
Moving Bodies with Overture and the CG Solvers

William D. Henshaw,
Department of Mathematical Sciences,
Rensselaer Polytechnic Institute,
Troy, NY, USA, 12180. May 16, 2015

Abstract: This article provides background and documentation for the use of moving bodies
with Overture and the CG suite of partial differential equation solvers. The topics covered include

rigid body motion : a description of the equations governing the motion of rigid bodies (i.e.
bodies that move under the influence of external forces such as fluid forces and gravity) and
documentation for the RigidBodyMotion class.

matrix motion : a description of the MatrixMotion and TimeFunction classes that can be used
to define complex specified motions by composing together elemenray motions such as
rotations and translations. For example one can define the motion of an airfoil that pitches
(i.e. rotates) and plunges (i.e. translates up and down).

light bodies : a discussion of issues related to the coupling of fluid motion with “light bodies”.

deforming bodies : a description of the deforming body equations.

1

Contents

1 Introduction 2

2 Rigid Body Motion 4
2.1 Nomemclature . 4
2.2 Motion of rigid bodies and the Newton-Euler equations 4
2.3 Rigid body motion and the added mass matrices . 6
2.4 Numerical integration of the Newton-Euler equations of motion 6

2.4.1 A matlab code for integrating the Newton-Euler equations 6
2.4.2 Leapfrog Trapezodial Predictor Corrector . 7
2.4.3 Diagonally implicit Runge-Kutta (DIRK) schemes 8
2.4.4 DIRK schemes of orders 1 to 4 . 10

2.5 Forcing relaxation for light bodies . 11
2.6 Exact and manufactured solutions to the Newton-Euler equations 12

2.6.1 Trigonometric twilight zone solution (TZTrig) 12
2.6.2 Free rotation exact solutions (FR1, FR2, FR3) 12
2.6.3 Quadratic drag law. 13

2.7 Numerical Results . 13
2.7.1 Solution for a sinusoidal forcing . 13

2.8 *NEW* Numerical Results . 16
2.9 Derivation of the Rigid Body Equations of Motion 19

3 MatrixMotion and TimeFunction: Classes for Defining Rigid Motions of Bodies 23
3.1 Elementary rigid motions . 23

3.1.1 Rotation around a line . 23
3.1.2 Translation along a line . 23

3.2 Composition of motions . 24
3.3 Grid velocity and acceleration . 24
3.4 MatrixMotion class . 24
3.5 TimeFunction class . 24
3.6 The ‘motion’ program for building and testing motions 25

4 Motion of “Light” Rigid Bodies 26
4.1 Model problem . 27

5 DeformingBodyMotion Class 29
5.1 Elastic Shell . 29

1 Introduction

This article provides background and documentation for the use of moving bodies with Overture
and the CG suite of partial differential equation solvers. The topics covered include

rigid body motion : a description of the equations governing the motion of rigid bodies (i.e.
bodies that move under the influence of external forces such as fluid forces and gravity) and
documentation for the RigidBodyMotion class.

2

matrix motion : a description of the MatrixMotion and TimeFunction classes that can be used to
define complex specified motions by composing together elemenray motions such as rotations
and translations. For example one can define the motion of an airfoil that pitches (i.e. rotates)
and plunges (i.e. translates up and down).

light bodies : a discussion of issues related to the coupling of fluid motion with “light bodies”.

deforming bodies : a description of the deforming body equations.

Other documents of interest are the Cgins User Guide [?], the Cgins Reference Manual [?], as
well as [?].

3

2 Rigid Body Motion

This section discusses the motion of rigid bodies and the RigidBodyMotion class that is used by
Overture solvers to integrate the motion of rigid bodies.

The class RigidBodyMotion can be used to track the motion of a rigid body moving under the
influence of forces and torques.

A RigidBodyMotion object must be initialized with the basic information about a body such as
the mass, moments of inertia and axes of inertia, in addition to the initial position and velocities.

A rigid body moves under the influence of a force, F(t) and torque G(t). These forces and
torques should be supplied at a sequence of times, (ti,F(ti),G(ti)). The rigid body object will
integrate the equations of motion and supply the currect position and orientation.

2.1 Nomemclature

Nomemclature:

mb mass of the rigid body

xcm(t) position of the center of mass

vcm(t) velocity of the center of mass

acm(t) acceleration of the center of mass

F(t) force on the body

G(t) torque on the body (about the center of mass)

h(t) angular momentum

ei(t) principal axes of inertia, i = 1, 2, 3.

ω(t) angular velocity

E(t) ∈ R3×3 Matrix with columns ei

R(t) ∈ R3×3 rotation matrix

A(t) ∈ R3×3 moment of inertial tensor

Ii moments of inertia

2.2 Motion of rigid bodies and the Newton-Euler equations

Here we summarize the equations of motion for a rigid body which are known as the Newton-Euler
equations. See Section 2.9 for a derivation of the equations.

The equations of motion for a rigid body in the standard cartesian reference frame are

ẋcm = vcm,

mbv̇cm = F,

ḣ = G,

where h is the angular momentum (defined below). The force and torque are defined as

F =

∫
∂Ω

fs ds+ fb, (fs = surface forces, fb= body force),

G =

∫
∂Ω

(x− xcm)× fs ds+ gb, (torque, gb=body torque),

4

where the integral is over the surface of the rigid body, ∂Ω. The contributions to the force and torque
arise from forces on the surface of the body and external body forces. The angular momemtum h
is given by

h = A(t)ω

where ω is the angular velocity, and A(t) is the moment of inertia tensor (wrt the center of mass)
defined by

A(t) =

∫
Ω
ρ(x)

[
yTyI − yyT

]
dx, y = x− xcm, (inertia tensor).

Here ρ(x) is the density (of mass) of the body. A(t) is a symmetric positive definite tensor with
eigenvalues Ii and eigenvectors ei (the principle axes of inertia),

Aei = Iiei, Λ = diag(I1, I2, I3), ei · ej = δij ,

A = EΛET , E = [e1 e2 e3], E−1 = ET .

Note that Λ does not depend on time. The axes of inertia rotate with the body and thus

Ė = ΩE, ėi = ω × ei,

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (i.e. Ωa = ω × a).

From the definition of h as h = A(t)ω, and the result Ȧ = ΩA−AΩ, it follows that the evolution
equation for the angular velocity ω is

Aω̇ = −ΩAω + G, (angular velocity equation).

In summary we solve the following set of ODEs

ẋcm = vcm, (1)

mbv̇cm = F, (2)

Aω̇ = −ΩAω + G, (angular velocity equation), (3)

ėi = ω × ei, (ei · ei = 1, ei · ėi = 0). (4)

We integrate the motion of the principle axes, ei(t) over time in order to compute the rotation
matrix which is needed to find the positions, velocities and accelerations of points attached to the
body. The rotation matrix that must be applied to rotate the body from it’s position at t = 0 to
any time t is simply E(t)ET (0) where E is the matrix with columns being ei,

R(t) = E(t)E−1(0) = E(t)ET (0).

For a point r(t) attached to the rigid body we have

r(t) = xcm(t) +R(t)(r(0)− xcm(0)). (5)

ṙ(t) = vcm(t) + ΩR(t)(r(0)− xcm(0)), (6)

= v(t) + Ω(r(t)− xcm(t)), (7)

= v(t) + ω × (r(t)− xcm(t)), (8)

r̈(t) = acm(t) + ω̇ × (r(t)− xcm(t)) + ω × (ω × (r(t)− xcm(t))), (9)

= acm(t) + ω̇ × (r(t)− xcm(t)) + (ω · (r(t)− xcm(t)))ω − (ω · ω)(r(t)− xcm(t))), (10)

5

2.3 Rigid body motion and the added mass matrices

The force, F, and torque, G, can depend on the velocity, vcm, and angular velocity, ω, of the rigid
body (for example a drag force law may be of the form F = −Cd|vcm|2. In this case we may want
to explicitly expose this dependence when solving the equations of motion so that these terms can
be treated in an implicit fashion (for example).

Therefore we write the equations in the form

mbv̇cm = −M11vcm −M12ω + F̃, (11)

Aω̇ = −M12vcm −M22ω − Ȧω + G̃. (12)

The matrices M11, M12, M21, M22 are called the added mass matrices. In general they can depend
on the solution, Mij = Mij(vcm,ω, t). The added mass matrices can be provided by the user when
solving the rigid-body equations.

2.4 Numerical integration of the Newton-Euler equations of motion

The equations of motion are given by equations (1)-(4). We can integrate these with any ODE
method. When the rigid-body is coupled to a fluid flow computation, the forces and torques will
only be available at certain discrete times. In addition the fluid equations are generally solved with
a predictor-corrector type scheme so it is convenient if the rigid body equations can also be solved
with a predictor-corrector scheme.

The time-stepping schemes available with the RigidBodyMotion class are

LeapFrog-Trapezoidal : a second-order accurate scheme, see Section 2.4.2.

Implicit Runge Kutta : DIRK schemes of order 1 to 4 have been implemented, see Section 2.4.3.

2.4.1 A matlab code for integrating the Newton-Euler equations

The matlab code rigidBody.m can be used to solve the Newton-Euler equations for rigid body
motion. This code can be used to test various schemes. We solve the equations

ẋcm = vcm, (13)

mbv̇cm = F, (14)

ḣ = G, (15)

Aω̇ = −ΩAω + G, (16)

Ė = ΩE, (17)

q̇ = [0, ω]q. (18)

The last equation is that for the quaternion, which can be used in place of solving Ė = ΩE. The
quaternion is a vector in R4 which is of unit length (for rotations). The number of degrees of
freedom in the unit-length quaternion thus equals the 3 degrees of freedom for rotations.

The matlab code rigidBody.m implements a variety of schemes,

ode45 - use the matlab ode45 routine (a fourth-order RK scheme – actually Dormand-Price now
instead of Runge-Kutta Felhberg)

rk4 - solve use the standard fourth-order RK scheme.

6

leapFrogTrapPC - the leapfrog predictor, trapezoidal rule correction (as found in the RigidBody-
Motion class).

AMIleapFrogTrapPC - a leapfrog predictor, trapezoidal rule correction scheme which treates
the added mass terms implicitly.

DIRKj - diagonally implicit Runge-Kutta schemes (orders j=1,2,3,4) that treat all terms implicitly
(using Newton to solve the nonlinear equations at each stage). These schemes will work with
the added mass terms, even if the mass of the rigid body goes to zero.

2.4.2 Leapfrog Trapezodial Predictor Corrector

The leapfrog-trapezodial scheme was the original scheme developed for the RigidBodyMotion class.
The leapfrog-trapezodial scheme consists of a predictor and a corrector step. The predictor

step (implemented in the integrate function of the RigidBodyMotion class) is

vp = vn−1 + 2∆tfn

xp = 2xn − xn−1 + ∆t2fn

ωp = ωn−1 + 2∆tω̇n

ep = en−1 + 2∆tėn

Here f = F/M is the force divided by the mass. The predictor is chosen to be a second-order
accurate leap-frog scheme. The first two steps are treated in a special way as indicated below.

The corrector step (implemented in the correct function) uses a trapezoidal type approxi-
mation,

vn+1 = vn + ∆t/2
(
fn + fp

)
(19)

xn+1 = xn + ∆t/2
(
vn + vp

)
(20)

ωn+1 = ωn + ∆t/2
(
ω̇n + ω̇p

)
(21)

en+1 = en + ∆t/2
(
ėn + ėp

)
(22)

Question: Why have I chosen to integrate the both the equations for x and v ?
For the first step we use a locally second-order approximation to v1

v1 = v0 + ∆tf0

x1 = x0 + ∆t
(
v0 + ∆t/2f0

)

Then on the second step we make a correction to v1 making it locally ∆t3 accurate,

v1 = v0 + (∆t/2)
(
fn + fn+1

)

The equations for ωn and en are treated in the same was as vn.
*** check this is practice : what if we don’t correct v1 ??

7

If we suppose that f = f(v, t) then the solution for vn is not directly coupled to the other vari-
ables. In this case the stability of the approach depends upon the stability of the leap-frog predictor
and Adams-Moulton corrector scheme (LFPC). For the ODE y′ = f(y) leap-frog predictor-corrector
scheme reads

yp = yn−1 + 2fn

yn+1 = yn +
∆t

2
(fp + fn)

The stability region for this scheme is plotted in figure 1. For comparison we also show the stability
region for the Adams predictor-corrector scheme (PC22),

yp = yn−1 +
3

2
∆tfn − 1

2
∆tfn−1

yn+1 = yn +
∆t

2
(fp + fn)

Compared to the PC22 scheme, the stability region for the LFPC scheme includes a bit more of
the imaginary axis (i.e. it is good for oscillatory problems) but does not extend as far into the left
half plane.

Figure 1: Stability region for the leap-frog predictor corrector (LFPC) scheme (left) and a second-
order Adams predictor corrector (PC22) scheme (right).

2.4.3 Diagonally implicit Runge-Kutta (DIRK) schemes

In order to solve the Newton-Euler equations with added mass terms, even when the mass of the
rigid body goes to zero, we need to use implicit schemes. Implicit Runge-Kutta schemes are a
possible solution.

8

The diagonally implicit Runge-Kutta schemes (with s stages) for solving ẏ = f(y, t) are of the
form

ki = f(yn + ∆t

i∑
j=1

aijkj , t+ ci∆t), (23)

yn+1 = yn + ∆t
s∑
j=1

biki. (24)

The schemes are implicit if aii 6= 0.
For the case of light bodies with added mass we wish to solve the ODE’s

mbv̇cm = −A11vcm −A12ω + F, (25)

A(E)ω̇ = −Ω(ω)Aω −A21vcm −A22ω + G, (26)

Ė = ΩE, (27)

which can be written in the form (y = [vcm, ω, E]T),

M(y)ẏ = f(y, t), (28)

M =

mbI3×3 0 0
0 A(E) 0
0 0 I9×9

 . (29)

where the mass matrix M could be singular (if mb goes to zero or the inertia matrix A(E) becomes
singular). In this case, instead of solving (23), we instead solve,

M(yn + ∆t

i∑
j=1

aijkj) ki = f(yn + ∆t

i∑
j=1

aijkj , t+ ci∆t). (30)

These implicit equations can have a solution for ki even if M is singular. We thus require the
solution to the nonlinear equations

F(z) =

Fv(z)
Fω(z)
FE(z)

 = 0, (31)

where

F(z) ≡M(z)(z− z̄)− aii∆tf(z, t+ ci∆t), (32)

z̄ ≡ yn + ∆t
i−1∑
j=1

aijkj . (33)

The quantity ki is then given by ki = (z− z̄)/(aii∆t). To be specific, if z = [v, ω, E], the equations
we solve are

Fv(z) = mb(v − v̄)− aii∆t
(
−A11v −A12ω + F(t+ ci∆t)

)
, (34)

Fω(z) = A(E)(ω − ω̄)− aii∆t
(
− Ω(ω)A(E)ω −A21v −A22ω + G(t+ ci∆t)

)
, (35)

FE(z) = (E − Ē)− aii∆t
(

Ω(ω)E
)
, (36)

9

We solve (31) by Newton’s method. If zk is the current guess then the new estimate zk+1 satisfies
solve

∂F
∂z

(zk)(zk+1 − zk) = −F (zk). (37)

To evaluate the Jacobian matrix we require ∂(A(E)ω)/∂E. However, since E has columns ej ,
j = 1, 2, 3,

G ≡ A(E)ω = EΛETω =
3∑
j=1

λj(e
T
j ω)ej . (38)

whence,

∂G
∂ek

= λk

(
(eTkω)I3×3 + ekω

T
)
. (39)

Also note that (since ΩAω = ω ×Aω = −(Aω)× ω),

∂(ΩAω)

∂ω
= ΩA− [Aω×]. (40)

2.4.4 DIRK schemes of orders 1 to 4

The coefficients aij , bi and ci =
∑

j aij can be written in a Butcher tableau,

c [aij]

bT
(41)

A first order DIRK scheme (denoted by DIRK1) is the backward Euler scheme, with tableau

1 1

1
(42)

A one-stage (s = 1) second-order DIRK scheme (denoted by DIRK2) is the implicit mid-point rule
with coefficients,

1
2

1
2

1
(43)

A two-stage third-order (A-stable) scheme (denoted by DIRK3) due to Crouzeiux is

1
2 + 1

2
√

3
1
2 + 1

2
√

3
0

1
2 −

1
2
√

3
− 1√

3
1
2 + 1

2
√

3

1
2

1
3

(44)

10

This above scheme is also S-stable (see Alexander, SIAM J. Num. Anal. 1977) . A four-stage
fourth-order (A0-stable ?) scheme (denoted by DIRK4) due to Jackson and Norsett (1990) is

1 1

3
5 0 3

5

0 171
44 −215

44 1

2
5 −43

20
39
20 0 3

5

11
72

25
72

11
72

25
72

(45)

This scheme has the property that the first two stages can be computed in parallel, and then the
last two stages can also be computed in parallel (due to a21 = 0 and a4, 3 = 0).

To-do: Look for L-stable fourth-order schemes by Iserles and Norsett (1990)

2.5 Forcing relaxation for light bodies

The simulation of the coupled motion of fluids and “light” rigid bodies can be difficult since the
standard time stepping algorithms can be unstable. The reason for this instablility is discussed
further in section 4.

One way to stabilize the time-stepping algorithm is to perform extra corrector iterations and
relax the forcing and torques provided to the rigid body corrector step.

Thus the single corrector step (19) (for simplicity we just consider the equation of the velocity
here)

vn+1 = vn + ∆t/2
(
fn + fp

)
(46)

is replaced by an iteration

vn+1,k = vn + ∆t/2
(
fn + fn+1,k

)
. (47)

Let f̃k denote the values for the forcing at correction step k, k = 1, 2, . . . (provided from a fluid
solver by integrating the tractions on the boundary for e.g.). Thus f̃1 = fp. The actual forcing
used to evolve the rigid body is

fn+1,k = (1− α)fn+1,k−1 + αf̃k, (48)

where fn+1,0 is defined by extrapolation in time from previous values. For a constant time step this
is

fn+1,0 = 2fn − fn−1.

The relaxation parameter α should satisfy α ∈ (0, 1]. Smaller values of α are required for lighter
bodies. For example, the one-dimensional analysis of section 4 suggests that

α ≤ 2

1 +Ms/(ρfVf)
(49)

where Ms is the mass of the body, ρf is the density of the fluid and Vf is some fluid volume
corresponding to the amount of fluid moved by the body. In practice one can choose a value for

11

α and check whether the correction iterations converge. Choosing a very small value of α should
always work but will require more iterations to converge. Thus α should be chosen not too small.

The correction steps are assumed to converge when the absolute or relative change in the force
falls below given values,

∆fk < τa, or
∆fk

|f̃k|+ εf
< τr, (convergence critera), (50)

∆fk = |fn+1,k − f̃k|. (51)

The values for α, τa and τr can be specified when defining the properties of the rigid body.
The torques, ω̇p, must also be under-relaxed for light bodies. The stability of the rotational

motion depend on the moment of inertia’s (instead of the mass of the body). The torques have
their own relaxation parameter and convergence tolerances.

2.6 Exact and manufactured solutions to the Newton-Euler equations

For verification of the numerical approximations we consider some exact or manufactured solutions.

2.6.1 Trigonometric twilight zone solution (TZTrig)

The TZTrig exact solution for xcm, vcm and ω is

vei (t) = avi cos(bvi (t− cvi)), (52)

ωei (t) = aωi cos(bωi (t− cωi)), (53)

xei (t) =
avi
bvi

sin(bvi (t− cvi)). (54)

The forcing and torque are then given by

F(t) = mbv̇
e, (55)

G(t) = Aω̇e + Ω(ωe)Aωe, (56)

where the inertia matrix A is evaluated from the current numerical solution. We do this to avoid
adding forcing functions to the E equation.

2.6.2 Free rotation exact solutions (FR1, FR2, FR3)

In the frame of reference rotating with the body, the equations for ω̂i = ei · ω are

Ik ˙̂ωk = (Ik+1 − Ik+2)ω̂k+1ω̂k+2 + eTkG,

where the subscripts are cyclic, Ik+3 = Ik, (e.g. I4 = I1). With zero torque G = 0, and choosing
I1 = I2, then ˙̂ω3 = 0 and

¨̂ωj = −α2ω̂j , j = 1, 2,

α =
∣∣∣I3 − I1

I1
ω̂3(0)

∣∣∣,

12

with solution

ω̂1 = A cos(αt)− Cσ sin(αt),

ω̂2 = C cos(αt) +Aσ sin(αt),

σ ≡ sgn(
I3 − I1

I1
ω̂3(0)).

This exact solution will be denoted as FR3 since ω̂3 is constant. We can also define exact solutions
FR1 and FR2 by a cyclic permutation of the subscripts j of ω̂j .

It seems difficult to compute the exact solutions for ω (or E) with this given solution for ω̂ and
thus we instead compute the error in ω̂ from the computed values for ei · ω.

2.6.3 Quadratic drag law.

An exact solution can be derived for a body falling through a fluid under the force of gravity where
the effect of the fluid is modeled with a simple drag law. If the force on the body is due to gravity
and a quadratic drag

F = mbg − CD|vcm|2 v̂cm, v̂cm =
vcm

|vcm|
,

G = 0,

then the exact solution is

vcm = α tanh(βt) ĝ,

xcm =
α

β
log(cosh(βt)) ĝ,

α =

√
mb|g|
CD

, β =

√
CD|g|
mb

, ĝ =
g

|g|
.

Note that αβ = |g|. We see that the velocity approaches the steady state value of αĝ.
An added mass matrix can be used in this example. In this case we set

F = mg −A11vcm,

A11 = CD v̂cmvTcm.

We should be able to solve this problem with an implicit scheme even if mb → 0.

2.7 Numerical Results

2.7.1 Solution for a sinusoidal forcing

In this example we choose the forcing and torques to be

F =

c1 sin(f1πt)

c2 sin(f2πt)

c3 sin(f3πt)

 , G =

c4 cos(f1πt)

c4 cos(f2πt)

c6 cos(f3πt)

Figure ?? shows the solution for c1 = 2, c2 = 1.5, c3 = −1, f1 = 1, f2 = 2, f3 = .5 with

x(t0) = 0, v(t0) = 0. e(t0) = I, I1 = 1, I2 = .5 and I3 = 2.

13

The exact solution for x and v are easily determined ,

xn(t) = −cn sin(fnπt)/((fnπ)2M) + (vn(t0) + cn cos(fnπt0)/(fnπM))t+ xn(t0)

vn(t) = cn(1− cos(f1πt))/(f1πM) + vn(t0)

Although the evolution of the angular momentum h can be determined analytically, the evolu-
tion equations for ω and e are nonlinear and I do not know how to obtain the exact analytic solution.
Instead we solve the equations independently using a matlab program with a fourth-order accu-
rate Runge-Kutta scheme and a small error tolerance. The errors in the predictor-correct scheme
compared to the very accurate results from the Runge-Kutta scheme are plotted in figure ??. (The
maximum errors in the RK solution for x1, x2, x3 are 1.37e− 12, 1.28e− 11, and 9.21e− 14).

The maximum errors for t ∈ [0, 5] for two different values of δt are given in table 1.

14

Newton-Euler Equations

Maximum errors

∆t = .005 ∆t = .0025 ratio

x1 1.31e− 04 3.27e− 05 4.00

x2 1.96e− 04 4.90e− 05 4.00

x3 3.68e− 05 9.22e− 06 4.00

v1 3.93e− 05 9.82e− 06 4.00

v2 5.89e− 05 1.47e− 05 4.00

v3 9.82e− 06 2.45e− 06 4.00

ω1 3.76e− 05 9.49e− 06 3.96

ω2 2.99e− 05 7.44e− 06 4.02

ω3 1.43e− 05 3.49e− 06 4.09

e11 3.31e− 05 8.17e− 06 4.05

e12 3.77e− 05 9.45e− 06 3.99

e13 2.50e− 05 6.31e− 06 3.97

e21 1.87e− 05 4.67e− 06 4.01

e22 2.17e− 05 5.54e− 06 3.92

e23 2.34e− 05 5.92e− 06 3.96

e31 2.39e− 05 5.93e− 06 4.04

e32 2.22e− 05 5.40e− 06 4.11

e33 3.82e− 05 9.50e− 06 4.02

Table 1: Maximum errors for t ∈ [0, 5] in each solution component using the predictor-corrector
method for the Newton-Euler equations for a sinusoidal forcing. The errors decrease by a factor
close to 4 when ∆t is halved, indicating second-order accuracy.

15

2.8 *NEW* Numerical Results

Rigid body, leapFrogTrap, TrigTZ

∆t x-err r v-err r w-err r

0.050000 2.61e-02 2.47e-02 7.69e-03

0.025000 6.94e-03 3.8 6.36e-03 3.9 1.85e-03 4.1

0.012500 1.78e-03 3.9 1.60e-03 4.0 4.31e-04 4.3

rate 1.94 1.97 2.08

Figure 2: Newton-Euler Equations: Scheme=leapFrogTrap, test=TrigTZ, Max-norm errors at t =
1.0, mass=1.00e+00, addedMass=0

Rigid body, leapFrogTrap, freeRotation1

∆t x-err r v-err r w-err r

0.050000 0.00e+00 0.00e+00 8.46e-02

0.025000 0.00e+00 0.0 0.00e+00 0.0 1.98e-02 4.3

0.012500 0.00e+00 0.0 0.00e+00 0.0 4.56e-03 4.3

rate 0.00 0.00 2.11

Figure 3: Newton-Euler Equations: Scheme=leapFrogTrap, test=freeRotation1, Max-norm errors
at t = 1.0, mass=1.00e+00, addedMass=0

Rigid body, leapFrogTrap, fallingSphere

∆t x-err r v-err r w-err r

0.050000 9.33e-05 7.16e-05 0.00e+00

0.025000 2.24e-05 4.2 1.69e-05 4.3 0.00e+00 0.0

0.012500 5.47e-06 4.1 4.08e-06 4.1 0.00e+00 0.0

rate 2.05 2.07 0.00

Figure 4: Newton-Euler Equations: Scheme=leapFrogTrap, test=fallingSphere, Max-norm errors
at t = 1.0, mass=1.00e+00, addedMass=0

16

Rigid body, DIRK2, TrigTZ

∆t x-err r v-err r w-err r

0.050000 7.28e-03 6.45e-03 3.29e-03

0.025000 1.81e-03 4.0 1.61e-03 4.0 8.22e-04 4.0

0.012500 4.53e-04 4.0 4.02e-04 4.0 2.05e-04 4.0

rate 2.00 2.00 2.00

Figure 5: Newton-Euler Equations: Scheme=DIRK2, test=TrigTZ, Max-norm errors at t = 1.0,
mass=1.00e+00, addedMass=0

Rigid body, DIRK3, TrigTZ

∆t x-err r v-err r w-err r

0.050000 7.65e-06 5.53e-06 2.00e-04

0.025000 4.76e-07 16.1 3.44e-07 16.1 2.49e-05 8.0

0.012500 2.97e-08 16.0 2.15e-08 16.0 3.05e-06 8.2

rate 4.00 4.00 3.02

Figure 6: Newton-Euler Equations: Scheme=DIRK3, test=TrigTZ, Max-norm errors at t = 1.0,
mass=1.00e+00, addedMass=0

Rigid body, DIRK4, TrigTZ

∆t x-err r v-err r w-err r

0.050000 9.18e-06 6.64e-06 1.02e-04

0.025000 5.71e-07 16.1 4.13e-07 16.1 5.17e-06 19.7

0.012500 3.57e-08 16.0 2.58e-08 16.0 4.32e-07 12.0

rate 4.00 4.00 3.94

Figure 7: Newton-Euler Equations: Scheme=DIRK4, test=TrigTZ, Max-norm errors at t = 1.0,
mass=1.00e+00, addedMass=0

17

Rigid body, DIRK4, TrigTZ

∆t x-err r v-err r w-err r

0.050000 3.12e-05 1.45e-04 3.95e-04

0.025000 2.46e-06 12.7 1.10e-05 13.1 2.54e-05 15.6

0.012500 1.73e-07 14.2 7.69e-07 14.4 1.58e-06 16.0

rate 3.75 3.78 3.98

Figure 8: Newton-Euler Equations: Scheme=DIRK4, test=TrigTZ, Max-norm errors at t = 1.0,
mass=1.00e+00, addedMass=1

Rigid body, DIRK4, freeRotation1

∆t x-err r v-err r w-err r

0.050000 0.00e+00 0.00e+00 1.42e-02

0.025000 0.00e+00 0.0 0.00e+00 0.0 1.15e-03 12.4

0.012500 0.00e+00 0.0 0.00e+00 0.0 7.16e-05 16.0

rate 0.00 0.00 3.82

Figure 9: Newton-Euler Equations: Scheme=DIRK4, test=freeRotation1, Max-norm errors at
t = 1.0, mass=1.00e+00, addedMass=1

Rigid body, DIRK4, fallingSphere

∆t x-err r v-err r w-err r

0.050000 2.21e-08 1.20e-08 0.00e+00

0.025000 1.40e-09 15.8 7.96e-10 15.1 0.00e+00 0.0

0.012500 8.80e-11 15.9 5.12e-11 15.6 0.00e+00 0.0

rate 3.99 3.94 0.00

Figure 10: Newton-Euler Equations: Scheme=DIRK4, test=fallingSphere, Max-norm errors at
t = 1.0, mass=1.00e+00, addedMass=1

18

2.9 Derivation of the Rigid Body Equations of Motion

Consider a rigid body consisting of a set of N particles connected by massless rods. The particles
have mass mi, positions xi(t) and velocities vi(t). The equation of motion for particle i is given by
Netwon’s law

miẍi = fi +
∑
j

fij

where fi is the external force on the particle and fij is the force exerted on particle i from particle
j with fij = −fji. By summing the equations of motions of the particles,

N∑
i=1

miẍi =
∑
i

fi,

we obtain the equation of motion for the center of mass

M ẍ = f ,

where M is the total mass and x(t) is the position of the center of mass,

M ≡
∑
i

mi, x =

∑
imixi∑
imi

.

Let yi = xi − x denote the vector from particle i to the center of mass. Note that the length of yi
is constant in time. This can be seen from

Myi =
(∑

j

mj

)
xi −

∑
j

mjxj =
∑
j

mj(xi − xj)

Thus

M2‖yi‖2 = M2yTi yi =
{∑

j

mj(xi − xj)
T
}{∑

k

mk(xi − xk)
}

= M2
∑
j

∑
k

mjmk(xi − xj)
T (xi − xk)

But (xi−xj)
T (xi−xk) = ‖xi−xj‖‖xi−xk‖ cos(θ) is constant in time since the relative positions

of the particles remains fixed in time.
Note that ∑

i

miyi =
∑
i

mi(xi − x) = Mx−Mx = 0,

miÿi = mi(ẍi − ẍ) = fi +
∑
j

fij −mif/M.

The equation for the angular momentum is found by summing yi ×miÿi ,∑
i

miyi × ÿi =
∑
i

yi × fi +
∑
i

∑
j

yi × fij −
(∑

i

miyi ×
)
f/M, (57)

=
∑
i

yi × fi ≡ g. (58)

19

Here g is the torque about the center of mass. The vectors yi(t) rotate about the origin as the
rigid body rotates,

yi(t) = R(t)yi(0),

where R(t) is a skew symmetric rotation matrix. The velocity ẏi satisfies

ẏi(t) = Ṙ(t)yi(0) = ΩRyi(0) = Ωyi(t) = ω × yi(t),

Ṙ = ΩR,

where ω is the angular velocity vector and Ω is the skew-symmetric matrix form of the cross product
operator ω×,

Ω =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
Whence, from (58) we obtain (note that ẏi × ẏi = 0),

ḣ = g, h =
∑
i

miyi × ẏi

where h is defined to be the angular momentum. Now since a × (b × c) = (a · c)b − (a · b)c and
ẏi = ω × y,

h =
∑
i

miyi × ẏi =
∑
i

miyi × (ω × y),

=
∑
i

mi

(
yTi yi − yiy

T
i

)
ω

= A(t)ω

where the symmetric positive definite matrix A(t) is called the moment of inertial matrix,

A(t) =
∑
i

mi

(
yTi yi − yiy

T
i

)
,

= R(t)
[∑

i

mi

(
yi(0)Tyi(0)− yi(0)yi(0)T

)]
RT (t),

= R(t)A(0)RT (t)

If A(0) has eigenvalues Ii and eigenvectors ei(0) (of unit length),

A(0)ei(0) = Iiei(0), i = 1, 2, 3,

then if E(0) is the orthonormal matrix with columns ei(0) and MI is the diagonal matrix with
entries Ii,

E0 = [e1(0) e2(0) e3(0)], MI = diag(I1, I2, I3),

A(0)E(0) = E(0)MI ,

A(0) = E(0)MIE(0)T ,

20

then

A(t) = R(t)E(0)MI(R(t)E(0))T ,

= E(t)MIE(t)T ,

E(t) = [e1(t) e2(t) e3(t)] = R(t)[e1(0) e2(0) e3(0)] = R(t)E0,

R(t) = E(t)ET (0).

In summary, the equations of motion are

M ẍ = f =
∑
i

fi

ḣ = g =
∑
i

(xi − x)× fi,

h = E(t)MIE(t)Tω =
3∑

k=1

Ik(ek · ω)ek,

ėi = ω × ei, Ė = ΩE.

and then the motion of a point p on the body is given by

p(t) = x(t) +R(t)(p(0)− x(0)),

ṗ(t) = v(t) + ΩR(t)(p(0)− x(0)) = v(t) + Ω(p(t)− x(t)),

= v(t) + ω × (p(t)− x(t)),

R(t) = E(t)ET (0).

We could just solve the ODEs for unknowns x, v = ẋ, h, and ei, by integrating the equations

ẋ = v,

M v̇ = f ,

ḣ = g,

ėi = ω × ei, ω = E(t)M−1
I E(t)Th.

Alternatively we can write an equation for ω.
Since

Ȧ = ĖMIE
T + EMIĖ

T

= ΩA−AΩ

then

Ȧω = ΩAω −AΩω

= Ωh−A(ω × ω)

= ΩAω = Ωh = ω × h

then equation for ω is

Aω̇ + Ȧω = g

ω̇ = −A−1ΩAω +A−1g

A = EMIE
T , A−1 = EM−1

I ET

21

Another form of the angular momentum equation is

ḣ = Aω̇ + ω × h = g

Another common approach is to write an equation for the angular velocity, ω̂, in the rotating
frame,

ω̂ = ETω, (ω̂i = ei · ω), (59)

Then h = EMIω̂ and

ḣ = EMI
˙̂ω + ĖMIω̂ = g

MI
˙̂ω = ET (−ΩEMIω̂) + ETg

= −ET
[
ω ×

(∑
j

Ijω̂jej
)]

+ ETg

Thus, using a · (b× c) = −b · (a× c), it follows that kth component of this last equation is

Ik ˙̂ωk = −ek ·
[
ω ×

(∑
j

Ijω̂jej
)]

+ eTk g

= ω ·
∑
j

Ijω̂jek × ej .

This gives (since e1 × e2 = e3, e1 × e3 = −e2, etc.)

Ik ˙̂ωk = (Ik+1 − Ik+2)ω̂k+1ω̂k+2 + eTk g,

where the subscripts are cyclic, Ik+3 = Ik, (e.g. I4 = I1).

22

3 MatrixMotion and TimeFunction: Classes for Defining Rigid
Motions of Bodies

The MatrixMotion C++ class can be used to define the motions of rigid bodies for use with the CG
partial differential equation solvers such as Cgins for incompressible flow and Cgcns for compressible
flow. The MatrixMotion class allows one to rotate an object around an arbitray line in space or
to translate along a line. These motions can be composed together and thus one could have a
rotation followed by a translation followed by another rotation. The MatrixMotion class uses the
TimeFunction C++ class to define how the rotation angle depends on time or how the translation
distance depends on time.

The general motion of a solid body is defined by the matrix transformation

x(t) = R(t) x(0) + g(t), (60)

where x(t) ∈ R3 defines a point on the body at time t, R(t) ∈ R3×3 is a 3 × 3 rotation matrix
and g ∈ R3 is a translation. Note that the matrix transformation (60) is implemented in the
MatrixTransform Mapping class [?] which can be used to rotate and translate another Mapping.
Also note that R(t) can be any invertible matrix and thus does not necessarily need to be a rotation
although we will often refer to it as the rotation matrix.

3.1 Elementary rigid motions

3.1.1 Rotation around a line

An elementary rigid motion is the rotation about an arbitrary line in space. Define a line by a
point on the line, x0, and a tangent v = [v0, v1, v2]T to the line,

y(s) = x0 + v s. (line) (61)

The equation to rotate a given point x(0) around this line by an angle θ to the new point x(θ) is
(for a derivation see the documentation of the RevolutionMapping in [?])

x(θ) = Rl(θ)(x(0)− x0) + x0, (62)

Rl(θ) = vvT + cos(θ)(I − vvT) + sin(θ)(v×)(I − vvT), (63)

=

v0v0(1− cos(θ)) + cos(θ) v0v1(1− cos(θ))− sin(θ)v2 v0v2(1− cos(θ)) + sin(θ)v1

v0v1(1− cos(θ)) + sin(θ)v2 v1v1(1− cos(θ)) + cos(θ) v1v2(1− cos(θ))− sin(θ)v0

v0v2(1− cos(θ))− sin(θ)v1 v2v1(1− cos(θ)) + sin(θ)v0 v2v2(1− cos(θ)) + cos(θ).

(64)

We can write (62) in the form (60) if we set R = Rl and g = (I −Rl)x0.

3.1.2 Translation along a line

Another elementary rigid motion is the translation motion,

x(t) = a0 + v f(t), (translation along a line) (65)

where f(t) is some time function that defines the position of the point along the line. The translation
motion (65) can also be put in the form (60) by setting R = I and g = a0 + v f(t).

23

3.2 Composition of motions

One can compose multiple elementary rigid motions to form more complex motions. If we apply
the motion x = R1x0 + g1 followed by the motion x = R2x0 + g2 then we get

x(t) = R2

(
R1x0 + g1

)
+ g2, (66)

= R2R1x0 +R2g1 + g2, (67)

and thus the composed motion is defined by

x(t) = Rx0 + g, (68)

R = R2R1, (69)

g = R2g1 + g2. (70)

3.3 Grid velocity and acceleration

When the matrix motions are used with a PDE solver, we may need to know the velocity and
acceleration of a grid point. These are just the first and second time derivatives of the motion,

ẋ(t) = Ṙx0 + ġ, (velocity) (71)

ẍ(t) = R̈x0 + g̈, (acceleration) (72)

where “dot” denotes a derivative with respect to time. These expressions can also be rewritten
using x(0) = R−1(x(t)−g(t)) to give the velocity and acceleration in terms of the current position

ẋ(t) = ṘR−1(x(t)− g(t)) + ġ, (73)

ẍ(t) = R̈R−1(x(t)− g(t)) + g̈. (74)

These last expressions are useful if we do not want to save the original grid positions.

3.4 MatrixMotion class

The MatrixMotion C++ class can be used to define elementary rigid motions. A MatrixMotion
can be composed with another MatrixMotion and thus more general rigid motions can be defined.
The MatrixMotion holds a TimeFunction object (see Section 3.5) that defines the time function
for the motion.

3.5 TimeFunction class

The TimeFunction C++ class is used to define functions of time that can be used with the
MatrixMotion class to define, for example, the rotation angle θ(t) as a function of time. The
simplest time function is the linear function

f(t) = a0 + a1t. (75)

The sinusoidal function is defined as

f(t) = b0 sin(2πf0(t− t0)). (76)

24

3.6 The ‘motion’ program for building and testing motions

The test program motion (type ‘make motion’ in cg/user to build cg/user/bin/motion from
cg/user/src/motion.C) can be used to build and test rigid motions. One can

• Build multiple bodies (e.g. ellipse, cylinder).

• Define a MatrixMotion and TimeFunction for each body.

• Compose multiple MatrixMotion’s to build more complicated motions.

• Plot the motions of the bodies over time.

• Check the time derivatives of the motions by finite differences.

• Evaluate the grid velocity and grid acceleration (as needed by Cgins or Cgcns) and check the
accuracy of the velocity and acceleration by finite differencing the grid positions in time.

25

4 Motion of “Light” Rigid Bodies

The coupling of fluid flow with “light” moving rigid bodies can cause the standard time stepping
algorithm to go unstable. In this section we discuss this issue.

We first derive the expression that relates the acceleration of a point on the boundary of a rigid
body to the force F and torque G on the body.

The motion of a point r on the boundary of a rigid body is given given by the sum of the
position of the centre of mass, x(t) plus a rotation,

r(t) = x(t) +R(t)(r(0)− x(0)).

The acceleration of this point is

a = F/M +
∑
i

(ω̇ × ei + (ω · ei)ω + |ω|2ei)(ri(0)− xi(0))

where M is the mass of the body and F is the force on the center of mass.
Now if E = [e1 e2 e3] is the matrix of principal axes of inertia, ei then the angular momentum

is

h = E(t)MIω,

MI = diag(I1, I2, I3), Ii are the moments of inertia,

R(t) = E(t)E−1(0)

ḣ = ĖMIω + EMIω̇ = G

Ė = ω∗E, (ω∗ is the matrix such that ėi = ω × ei, i = 1, 2, 3),

and whence

ω̇ = M−1
I E−1

(
G− ω∗EMIω

)
Thus we arrive at the expression relating the acceleration of a point on the boundary to the force
and torque on the body

a = F/M +
∑
i

(ω̇ × ei + (ω · ei)ω + |ω|2ei)(ri(0)− xi(0)), (77)

ω̇ = M−1
I E−1

(
G− ω∗EMIω

)
. (78)

Consider now a rigid body B immersed in a fluid with density ρf and velocity u and pressure
p, The momentum equation for the fluid in a reference frame moving with the body is

ρf
(
u̇ + (u− ġ) · ∇u

)
+∇p = ∇ · τ ,

where g is the “grid” velocity. If the fluid-solid boundary is taken as a no-slip wall then u = ġ for
x ∈ ∂B and

ρf u̇ +∇p = ∇ · τ , x ∈ ∂B. (79)

In particular the following condition on the normal derivative of the pressure is satisfied

∂p

∂n
= −ρf

(
n · u̇

)
+ n · ∇ · τ , x ∈ ∂B (80)

26

On the boundary ∂B the fluid acceleration u̇ is equal to the solid acceleration a from (77) and thus

∂p

∂n
= −ρf

(
n ·
(
F/M +

∑
i

(M−1
I E−1G)× ei(ri(0)− xi(0)) + ...

)
+ n · ∇ · τ , x ∈ ∂B (81)

Now

F =

∫
∂B
pn ds+ viscous terms (82)

G =

∫
∂B

(r− x)× (pn) ds+ viscous terms (83)

Combining (81) and the expression for F from (82) and G from (83) we see that

∂p

∂n
= −

ρf
M

n(x) ·
(∫

∂B
p(s)n(s) ds

)
(84)

− ρfn ·
(∑

i

(M−1
I E−1

∫
∂B

(r− x)× (pn) ds)× ei(ri(0)− xi(0)) + ... (85)

This expression gives us a clearer indication of interface condition on the pressure that couples the
fluid and solid.

In the FSI time stepping algorithm, the pressure in the fluid is computed using the boundary
condition (80) using a approximate (predicted) value for u̇ = a. Corrector steps are then applied
to the fluid and solid. This sequence of predictor and corrector steps would correspond roughly to
evaluating equation (85) as

∂pk

∂n
= −

ρf
M

n(x) ·
(∫

∂B
pk−1(s)n(s) ds

)
+ ... (86)

In the case of an incompressible fluid the above interface BC would be used when solving the
Possion equation for the pressure, ∆pk = We can see why “light” bodies may pose difficulties
as the coefficient

ρf
M on the right-hand-side may be large and this iteration may not converge.

4.1 Model problem

Consider the one-dimensional FSI model problem

pxx = f, a < x < 0, (fluid), (87)

Msẍ = p(0, t)A, (solid), (88)

px(0, t) = −ρf ẍ = −ρfp(0, t)A/Ms, (interface), (89)

p(a, t) = 0 (90)

where the solid has height A. The pressure in the fluid thus satisfies

pxx = f, a < x < 0, (fluid), (91)

px(0, t) = −ρfp(0, t)A/Ms, p(a, t) = 0. (92)

We solve this by iteration (to mimic the normal time stepping method for the general FSI problem)

pk+1
xx = f, a < x < 0, (fluid), (93)

pk+1
x (0, t) = −ρfpk(0, t)A/Ms, pk+1(a, t) = 0. (94)

27

The difference qk = pk − pk−1 satisfies qkxx = 0 and thus

qk+1 = Ck+1(x− a) (95)

Whence from the interface condition

Ck+1 = −ρf (−a)A/MsC
k, (96)

= κCk, (97)

κ ≡ ρfaA/Ms, (98)

= −Mf/Ms, (99)

where Mf = ρf (−a)A is the mass of the fluid (since (−a)A = Vf is the volume of the fluid region).
The iteration will converge provided

|κ| = |Mf/Ms| < 1. (100)

Note that κ < 0 implying that qk will change signs at each iteration. This is consistent with what
is observed in practice.

Consider the under-relaxed iteration

pk+1
xx = f, a < x < 0, (101)

pk+1
x (0, t) = (1− α)pkx(0, t) + α(−ρfA/Msp

k(0, t)) (102)

Then

Ck+1 = (1− α)Ck −Mf/MsαC
k, (103)

Ck+1 = κCk, (104)

κ = 1− (1 +Mf/Ms)α (105)

The under-relaxed iteration converges provided

α <
2

1 +Mf/Ms
(106)

28

5 DeformingBodyMotion Class

The DeformingBodyMotion Class defines various types of deforming bodies.

advect body : advect the surface with the fluid velocity. Use this option for a free surface.

elastic shell : define a curve in 2D with properties of an elastic shell, see Section 5.1.

5.1 Elastic Shell

Consider a two-dimensional elastic shell (represented as a curve in 2D) that is immersed in a fluid.
Let x̄ ∈ R2 with x̄ = x̄(s, t), s ∈ [0, 1] denote the position of a point on the shell and v̄ = v̄(s, t) = x̄t
denote the velocity of the shell. Let x̄0(s) = x̄(s, 0) denote the initial position of the shell.

The equations of motion for the elastic shell are

ρ̄v̄t = −K(x̄− x̄0) + ∂s(Te∂s(x̄− x̄0))− ∂2
s (Be∂

2
s (x̄− x̄0)) +Ae∆s

2v̄ss −Dev̄ + F, (107)

x̄t = v̄, (108)

where ρ̄ is the line density of the shell (mass per unit length), Ke is the coefficient of stiffness,
Te the coefficient of tension, Be is the bending rigidity (NOT implemented yet), De the damping
coefficient, Ae the coefficient of artificial dissipation, F = F(s, t) is the external forcing.

For example, if the shell were immersed in an incompressible fluid the forcing term could be
F = pn− µ(∇v +∇vT)n.

Note that the initial state of the shell, x̄(s, 0) = x̄0(s), is assumed to be in equilibirum (an
un-stressed state) and this is why the term x̄ − x̄0 appears in the equations (Is this the correct
thing to do??).

Elastic shell boundary conditions: The available boundary conditions (for an end point sb =
0, or sb = 1),

x̄(0, t) = x̄(1, t), periodic, (109)

x̄(sb, t) = gd(t), Dirichlet (pinned or specified motion), (110)

x̄s(sb, t) = gn(t) Neumann, (given slope), (111)

x̄ss(sb, t) = 0, Neumann, (free boundary), (112)

nb · v̄(sb, t) = 0, Slide boundary, nb=normal to boundary face), (113)

Note: In the case that Be 6= 0, we will need an addition condition at the boundary in order to
define a well-posed problem.

Suppose that the elastic shell is periodic and defines a closed curve (e.g. ellipse or circle) that
encloses some volume that is not part of the computation domain. If the gas or liquid inside this
enclosed volume is assumed to be incompressible the the enclosed volume should remain constant
over time. To enforce this we add an additional penalty term to (107) to conserve the enclosed
volume, see [?]. This forcing term is given by

FV =
βV
∆t

(1− V (t)/V0) +
βV
∆t

∫ t

0
(1− V (τ)/V0) dτ (114)

where V (t) is the current volume and V0 is the initial volume. These two terms can be viewed as
a a PI control function (P=proportional, I=integral).

29

	Introduction
	Rigid Body Motion
	Nomemclature
	Motion of rigid bodies and the Newton-Euler equations
	Rigid body motion and the added mass matrices
	Numerical integration of the Newton-Euler equations of motion
	A matlab code for integrating the Newton-Euler equations
	Leapfrog Trapezodial Predictor Corrector
	Diagonally implicit Runge-Kutta (DIRK) schemes
	DIRK schemes of orders 1 to 4

	Forcing relaxation for light bodies
	Exact and manufactured solutions to the Newton-Euler equations
	Trigonometric twilight zone solution (TZTrig)
	Free rotation exact solutions (FR1, FR2, FR3)
	Quadratic drag law.

	Numerical Results
	Solution for a sinusoidal forcing

	NEW Numerical Results
	Derivation of the Rigid Body Equations of Motion

	MatrixMotion and TimeFunction: Classes for Defining Rigid Motions of Bodies
	Elementary rigid motions
	Rotation around a line
	Translation along a line

	Composition of motions
	Grid velocity and acceleration
	MatrixMotion class
	TimeFunction class
	The `motion' program for building and testing motions

	Motion of ``Light'' Rigid Bodies
	Model problem

	DeformingBodyMotion Class
	Elastic Shell

