τ, {kp}) = k0
∂u

∂y
(xi, yj+ 1

2
, tn) +

k0

2cy
∆+yv(xi, t

n) + k1τ
∂v

∂y
(xi, yj+ 1

2
, tn)

+
k1τ

2cy
∆+yLu(xi, t

n)− k0hy

2cy
A+y

∂v

∂y
(xi, t

n) +O((hy + ∆t)2). (95)

As in one-dimension, Gaussian quadrature (44) can be used instead of exact integration in time which results
in the approximations

Fv
x (xi+ 1

2
, yj , t

n) ≈ Fv
i+ 1

2 ,j(t
n,∆t) =

M∑
j=1

bjF
x(ξj∆t, {1}),

Fu
y (xi, yj+ 1

2
, tn) ≈ Fu

i,j+ 1
2
(tn,∆t) =

M∑
j=1

djF
y(ξj∆t, {1}),

with similar expressions for Fv
y (xi, yj+ 1

2
, tn) and Fu

x (xi+ 1
2
, yj , t

n). The fully discrete scheme is then given by

vn+1
i = vn

i + c2
x∆t D+x

[
Fv

i− 1
2 ,j(t

n,∆t)
]
+ c2

y∆t D+y

[
Fv

i,j− 1
2
(tn,∆t)

]
, (96)

un+1
i = un

i + ∆t vn
i + c2

x∆t2 D+x

[
Fu

i− 1
2 ,j(t

n,∆t)
]
+ c2

y∆t2 D+y

[
Fu

i,j− 1
2
(tn,∆t)

]
. (97)

4.2. A first-order accurate scheme in two dimensions
A first-order accurate upwind scheme is defined using

F x(∆t, {kp}) ≈ k0
∂u

∂x
(xi+ 1

2
, yj , t

n) +
k0

2cx
∆+xv(xi, t

n),

F y(∆t, {kp}) ≈ k0
∂u

∂y
(xi, yj+ 1

2
, tn) +

k0

2cy
∆+yv(xi, t

n),

with the approximations

F x
i+1/2,j(∆t, k0) ≡ k0D+xun

i +
k0

2cx
∆+xvn

i ,

F y
i,j+1/2(∆t, k0) ≡ k0D+yun

i +
k0

2cy
∆+yvn

i .
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The scheme can be efficiently evaluated using Gaussian quadrature in time with M = 1 and quadrature node
ξ1 = 1

2 and b1 = 1, d1 = 1
2 , to give

F x,1

i− 1
2 ,j

= F x
i− 1

2 ,j(ξ1∆t, k0 = 1), F y,1

i,j− 1
2

= F y

i,j− 1
2
(ξ1∆t, k0 = 1),

gi = ∆t
(
c2
xD+xF x,1

i− 1
2 ,j

+ c2
yD+yF y,1

i,j− 1
2

)
,

vn+1
i = vn

i + gi,

un+1
i = un

i + ∆t vn
i +

∆t

2
gi.

Written out in detail, the scheme is (denoted by UW1-2D)

vn+1
i =vn

i + ∆t L2hun
i +

∆t

2
(cxhxD+xD−x + cyhyD+yD−y) vn

i , (98)

un+1
i =un

i + ∆t vn
i +

∆t2

2
L2hun

i +
∆t2

4
(cxhxD+xD−x + cyhyD+yD−y) vn

i , (99)

L2h ≡ c2
xD+xD−x + c2

yD+yD−y, (100)

where L2h is a second order accurate approximation to the operator L.

Lemma 4.2. The scheme UW1-2D (98)-(99) is first-order accurate and stable provided

∆t ≤
[

cx

hx
+

cy

hy

]−1

. (101)

Proof A normal mode stability analysis of the scheme is carried out by seeking solutions of the form[
un

µ,ν

vn
µ,ν

]
= zn

[
û
v̂

]
e2πi(kxxµ+kyyν),

This ansatz leads to the eigenvalue problem[
1− z − λ2

x

2 ξ̂2
x −

λ2
y

2 ξ̂2
y ∆t(1− λx

4 ξ̂2
x −

λy

4 ξ̂2
y)

− 1
∆t (λ

2
xξ̂2

x + λ2
y ξ̂2

y) 1− z − λx

2 ξ̂2
x −

λy

2 ξ̂2
y

] [
û
v̂

]
=

[
0
0

]
.

Here ξx = 2πkx/Nx with ξx ∈ [−π, π], ξy = 2πky/Ny with ξy ∈ [−π, π], ξ̂2
x = 4 sin2(ξx/2) and ξ̂2

y =
4 sin2(ξy/2). The two eigenvalues are

z± = 1− b±
√

b2 − a,

a = λ2
xξ̂2

x + λ2
y ξ̂2

y , b =
1
4
(a + λxξ̂2

x + λy ξ̂2
y).

Note that z± should approximate the exact solution e±iω∆t where ω∆t =
√

λ2
xξ2

x + λ2
yξ2

y . Expanding z± for

small |ξx| and |ξy| gives

z± = 1± i
√

λ2
xξ2

x + λ2
yξ2

y −
λx

4
(λx + 1)ξ2

x −
λy

4
(λy + 1)ξ2

y +O((ξx + ξy)3),

= e±iω∆t +O((ξx + ξy)2),

This shows that the scheme is first-order accurate. To determine the stability bounds consider the following
two cases. Case 1: when b2 < a, |z±|2 = 1 + a− 2b. Stability requires |z±| ≤ 1, or

λx(1− λx)ξ̂2
x + λy(1− λy)ξ̂2

y ≥ 0,

and this is satisfied provided λx ≤ 1 and λy ≤ 1. Case 2: when b2 ≥ a, |z±| ≤ 1 implies

−1 ≤ 1− b±
√

b2 − a ≤ 1
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which leads to the condition 4− 4b + a ≥ 0 or

λxξ̂2
x + λy ξ̂2

y ≤ 4.

Since ξ̂2
x ≤ 4 and ξ̂2

y ≤ 4 it follows that for stability

λx + λy ≤ 1,

which leads to the time step restriction (101). This condition is more restrictive than that for Case 1 and
thus is the required stability condition. Note that as in one-dimension, the most unstable modes are the
highest frequency modes, ξx = ±π and ξy = ±π. �

The modified equation for the two-dimensional first-order scheme UW1-2D is found to be

∂2U

∂t2
= c2

x

∂2U

∂x2
+ c2

y

∂2U

∂y2
+

cxhx

2
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∂t∂x2
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∂t∂y2
+

c2
xh2

x

12
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∂x4

+
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12
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∂y4
+

hxhycxcy

12
(4λxλy − 3λx − 3λy)

∂4U

∂x2∂y2
+O((∆t + hx + hy)3), (102)

with V satisfying the same equation. The first set of error terms in (102) (those with coefficients proportional
to hx or hy) are the dissipation terms (provided λx ≤ 1 and λy ≤ 1). The subsequent terms (with coefficients
proportional to h2

x, hxhy or h2
y) are dispersion terms.

4.3. A second-order accurate scheme and a high-resolution scheme in two dimensions
Second-order accurate and high-resolution schemes in two dimensions can be defined by keeping the first

five terms in (94) and (95),

F x(∆t, {kp}) ≈ k0
∂u

∂x
(xi+ 1

2
, yj , t

n) +
k0

2cx
∆+xv(xi, t

n)
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2
, yj , t

n) +
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∆+xLu(xi, t

n)− k0hx
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n),

F y(∆t, {kp}) ≈ k0
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2
, tn) +

k0

2cy
∆+yv(xi, t

n)

+ k1∆t
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2
, tn) +

k1∆t

2cy
∆+yLu(xi, t

n)− k0hy

2cy
A+y

∂v

∂y
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n),

and approximating these with

F x
i+1/2,j(∆t, k0, k1) ≡ k0D+xun

i +
k0

2cx
∆+xvn

i

+ k1∆tD+xvn
i +

k1∆t

2cx
∆+xL2hun

i −
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2cx
A+xSL(D−xvn

i , D+xvn
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F y
i,j+1/2(∆t, k0, k1) ≡ k0D+yun

i +
k0

2cy
∆+yvn

i

+ k1∆tD+yvn
i +

k1∆t

2cy
∆+yL2hun

i −
k0hy

2cy
A+ySL(D−yvn

i , D+yvn
i ).

The unlimited second-order accurate scheme (denoted by UW2-2D) uses SL(a, b) = (a+ b)/2 while the high-
resolution scheme (denoted by HR2-2D) uses SL(a, b) = MinMod(a, b) (equation 59). The approximation
can be efficiently evaluated using Gaussian quadrature in time with M = 1 and quadrature node ξ1 = 1

2
(b1 = 1, d1 = 1

2 ) using

F x,1

i− 1
2 ,j

= F x
i− 1

2 ,j(ξ1∆t, {1}), F y,1

i,j− 1
2

= F y

i,j− 1
2
(ξ1∆t, {1}), (103)

gi = ∆t
(
c2
xD+xF x,1

i− 1
2 ,j

+ c2
yD+yF y,1

i,j− 1
2

)
, (104)

vn+1
i = vn

i + gi, (105)

un+1
i = un

i + ∆t vn
i +

∆t

2
gi. (106)
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Lemma 4.3. The unlimited scheme UW2-2D (103)-(106) (with SL(a, b) = (a + b)/2) is second-order accu-
rate and stable provided

∆t ≤
1
2 (c̃x + c̃y)

[√
5 + 2c̃xc̃y

(c̃x+c̃y)2 − 1
]

c̃2
x + c̃2

y

, (107)

where c̃x = cx/hx and c̃y = cy/hy.

Proof For the second-order accurate unlimited scheme, normal mode analysis leads to the eigenvalue prob-
lem, [

1− z − 1
2γ + 1

8η ∆t(1− 1
4γ − 1

16ζ)
− 1

∆t (γ −
1
4η) 1− z − 1

2γ − 1
8ζ

] [
û
v̂

]
=

[
0
0

]
,

where

γ ≡ λ2
xξ̂2

x + λ2
y ξ̂2

y , δ ≡ λxξ̂2
x + λy ξ̂2

y , η ≡ δγ, ζ ≡ λxξ̂4
x + λy ξ̂4

y .

The two eigenvalues z = z± are given by

z± = 1− b±
√

b2 − a,

a = γ(1− 1
4
δ), b =

1
2
(γ − 1

8
η +

1
8
ζ).

Expanding z± for small |ξx| and |ξy| we obtain

z± = 1± iW +
1
2
(iW )2 +O((ξx + ξy)3),

= e±iω∆t +O((ξx + ξy)3),

where W =
√

λ2
xξ2

x + λ2
yξ2

y and ω∆t = W . This shows that the scheme is second-order accurate. To analyze

the stability of the scheme consider the two cases. Case 1: if b2 < a then

|z±|2 = 1 + a− 2b

= 1− 1
8
(η + ζ) ≤ 1,

and the scheme is always stable since η ≥ 0 and ζ ≥ 0. Case 2: if b2 ≥ a then

−1 ≤ 1− b±
√

b2 − a ≤ 1

which leads to the condition 4− 4b + a ≥ 0 or

γ +
1
4
ζ ≤ 4.

The left hand side of this last expression is maximized when ξx = ±π and ξy = ±π and this leads to the
stability condition

λ2
x + λ2

y + λx + λy ≤ 1.

In terms of a condition on ∆t this implies (107). �

The modified equation for U for the scheme UW2-2D is determined to be (the equation for V is the same
as that for U),

∂2U

∂t2
= c2

x

∂2U

∂x2
+ c2

y

∂2U

∂y2

+ c2
xh2

x M2(λx)
∂4U

∂x4
+ c2

yh2
y M2(λy)

∂4U

∂y4
+

cxcyhxhy

12
(3λx + 3λy − 2λxλy)

∂4U

∂x2∂y2
(108)

+ cxh3
x C2(λ2

x)
∂5U

∂t∂x4
+ cyh3

y C2(λy)
∂5U

∂t∂y4
− λxλyhxhy

8
(cyhx + cxhy)

∂5U

∂t∂x2∂y2
(109)

+O((∆t + hx + hy)4),

where M2 and C2 are given by (62). The first set of error terms (108) represent dispersive terms while the
second set (109) are the ones that add dissipation.
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4.4. A fourth-order accurate scheme in two dimensions
A fourth-order accurate upwind scheme is derived following the process developed in previous sections.

These are a straightforward extension of the fourth-order accurate scheme in one-dimension defined in Sec-
tion 3.4. Written out in detail, the fourth-order accurate upwind scheme (denoted by UW4-2D) that uses
Gaussian quadrature in time with M = 2, is given by

vn+1
i = vn

i + ∆t Gi(k0 = 1, k1 =
1
2
, k2 =

1
3
, k3 =

1
4
), (110)

un+1
i = un

i + ∆tvn
i + ∆t2 Gi(k0 =

1
2
, k1 =

1
6
, k2 =

1
12

, k3 =
1
18

), (111)

Gi(kp) = k0 L4hun
i + k1∆t L4hvn

i +
k2

2
∆t2 L2

2hui +
k3

6
∆t3 L2

2hvi

+
5k0

288
(
cxh5

x(D+xD−x)3 + cyh5
y(D+yD−y)3

)
vi −

k1

8
∆tMhui +

k1

24
∆tNhui

− k2

12
∆t2Mhvi +

k2

48
∆t2Nhvi +

k3

12
∆t3

(
cxhxD+xD−x + cyhyD+yD−y

)
L2

2hui. (112)

where

L4h ≡ c2
xD+xD−x(1− h2

x

12
D+xD−x) + c2

yD+yD−y(1−
h2

y

12
D+yD−y),

Mh ≡
(
cxh3

x(D+xD−x)2 + cyh3
y(D+yD−y)2

)
L2h,

Nh ≡ cxcy(cyhx − cxhy)(D+xD−x)(D+yD−y)
(
h2

xD+xD−x − h2
yD+yD−y

)
.

Note that L4h is a fourth-order accurate discretization of the operator L.
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Figure 11: Stability region for the two-dimensional fourth-order accurate scheme UW4-2D. The black curve denotes
the boundary of the stability region. The red and blue curves denote the stability regions for high- and low-wave
numbers, respectively. The dashed blue curve denotes the simplified curve which is used in practice to determine the
time-step ∆t.

Lemma 4.4. The upwind scheme UW4-2D (110)-(112) is fourth-order accurate and stable provided

∆t ≤ Λ(2d)
4[(

cx

hx

)σ

+
(

cy

hy

)σ]1/σ
, (113)

where Λ(2d)
4 = 1.075 and σ = 2.175. Note that this bound is not strict.
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Proof The proof of accuracy and stability follows as for the second-order accurate scheme and we are led
to the analysis of the two roots z± = z±(λx, λy, ξx, ξy). Expanding z± for small |ξx| and |ξy| yields

z± = 1± iW +
1
2
(iW )2 ± 1

3!
(iW )3 +

1
4!

(iW )4 +O((ξx + ξy)5),

= eiω∆t +O((ξx + ξy)5),

where W =
√

λ2
xξ2

x + λ2
yξ2

y . This shows that the solution is fourth-order accurate. For stability, we analyze
the magnitudes of the roots z±. The results are summarized in Figure 11. There are four curves shown in
this figure. The black curve, labeled Overall stability, is the level 1 contour of the function

Z(λx, λy) = max
|ξx|≤π,|ξy|≤π

|z±(λx, λy, ξx, ξy)| .

To determine this contour, the function Z was evaluated numerically by choosing a fine discretization in
ξx, ξy, λx and λy. The scheme is stable where Z(λx, λy) ≤ 1. The green curve, labeled Low-wave number
stability, is the stability curve for |ξx| � 1 and |ξy| � 1 (an analytic expression for this curve can be
determined from an analysis of the function Z for small ξx and ξy). Recall that in one-dimension, the
stability of the scheme is determined for small values of ξ. In two-dimensions these low modes determine the
stability when λx ≤ θλy or λy ≤ θλx where θ ≈ 0.59. The red curve, labeled High-wave number stability,
is the stability curve for the high-frequency modes ξx = ±π and ξy = ±π (the analytic expression for this
curve can also be found). The red curve determines the stability bound when λx > θλy and λy > θλx. The
blue curve, labeled Simplified stability, was determined by assuming the form

λσ
x + λσ

y = bσ.

and looking for appropriate values for b and σ. The choice b = 1.075 and σ = 2.175 was found to give a
curve that is a good approximation to (but falls within) the overall stability curve. These choices of b and
σ lead to the condition (113). �

5. Accuracy, stability, points per wavelength and remarks

This section summarizes some of the properties of the upwind schemes which have been developed. The
stability bounds, normal mode error formulae and the form of the modified equations for the different schemes
are presented. In addition, the accuracy requirements of the schemes in terms of points per wavelength are
discussed. The section ends with a few more general remarks.

Figure 12 lists the time-step restriction in terms of the stability bounds, c∆t/hx ≤ Λp, for the different
schemes in one-dimension. The figure also shows the stability regions for the two-dimensional schemes with
orders of accuracy one, two and four. Note that the fourth-order scheme has a maximum stable time step
that is approximately twice that of the second-order scheme (along the axis λx = λy in two-dimensions the
stability bounds for the second- and fourth-order schemes are .52 and 1.1 respectively). As a result, we find
that the increased work associated with the fourth-order scheme is nearly offset by the larger allowable time
step.

Remark. We note that the variation in the maximum stable time-step for the various schemes is quite
large. There is a significant difference even between schemes UW1a and UW1, despite the fact that these
two schemes are both first-order accurate and use the same number of points in the discretization stencil.
For a given accuracy, upwind schemes use a wider stencil than would be needed by a compact centered
scheme. There is thus more room for variation in upwind schemes which likely leads to more variation in
the time-step restriction. We contrast this with the compact high-order accurate centered schemes for the
second-order wave equation presented in [21] where the maximal stable time-step is independent of the order
of accuracy, or the high-order accurate schemes for the scalar first-order wave equation where the compact
odd-order schemes are all stable to a CFL number of one [22].

The accuracy of a numerical scheme for wave propagation problems can be described in terms of the
number of points per wavelength, Nλ, that are required to propagate a plane wave solution for a time of
T periods and to a relative error of ε. This measure of accuracy was originally proposed by Kreiss and
Oliger [23] and has subsequently found wide-spread use. The general form of Nλ for a pth-order accurate
scheme to the first-order wave equation is [24]

Nλ ≈ Kp

(
T/ε

)1/p
, (114)
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Stability bounds
p scheme Λp

1a UW1a .809
1 UW1 1
2 UW2 .618
4 UW4 1.09
6 UW6 .95
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Figure 12: Left: stability bounds, c∆t/hx ≤ Λp, for the one-dimensional upwind schemes with orders of accuracy one
to sixth. Right: stability regions for the two-dimensional upwind schemes with orders of accuracy one to four.

where the parameter Kp depends on the details of the scheme. Let N (p)
λ denote the number of points per

wavelength required by the pth-order accurate upwind schemes for the second-order wave equation. The
form (114) also applies to the second-order wave equation (as shown below) and Kp can be determined for
our upwind schemes. The results are summarized in Figure 13 which not only shows Kp for the different
schemes but also presents the relationships between the coefficients in the modified equation, the accuracy of
the normal-mode analysis eigenvalues z± and the number of points-per-wavelength, N (p)

λ . The results show
that the parameter Mp(λ) that appears in the leading error term in the modified equation also appears in
the error of the eigenvalues z± and the equations for N (p)

λ . To understand the reason for these relationships
we can look for solutions of the form ei(kx−ωpt) to the modified equation (120) (valid for p = 2, 4, 6), which
gives the dispersion relation for the modified equation,

ω2
p ≈ c2k2 − c2Mph

p
x(ik)p+2 +O(hp+1

x ), (115)

whence,

ωp ≈ ±ck(1 +
1
2
Mph

p
x(ik)p) +O(hp+1

x ). (116)

Thus, denoting the exact solution as ω = ±ck, and noting that ξ = khx and λ = c∆t/hx, it follows that

eiωp∆t − eiω∆t = ±ick∆t
1
2
Mph

p
x(ik)p +O(∆t2hp

x),

= ±ip+1 λ

2
Mpξ

p+1 +O(∆t2hp
x). (117)

Solutions to the modified equation should accurately approximate solutions to the difference equations for
ξ � 1 and thus we expect that z = eiωp∆t + O(∆thp+1

x ). Since ω∆t = λξ, equation (117) thus agrees
with (121) (for p = 2, 4, 6). Note that (121) was independently determined from the discrete approximations
and normal mode theory.

The number of points per wavelength is defined from the error in computing the plane wave solution
eik(x±ct) over T periods. If ε is the relative error at time t = n∆t, then from (121),

ε ≈ nλ

2
|Mpξ

p|. (118)

The number of points per wavelength N
(p)
λ is related to ξ by ξ = 2π/N

(p)
λ . Since the period of the wave is

P = 2π/(ck) and the number of periods T at time t is T = t/P it follows that

ε ≈ π|Mp|(2π)p T

N
(p)
λ

, (119)
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which gives (122).
In Figure 14 we plot the parameters Kp(λ) versus λ for λ ∈ [0, 1]. These results show that the accuracy

of the UW1 scheme is poor for small λ but very good as λ approaches 1. The accuracy of UW2 improves
somewhat as λ becomes smaller, while the accuracy of the UW4 and UW6 schemes do not vary much with
λ. Figure 14 also shows plots of N (p)

λ versus ε/T for λ = 0.5. The results show the dramatic decrease in
N (p)

λ for the high-order accurate schemes, especially when ε/T is small (i.e. small error tolerances or long
time integrations). For example, with ε/T = 10−4 the scheme UW1 would require approximately 50, 000
points per wavelength to achieve the same accuracy as the scheme UW6 using approximately 15 points per
wavelength.

∂2U

∂t2
= c2 ∂2U

∂x2
+ c2 Mp(λ)hp

x

∂p+2U

∂xp+2
+ c Cp(λ)hp+1

x

∂p+3U

∂t∂xp+2
+O(hp+2

x ), p = 2, 4, 6, (120)

z± − e±iλξ = (±i)p+1 λ

2
Mp(λ) ξp+1 +O(ξp+2), p = 1, 2, 4, 6, (121)

N (p)
λ ≈ Kp

(
T/ε

)1/p
, Kp = 2π

(
π|Mp(λ)|

)1/p

, p = 1, 2, 4, 6. (122)

p scheme Mp(λ)

1 UW1 1
2 (1− λ)

2 UW2 1
12 (1 + 3λ− λ2)

4 UW4 1
2600 (−24− 135λ + 60λ2 + 45λ3 − 16λ4)

6 UW6 1
1008000 (1800 + 14700λ− 4900λ2 − 7000λ3 + 2100λ4 − 197λ5)

Figure 13: The relationship between the coefficients Mp(λ), the general form of the modified equations (120), the

mode analysis solutions z± and the number of points per wavelength N (p)
λ for the upwind schemes of different orders

of accuracy. Note that the modified equation for p = 1 is the only one not of the form (120).
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Figure 14: Points per wavelength. Left: the points per wavelength parameters Kp as a function of the CFL parameter
λ. Right: the points per wavelength requirements of the different schemes as a function of ε/T for λ = 0.5.

We conclude this section with some short remarks.

Remark 1: Cache efficiency: The space-time schemes are one-step schemes and can be made very efficient
in terms of access to the computer memory and cache. The entire solution can be updated in a single loop,
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thus passing through the data a single time. We have used automatic code generation to produce optimized
routines for the schemes from symbolic representations of the approximations (using the Maple symbolic
algebra package).

Remark 2: Storage requirements: The storage required to implement the upwind schemes developed
herein is essentially equivalent to that required for the standard C2 scheme (17), even though the additional
variable v has been introduced. An efficient implement of the C2 scheme requires just two time levels to be
stored, un

i and un−1
i . However, an efficient implementation of the upwind schemes (even in multiple space

dimensions) only requires storage for un
i and vn

i , plus some small additional lower-dimensional work space.
Therefore the standard and upwind schemes have asymptotically the same storage requirements.

Remark 3: Method of lines: Method-of-lines upwind schemes using Runge-Kutta or multi-step methods
can be defined in a straight-forward manner from the developments presented here.

Remark 4: Confirmation of the stability bounds: The analytically derived stability bounds of the one-
and two-dimensional schemes were confirmed numerically to within one percent.

Remark 5: Use of the upwind flux: Interestingly, the use of the upwind flux is found to be critical to
the stability of all but the second-order accurate scheme. In particular, if the upwind flux, formula (31)
is replaced by a flux that does not include the second term involving the jump in v, then the resulting
algorithms, with the exception of the second-order algorithm, will be unconditionally unstable for any time
step. The resulting second-order accurate algorithm is neutrally stable with an amplification factor whose
magnitude is uniformly one.

6. Numerical examples

We now present some numerical results to demonstrate the accuracy and behavior of the upwind schemes
for the second-order wave equation. We begin in Section 6.1 by examining the errors and convergence rates
of the schemes in one dimension for a traveling sine wave exact solution. The convergence rates for the more
difficult top-hat problem, introduced previously, are presented in Section 6.2. The behavior of the schemes
for a smooth two-dimensional surface wave problem with known solution is studied in Section 6.3. Finally
in Section 6.4 we show results for a difficult two-dimensional version of the top-hat problem.

Convergence of the approximations will be measured using the L∞-norm (max-norm) and the discrete
L1-norm. In general, the discrete Lp-norm of a grid function ui is defined as

‖ui‖p =

[
1
N

∑
i

|ui|p
]1/p

,

where the sum is taken over all grid points and N is the total number of grid points. In subsequent discussions
the terms L∞-norm and L1-norm will be used to indicate the corresponding discrete norms.

6.1. One-dimensional traveling sine wave
The exact solution of a traveling sine wave, u(x, t) = sin (π(x− ct)), can be used to demonstrate the

accuracy of the upwind schemes in one dimension. The problem is solved on the periodic interval [−1, 1]
with c = 1 and integrated to a final time t = 2 (one period). For each scheme, the time-step is chosen to be
0.9 times the maximum allowable time-step for that scheme (i.e. a CFL number of 0.9). Figure 15 shows
the results of a convergence study for the first-order (UW1), second-order (UW2), fourth-order (UW4), and
sixth-order (UW6) accurate schemes for this problem for a sequence of meshes with increasing resolution.
Results are shown for the L∞-norm (max-norm) of the error. The four scheme are seen to converge as
expected. Given that the additional cost per time-step to evaluate the high-order schemes is not much more
than the lower order accurate schemes, these results show the clear benefit of using high-order accurate
schemes in terms of the effort required to reach a required level of accuracy.

The behavior of the high-resolution scheme HR2 compared to the second-order accurate scheme UW2
for this problem is presented in Figure 16 where both the max- and L1-norms of the error are shown. From
the figure it is clear that the second-order scheme converges as expected, but the convergence character
of the high-resolution scheme is somewhat more complex. For the high-resolution scheme, u converges at
second order for both L1- and L∞-norms. However, the velocity v converges as O(h2

x) in the L1-norm but
the degraded rate of O(h4/3

x ) for the L∞-norm. This somewhat surprising behavior is the result of the sharp
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Figure 15: Traveling sine wave: convergence results for the L∞-norm errors at t = 2.0. Results are presented for the
first-, second-, fourth-, and sixth-order accurate schemes. Reference lines of the corresponding order are displayed in
black. At left are the results for u and at right the results for v.
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Figure 16: Traveling sine wave: convergence results for the L∞-norm and L1-norm errors for the UW2 and HR2
schemes showing the degradation in convergence for the velocity in the HR2 scheme due to the limiter. Left: results
for u. Right: results for v. The L∞-norm errors for v are seen to converge at a rate p = 4/3. All other cases converge
at p = 2.

switch introduced by the MinMod limiter and is similar to behavior exhibited by high-resolution schemes
for the first-order system [25].

6.2. One-dimensional top-hat problem
The top-hat problem was introduced earlier in Section 2. The initial conditions are (13)-(14) and the

exact solution is given by (15)-(16). As noted previously, this is a very difficult problem since the solution
for u does not have a continuous first derivative, while v is defined in terms of Dirac delta functions. The
behavior of the discrete solution using all five schemes is shown in Figure 17. This is a rather weak solution
and it is somewhat surprising that a numerical method can provide reasonable approximations in this regime.
Nonetheless we see that all methods provide quite good results. The trend from low to high order is clear
from the plots. Also clear is the effect of using the limiter in the high-resolution scheme where the oscillations
near the discontinuity are significantly suppressed in comparison to the unlimited second order scheme. We
would like to draw particular attention however, to the high quality of the results even for the high order
schemes. The sixth-order scheme for instance has surprisingly mild oscillations near the discontinuity while
capturing the jump with only a few points. Similar phenomenology is discussed in [26, 22] for discretizations
of the first-order wave equation. Also note that the size of the discrete spike for the Dirac delta function in
v is a rather good indicator of the resolving power of the various schemes.

Although the L1-norm errors are a good measure of the convergence of u, it is not a good measure for
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Figure 17: Top-hat: numerical solutions using the first-order (UW1), second-order (UW2), second-order high-
resolution (HR2), fourth-order (UW4), sixth-order (UW6) schemes. The solutions for u (top) and v (bottom) are
shown at t = 0.5, computed using N = 201 grid points.

the convergence of the delta functions in v. Instead we measure the L1-norm error in the integral of v,

v̂(x, t) =
∫ x

−∞
v(ξ, t) dξ

which is in some sense a measure of the size and location of the delta functions in v. Figure 18 shows the
convergence character of the five schemes for u and v̂. All the schemes under consideration converge at
the rate O(hp/p+1

x ) where p is the nominal convergence rate for the scheme for smooth problems. These
are the expected convergence rates for numerical approximations to the first-order system with jump initial
data [25].

6.3. A two-dimensional surface wave problem
Surface waves are an interesting phenomena associated with wave equations and we consider the numeri-

cal simulation of such a wave as a verification of our upwind schemes in two-dimensions. Consider the initial
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Figure 18: Top-hat: L1 convergence of u and V =
R x

−∞ v(ξ, t) dξ at t = 0.5. The solid black lines are drawn for
reference and have slopes p

p+1
for p = 1, 2, 4, 6.

boundary value problem for the second-order wave equation in two-dimensions,

∂2u

∂t2
= c2

x

∂2u

∂x2
+ c2

y

∂2u

∂y2
, x ∈ (−π, π)× (−∞, 0), (123)

u(x, y, 0) = u0(x, y),
∂u

∂t
(x, y, 0) = v0(x, y), (124)

∂u

∂y
(x, 0, t) = αu(x, 0, t), u(x + 2π, y, t) = u(x, y, t), (125)

where α ∈ R. We look for traveling surface wave solutions to these equations of the form u = eβyei(kx−ωt)

which are periodic in x and decay to zero as y → −∞. Solutions of this type do exist and are given by

u(x, y, t) = Akeαy cos(kx± ωt + φk), k = 0,±1,±2, . . . , (126)

where Ak and φk are constants and where ω satisfies the dispersion relation ω =
√

c2
xk2 − c2

yα2. Solutions

that remain bounded in time and decay to zero as y → −∞ require 0 < α ≤ (cx/cy)k and A0 = 0 (since
the k = 0 mode with grow exponentially in time if α 6= 0). The phase velocity of the surface waves (126) is
given by

cs ≡
ω

k
=

√
c2
x −

c2
yα2

k2
. (127)

The waves are dispersive with long wave lengths (k small) propagating more slowly than short wavelengths (k
large). Note that mode k becomes stationary if α = cx

cy
k, while the speed of propagation of short wavelengths

approaches cx as k →∞.
Equations (123)-(125) are solved numerically for the displacement, un

i , and velocity, vn
i , with initial

conditions for u0
i and v0

i taken from the exact solution at t = 0. At y = 0, boundary conditions are applied
to both displacement and velocity. The boundary condition uy(x, 0, t) = αu(x, 0, t) is differentiated with
respect to time to yield vy(x, 0, t) = αv(x, 0, t). For the first- and second-order accurate schemes, UW1, UW2,
and HR2, the boundary conditions are imposed using a second- and fourth-order accurate approximation to
uy(x, 0, t) = αu(x, 0, t),

1
2hy

(
un

i,j+1 − un
i,j−1

)
= αun

i,j , (128)

1
12hx

(
un

i,j−2 − 8un
i,j−1 + 8un

i,j+1 − un
i,j+2

)
= αun

i,j , (129)

where j is the index corresponding to the cell with center on the boundary y = 0 and j + 1 and j + 2 denote
the indicies of the first and second ghost cells. Similar equations are used for vn

ij . Equations (128)-(129)
are used to determine the values of un

i on two lines of ghost cells, ui,j+1 and ui,j+2. Note that the interior
equation is solved on the boundary cells (i, j).
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For the fourth-order accurate scheme, high-order compatibility conditions are derived by repeated dif-
ferentiation of the boundary condition with respect to time which yields the conditions uyyy(x, 0, t) =
αuyy(x, 0, t) and vyyy(x, 0, t) = αvyy(x, 0, t). The values on three ghost lines for the fourth-order accurate
scheme UW4 are determined from a fourth- and sixth-order accurate approximation to uy(x, 0, t) = αu(x, 0, t)
together with a second-order accurate approximation to uyyy(x, 0, t) = αuyy(x, 0, t),

1
12hy

(
un

i,j−2 − 8un
i,j−1 + 8un

i,j+1 − un
i,j+2

)
= αun

i,j ,

1
2h3

y

(
−un

i,j−2 + 2un
i,j−1 − 2un

i,j+1 + un
i,j+2

)
=

α

12h2
y

(
−un

i,j−2 + 16un
i,j−1 − 30un

i,j + 16un
i,j+1 − un

i,j+2

)
,

1
60hy

(
−un

i,j−3 + 9un
i,j−2 − 45un

i,j−1 + 45un
i,j+1 − 9un

i,j+2 + un
i,j+3

)
= αun

i,j . (130)

Similar equations are used to obtain the values of vn
i at the ghost points. For practical reasons, the domain

is truncated in the y-direction to the interval y ∈ [−2π, 0]. The exact solution is imposed at y = −2π so
that any possible errors arising from the artificial truncation of the domain are eliminated. To prevent any
exponential growth from the k = 0 mode the approximate solution is projected on the boundary y = 0 to
satisfy a discrete approximation to

∫ π

−π
u(x, 0, t) dx = 0.

This problem is solved numerically using the parameters k = 1, cx = 1/2, cy = 1, α = 0.4 and A1=1. For
these parameters, the speed of the surface wave is cs = 0.3. Numerical approximations are generated using
schemes UW1-2D, UW2-2D, HR2-2D and UW4-2D. In each case a CFL number equal to 0.9 is used, (i.e.
at 90% of the maximum stable limit as given in equation (101) for the first-order scheme, equation (107) for
the second-order scheme, and equation (113) for the fourth-order scheme). Figure 19 shows contour plots of
the solution at t = 5 for both u and v.

−1 u 1 −.3 v .3

Figure 19: Surface wave solutions of the form (126) for k = 1 at t = 5. At left is displacement u and at right the
velocity v.

Figure 20 shows contours of the error in the computed results for the three methods at t = 5 using 800
grid cells in the x and y directions. A convergence study of the L∞-norm errors at t = 5 for the displacement
and velocity is shown in Figure 21. The errors in displacement and velocity all converge at the expected
rates of p for the pth-order accurate schemes.

Note that in contrast to the case of the traveling sine wave in Section 6.1 when the velocity for the HR2
scheme converged at a degraded rate of 4/3 in the max-norm, in this case the velocity converges at a rate of
2 in the max-norm. The reason for this curious result is traced to the fact that the surface wave is traveling
at a different speed, cs, than the characteristic wave speed in the x-direction, cx. Indeed, the 4/3 rate is
reproduced for α = 0 when cs = cx. For the case cs = cx, the errors generated by the limiter (which are
localized near maxima and minima in the solution) move with the solution. The errors near the maximum
or minimum thus accumulate over time, resulting in a degradation to the maximum norm convergence rates.
On the other hand when the speeds cs and cx are different, the errors introduced by the limiter do not
coincide with previous errors and thus the errors are more spread out; the maximum norm errors are not
degraded in this case.

6.4. A top-hat problem in two space dimensions
As a final example consider the solution to a two-dimensional version of the top-hat problem. We solve

the two-dimensional second-order wave equation (81) on the domain [−π, π] × [−2π, 0] and take cx = 1/2,
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Figure 20: Errors in u and v at t = 5 using 800 grid cells in the x and y directions. On top are errors in displacement
while on bottom are those for velocity. From left to right the results were computed using the first-order scheme,
UW1-2D, the second-order scheme, UW2-2D, the high-resolution scheme, HR2-2D, and the fourth-order scheme,
UW4-2D. Note the changing scales of the color tables for each contour plot.
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Figure 21: Surface wave: convergence results for the L∞-norm errors in u (left) and v (right) at t = 5.

cy = 1. The initial conditions are chosen to be

v(x, y, 0) = 0, u(x, y, 0) =
{

1 if x2 + (y + 2)2 < 1,
0 otherwise.

Periodic boundary conditions are applied in the x-direction, and a zero normal derivative is applied at the
top and bottom boundaries. The numerical approximations to the normal derivative boundary conditions
are given as in Section 6.3 with α = 0.

Figure 22 shows the computed results using the fourth-order accurate scheme, UW4-2D, at times t = 0,
t = 1.5, and t = 3.0. The solution was computed using 6400 points in the x- and y-directions. The superim-
posed black contour lines for the images of u illustrate the remarkably smooth nature of the approximation
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Figure 22: Two-dimensional top-hat: Time evolution of u (top) and v (bottom) using the fourth-order accurate
method UW4-2D with 6400 points in each coordinate direction.

(contour lines being a sensitive indicator of oscillations in the solution). Note that to present the results
more clearly, small regions where u becomes large and negative have been clipped to blue, while both large
positive and large negative values of v have been clipped to pink and blue, respectively.

In order to compare the relative merits of the various schemes, Figure 23 shows contours of the displace-
ment for the four schemes, UW1-2D, UW2-2D, HR2-2D and UW4-2D. Results are shown from a coarse grid
computation that used 100 cells in each direction and for a slightly finer grid computation that used 200
cells per coordinate direction. Note that these figures use the same scale as the very fine computation in
Figure 22. In all cases, the schemes are giving results that are converging toward the very fine grid solution.
The figures show the clear benefit of using the high-order accurate upwind schemes. The basic structure of
the solution can be seen in the results from the first-order accurate scheme, but the results from the fourth-
order accurate scheme show much more detail. There is some evidence of minor oscillations in the UW2-2D
and UW4-2D schemes near the solution discontinuities (the HR2-2D seems to suppress these oscillations),
but these are consistent with the one-dimensional top-hat results.

Figure 24 shows plots of the displacement and velocity along the top boundary at y = 0 for the four
schemes. These results are from a fine grid computation which used 1600 cells in each direction. This figure
shows the much enhanced resolving power of the fourth-order accurate scheme compared to the lower order
accurate schemes. Indeed, from a points per wavelength argument (see Section 5) the first- and second-order
accurate schemes would require on the order of 16004 and 16002 grid points respectively in each direction
to obtain similar results to the fourth-order accurate scheme. We note that the fine feature near the center
of the plot is almost completely lost in results from the first-order accurate scheme. There is a clear trend
in improved resolution moving from UW1-2D, to HR2-2D, to UW2-2D and UW4-2D. The HR2-2D scheme
does a reasonably good job of representing the discontinuity near the upper right (enlarged figure shown)
with minor oscillations. The UW2-2D and UW4-2D schemes show some oscillations at this discontinuity but
these are relatively mild.
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Figure 23: Two-dimensional top-hat: Contours of u at t = 3 for the four schemes; from left to right: first-order
accurate UW1-2D, second-order accurate UW2-2D, high-resolution HR-2D, and fourth-order accurate UW4-2D. At
top are results using 100 points in each coordinate direction and at bottom are results using 200.

7. Conclusions

We have presented a methodology to construct upwind discretizations for the wave equation in second-
order form that avoids reformulating the problem as a first-order hyperbolic system. To motivate the
approach, we demonstrated how a first-order accurate upwind scheme could be developed by using the
d’Alembert solution of the second-order wave equation to exactly advance a piecewise smooth representation
of the solution. The piecewise smooth solution at the new time was then defined by integrating the exact
solution over a cell.

To generalize the approach we showed how the solution to a local Riemann problem at cell faces can be
used to define the upwind flux on the face given approximations to left and right biased states on the face.
This localized form is the key ingredient needed for generalizing the scheme to multiple space dimensions,
high-order accuracy, variable coefficients and systems of equations (we leave variable coefficients and systems
to future work). Using the localized form of the upwind flux we then showed how to develop efficient space-
time schemes in one or more space dimensions to arbitrary order of accuracy. A method-of-lines approach
could also be used, although we did not pursue that approach here.

In one space dimension we developed and analyzed schemes with orders of accuracy one, two, four and
six. A second-order accurate nonlinear high-resolution scheme based on limiters was also developed. Normal
mode analysis was used to determine the accuracy of the schemes and the stability bound on the time-steps.
Modified equations were used to elucidate the dissipative and dispersive nature of the upwind schemes. The
relationships between the modified equations, the solution error and the accuracy requirements in terms
of points per wavelength were also described. In two dimensions we developed and analyzed schemes with
orders of accuracy one, two and four along with a second-order accurate high-resolution scheme. A series of
numerical tests confirmed the theoretical results and also demonstrated some of the attractive properties of
the schemes.

There are a variety of avenues to consider in future work. Two important areas are the extension of the
approach to variable coefficients and to systems of second-order wave equations such as Maxwell’s equations
written in second-order form [12], or the elastic wave equation and nonlinear extensions thereof. To address
geometric complexity we will develop approximations for curvilinear grids which can be used in the context of
overlapping grids [27] to develop efficient schemes for complex geometry. As shown in [11] for the case of the
first-order system for linear elasticity, upwind schemes can be very effective when solving wave-propagation
problems on overlapping grids since they naturally suppress possible instabilities that can be generated from
the overlapping grid interpolation. Upwind schemes for second-order wave equations may also be useful when
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Figure 24: Two-dimensional top-hat: line plots of the displacement and velocity on the top surface y = 0, at t = 3
for the schemes UW1-2D, UW2-2D, HR2-2D and UW4-2D. All simulations were performed using 1600 points in each
coordinate direction.

combined with the embedded boundary approach to represent complex geometry [28, 29]. In addition, the
upwind flux for second-order systems derived herein could potentially be used together with a discontinuous
Galerkin approximation or with the interesting high-order accurate integral evolution schemes for the wave
equation developed in [30, 31, 32].

Appendix A. High-order accurate stencils

Appendix A.1. Fourth-order accurate scheme
The fourth-order accurate scheme in one-dimension can be written in the form of a stencil operation,

un+1
i =

7∑
k=1

[
C(4)

u,u(k)un
i−4+k + C(4)

u,v(k)vn
i−4+k

]
vn+1

i =
7∑

k=1

[
C(4)

v,u(k)un
i−4+k + C(4)

v,v(k)vn
i−4+k

]
.
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The stencil coefficients for the fourth-order scheme are defined as

C(4)
u,u =



1
432 λ3

(
−9 + 2 λ2

)
− 1

72 λ2
(
3− 9 λ− 3 λ2 + 2 λ3

)
1

144 λ2
(
96− 45 λ− 24 λ2 + 10 λ3

)
1

108

(
108− 135 λ2 + 45 λ3 + 27 λ4 − 10 λ5

)
1

144 λ2
(
96− 45 λ− 24 λ2 + 10 λ3

)
− 1

72 λ2
(
3− 9 λ− 3 λ2 + 2 λ3

)
1

432 λ3
(
−9 + 2 λ2

)


C(4)

u,v =



− 1
576c ∆xλ2

(
−5 + 4 λ2

)
1

864c ∆xλ2
(
−45− 12 λ + 36 λ2 + 8 λ3

)
− 1

1728c ∆xλ2
(
−225− 384 λ + 180 λ2 + 64 λ3

)
1

144c ∆xλ
(
144− 25 λ− 60 λ2 + 20 λ3 + 8 λ4

)
− 1

1728c ∆xλ2
(
−225− 384 λ + 180 λ2 + 64 λ3

)
1

864c ∆xλ2
(
−45− 12 λ + 36 λ2 + 8 λ3

)
− 1

576c ∆xλ2
(
−5 + 4 λ2

)


and

C(4)
v,u =



1
48∆x cλ2

(
−3 + λ2

)
− 1

24∆x cλ
(
2− 9 λ− 4 λ2 + 3 λ3

)
1

48∆x cλ
(
64− 45 λ− 32 λ2 + 15 λ3

)
− 1

12∆x cλ
(
30− 15 λ− 12 λ2 + 5 λ3

)
1

48∆x cλ
(
64− 45 λ− 32 λ2 + 15 λ3

)
− 1

24∆x cλ
(
2− 9 λ− 4 λ2 + 3 λ3

)
1

48∆x cλ2
(
−3 + λ2

)


C(4)

v,v =



− 1
288 λ

(
−5 + 8 λ2

)
1
48 λ

(
−5− 2 λ + 8 λ2 + 2 λ3

)
− 1

96 λ
(
−25− 64 λ + 40 λ2 + 16 λ3

)
1
72

(
72− 25 λ− 90 λ2 + 40 λ3 + 18 λ4

)
− 1

96 λ
(
−25− 64 λ + 40 λ2 + 16 λ3

)
1
48 λ

(
−5− 2 λ + 8 λ2 + 2 λ3

)
− 1

288 λ
(
−5 + 8 λ2

)


where λ = c∆t

∆x .

Appendix A.2. Sixth-order accurate scheme
The sixth-order accurate scheme in one-dimension can be written in the form of a stencil operation,

un+1
i =

9∑
k=1

[
C(6)

u,u(k)un
i−5+k + C(6)

u,v(k)vn
i−5+k

]
vn+1

i =
9∑

k=1

[
C(6)

v,u(k)un
i−5+k + C(6)

v,v(k)vn
i−5+k

]
.

The stencil coefficients for the sixth-order scheme are defined as

C(6)
u,u =



1
288000 λ3

(
1400− 400 λ2 + 29 λ4

)
− 1

36000 λ2
(
−200 + 1400 λ + 250 λ2 − 400 λ3 − 50 λ4 + 29 λ5

)
1

72000 λ2
(
−5400 + 9800 λ + 6000 λ2 − 2800 λ3 − 600 λ4 + 203 λ5

)
− 1

36000 λ2
(
−27000 + 9800 λ + 9750 λ2 − 2800 λ3 − 750 λ4 + 203 λ5

)
1

28800

(
28800− 39200 λ2 + 9800 λ3 + 11200 λ4 − 2800 λ5 − 800 λ6 + 203 λ7

)
− 1

36000 λ2
(
−27000 + 9800 λ + 9750 λ2 − 2800 λ3 − 750 λ4 + 203 λ5

)
1

72000 λ2
(
−5400 + 9800 λ + 6000 λ2 − 2800 λ3 − 600 λ4 + 203 λ5

)
− 1

36000 λ2
(
−200 + 1400 λ + 250 λ2 − 400 λ3 − 50 λ4 + 29 λ5

)
1

288000 λ3
(
1400− 400 λ2 + 29 λ4

)



C(6)
u,v =



− 1
34560 c∆xλ2

(
62− 43 λ2 + 10 λ4

)
1

432000 c∆xλ2
(
6200 + 800 λ− 4300 λ2 − 600 λ3 + 1000 λ4 + 87 λ5

)
− 1

216000 c∆xλ2
(
10850 + 5400 λ− 7525 λ2 − 3600 λ3 + 1750 λ4 + 261 λ5

)
1

86400 c∆xλ2
(
8680 + 21600 λ− 6020 λ2 − 4680 λ3 + 1400 λ4 + 261 λ5

)
− 1

86400 c∆xλ
(
−86400 + 10850 λ + 39200 λ2 − 7525 λ3 − 6720 λ4 + 1750 λ5 + 348 λ6

)
1

86400 c∆xλ2
(
8680 + 21600 λ− 6020 λ2 − 4680 λ3 + 1400 λ4 + 261 λ5

)
− 1

216000 c∆xλ2
(
10850 + 5400 λ− 7525 λ2 − 3600 λ3 + 1750 λ4 + 261 λ5

)
1

432000 c∆xλ2
(
6200 + 800 λ− 4300 λ2 − 600 λ3 + 1000 λ4 + 87 λ5

)
− 1

34560 c∆xλ2
(
62− 43 λ2 + 10 λ4

)
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and

C(6)
v,u =



1
1440 ∆xcλ2

(
21− 10 λ2 + λ4

)
− 1

360 ∆xcλ
(
−4 + 42 λ + 10 λ2 − 20 λ3 − 3 λ4 + 2 λ5

)
1

360 ∆xcλ
(
−54 + 147 λ + 120 λ2 − 70 λ3 − 18 λ4 + 7 λ5

)
− 1

360 ∆xcλ
(
−540 + 294 λ + 390 λ2 − 140 λ3 − 45 λ4 + 14 λ5

)
1

144 ∆xcλ
(
−392 + 147 λ + 224 λ2 − 70 λ3 − 24 λ4 + 7 λ5

)
− 1

360 ∆xcλ
(
−540 + 294 λ + 390 λ2 − 140 λ3 − 45 λ4 + 14 λ5

)
1

360 ∆xcλ
(
−54 + 147 λ + 120 λ2 − 70 λ3 − 18 λ4 + 7 λ5

)
− 1

360 ∆xcλ
(
−4 + 42 λ + 10 λ2 − 20 λ3 − 3 λ4 + 2 λ5

)
1

1440 ∆xcλ2
(
21− 10 λ2 + λ4

)



C(6)
v,v =



− 1
8640 λ

(
31− 43 λ2 + 15 λ4

)
1

2160 λ
(
62 + 12 λ− 86 λ2 − 15 λ3 + 30 λ4 + 3 λ5

)
− 1

2160 λ
(
217 + 162 λ− 301 λ2 − 180 λ3 + 105 λ4 + 18 λ5

)
1

2160 λ
(
434 + 1620 λ− 602 λ2 − 585 λ3 + 210 λ4 + 45 λ5

)
1

864

(
864− 217 λ− 1176 λ2 + 301 λ3 + 336 λ4 − 105 λ5 − 24 λ6

)
1

2160 λ
(
434 + 1620 λ− 602 λ2 − 585 λ3 + 210 λ4 + 45 λ5

)
− 1

2160 λ
(
217 + 162 λ− 301 λ2 − 180 λ3 + 105 λ4 + 18 λ5

)
1

2160 λ
(
62 + 12 λ− 86 λ2 − 15 λ3 + 30 λ4 + 3 λ5

)
− 1

8640 λ
(
31− 43 λ2 + 15 λ4

)


where λ = c∆t

∆x .
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