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Abstract:
OverBlown is a program that can be used to solve fluid flow problems on overlapping grids. It is built upon the Overture
object-oriented framework. OverBlown has a number of different algorithms that can be used to solve problems for a range of
Mach numbers. The Mach number, M, is the ratio of the flow speed to the speed of sound. In particular there are algorithms
suited for

• incompressible flow, M = 0, (method INS)

• low Mach number flows, M < .5, (method ASF)

• moderate Mach numbers .25 < M < 1.0, (method CNS) and high Mach number flows .25 < M , (method CNSCAD).

• reactive Euler equations in 2D (method CNSGOD).

OverBlown can be used to solve problems on moving grids. OverBlown can also be used to solve simple chemically reacting
flows.
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1 Introduction

OverBlown is a fluid flow solver for overlapping grids built upon the Overture framework [2],[6],[3]. OverBlown can be
used to solve the incompressible Navier-Stokes equations (INS), and the compressible Navier-Stokes equations using either an
all-speed flow algorithm (ASF), a moderate Mach number algorithm (CNS) or a high Mach number algorithm (CNSCAD or
CNSGOD). The ASF algorithm would be appropriate from low to moderate Mach number, say M < .5, the CNS algorithm
best for .25 < M < 1. while the CNSCAD algorithm is best for M > .25 (approximately). CNSGOD is for the 2D Euler
equations (inviscid Navier-Stokes) with some optional chemical reactions.

More information about Overture can be found on the Overture home page, http://www.llnl.gov/casc/-
Overture. For installation procedures see section (7).

The OverBlown distribution consists of a directory, OverBlown, plus subdirectories:

OverBlown/bin : contains the executable, overBlown . You may want to put this directory in your path.

OverBlown/ins : sample command files for running computations of the incompressible Navier-Stokes equations, see
section (2).

OverBlown/cns : sample command files for running computations of the compressible Navier-Stokes equations.

OverBlown/asf : sample command files for running computations with the all-speed-flow solver for the compressible
Navier-Stokes equations (this option needs more work).

OverBlown/lib : contains the OverBlown library, libOverBlown.a.

OverBlown/src : source files (.C files) for OverBlown.

OverBlown/check : contains testing routines for comparing the answers on test problems to previously run cases.

Other documents of interest that are available through the Overture home page are

• The OverBlown Reference Guide [11] for detailed descriptions of the equations, algorithms and discretizations.

• The overlapping grid generator, Ogen, [8]. Use this program to make grids for OverBlown .

• Mapping class documentation : mapping.tex, [7]. Many of the mappings that are used to create an overlapping grid
are documented here.

• Interactive plotting : PlotStuff.tex, [10].

• Oges overlapping grid equation solver, used by OverBlown to solve implicit time stepping equations and the Poisson
equation for the pressure, [9].

1.1 Basic steps

Here are the basic steps to solve a problem with OverBlown .

1. Generate an overlapping grid with ogen. Make the grid with 2 ghost lines.

2. Run overBlown (note lowercase ’o’, found in the OverBlown/bin directory) and choose the PDE you want to solve.

3. Assign the boundary conditions and initial conditions.

4. Choose the parameters for the PDE (Reynold’s number, Mach number etc.)

5. Choose run time parameters, time to integrate to, time stepping method etc.

6. Compute the solution (optionally plotting the results as the code runs).

7. When the code is finished you can look at the results (provided you saved a ‘show file’) using plotStuff.

The commands that you enter to run OverBlown can be saved in a command file (by default they are saved in the file
‘overBlown.cmd’). This command file can be used to re-run the same problem by typing ‘overBlown file.cmd’. The com-
mand file can be edited to change parameters.

To get started you can run one of the demo’s that come with OverBlown , these are explained next in section (2).
Papers that describe some of the algorithms used in OverBlown include
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1. Composite Overlapping Meshes for the Solution of Partial Differential Equations [4].

2. A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids [5].

3. Analysis of a Difference Approximation for the Incompressible Navier-Stokes Equations [12].
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Figure 1: Snapshot of OverBlown showing the run time dialog menu. The figure shows two falling bodies in an incompressible
flow, computed with the command file twoDrop.cmd.



2 SAMPLE COMMAND FILES FOR RUNNING OVERBLOWN 6

2 Sample command files for running OverBlown

Command files are supported throughout the Overture. They are files that contain lists of commands. These commands can
initially be saved when the user is interactively choosing options. The command files can then be used to re-run the job.
Command files can be edited and changed.

In this section we present a number of command files that can be used to run OverBlown .

2.1 Running a command file

Given a command file for OverBlown such as cylinder.cmd, found in OverBlown/ins/cylinder.cmd, one can
type ‘overBlown cylinder.cmd’ to run this command file . You can also just type ‘overBlown cylinder, leaving
off the .cmd suffix. Typing ‘overBlown noplot cylinder’ will run without interactive graphics (unless the command
file turns on graphics). Note that here I assume that the OverBlown/bin directory is in your path so that the overBlown
command is found when you type it’s name. The OverBlown sample command files will automatically look for an overlapping
grid in the Overture/sampleGrids directory, unless the grid is first found in the location specified in the command file.

When you run a command file a graphics screen will appear and after some processing the run-time dialog should appear
and the initial conditions will be plotted. The program will also print out some information about the problem being solved. At
this point choose continue or movie mode. Section (3.3) describes the options avialable in the run time dialog.
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2.2 Incompressible flow past a cylinder in a long channel

The command file cylinder.cmd in OverBlown/ins can be used to compute the incompressible flow past a cylinder in
a channel, figure (2.2). This example uses the grid Overture/sampleGrids/cilc.hdf.

1 *
2 * OverBlown command file for flow past a cylinder
3 *
4 * specify the overlapping grid to use:
5 cilc.hdf
6 * Specify the equations we solve:
7 incompressible Navier Stokes
8 exit
9 *

10 * Next specify the file to save the results in.
11 * This file can be viewed with Overture/bin/plotStuff.
12 show file options
13 * compressed
14 * open
15 * cylinder.show
16 frequency to flush
17 5
18 exit
19 * display parameters
20 turn off twilight zone
21 * choose implicit time stepping:
22 implicit
23 * but integrate the square explicitly:
24 choose grids for implicit
25 all=implicit
26 square=explicit
27 done
28 final time (tf=)
29 5.
30 times to plot (tp=)
31 1.
32 plot and always wait
33 ** no plotting
34 pde parameters
35 nu
36 .01
37 turn off second order artificial diffusion
38 turn off fourth order artificial diffusion
39 * turn on second order artificial diffusion
40 * OBPDE:second-order artificial diffusion 1
41 * OBPDE:ad21,ad22 2,2
42 * OBPDE:fourth-order artificial diffusion 1
43 * OBPDE:ad41,ad42 1,1
44 done
45 * cfl
46 * .25
47 boundary conditions
48 all=noSlipWall
49 square(0,0)=inflowWithVelocityGiven, uniform(p=1.,u=1.)
50 square(1,0)=outflow
51 square(0,1)=slipWall
52 square(1,1)=slipWall
53 done
54 initial conditions
55 * read from a show file
56 * cylinder.show
57 * 9
58 uniform flow
59 p=1., u=1.
60 exit
61 project initial conditions
62 continue
63
64
65 movie mode
66 finish
67
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68
69
70

To run this command file from the OverBlown/ins directory type ‘overBlown cylinder’ (or
../bin/overBlown cylinder’ if you have not set your path).
Notes:

• You may have to change the name of the overlapping grid file, cilc.hdf (specified near the top of the command file)
to be the correct location of the file, such as henshaw/myGrids/cilc.hdf. The suffix ‘.hdf’ is optional when
specifying grids as Overture will tack on ‘.hdf’ if necessary. If overBlown does not find the file specified it will also
by default look for the file in the Overture/sampleGrids directory.

• The initial conditions are assigned to be a uniform flow, (u, v) = (1, 0). These initial conditions are projected to nearly
satisfy ∇ · u = 0 by using the ‘project initial conditions’ option.

• The time-stepping method is chosen so that the grid around the cylinder uses implicit time-stepping while the back-
ground grid uses explicit time-stepping. This was done for efficiency. The grids around the cylinder have small grid
spacings so that implicit time stepping is especially useful. The back-ground grid does not have small grid spacings so
there is not much of an advantage in using implicit time stepping. By treating the back-ground grid explicitly the implicit
time stepping equations require less storage and cpu time to solve.

• By default the elliptic pressure equation is solved with a direct sparse solver. This usually is the best approach for 2D
problems, unless the grids get large, since the matrix is factored only once. In later 3D examples it is shown how to
specify an iterative method.
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Figure 2: Incompressible flow around a cylinder. Top: the initial conditions are obtained by projecting a uniform flow, (u, v) =
(1, 0). Bottom: the solution at time t = 40.
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2.3 Incompressible flow around a naca airfoil

The following command file can be used with OverBlown to compute the flow around a naca airfoil. This example
uses the overlapping grid Overture/sampleGrids/naca0012.hdf generated using the command file Overture/-
sampleGrids/naca0012.cmd (or the grid OverBlown/grids/naca.hype.hdf generated with Overture/-
sampleGrids/naca.hype.cmd )

1 *
2 * OverBlown command file for flow past a naca0012 airfoil
3 * use either naca0012.hdf or naca.hype.hdf
4 *
5 * naca.hype
6 naca0012
7 *
8 incompressible Navier Stokes
9 exit

10 *
11 show file options
12 open
13 naca.show
14 exit
15 turn off twilight zone
16 implicit
17 choose grids for implicit
18 all=implicit
19 backGround=explicit
20 done
21 implicit factor
22 0.75
23 final time (tf=)
24 1.
25 times to plot (tp=)
26 .1
27 plot and always wait
28 * no plotting
29 pde parameters
30 * the next value for nu is too small to have any effect.
31 nu
32 1.e-8
33 turn on second order artificial diffusion
34 done
35 * cfl
36 * .75
37 boundary conditions
38 all=noSlipWall
39 backGround(0,0)=inflowWithVelocityGiven, uniform(p=1.,u=1.)
40 backGround(1,0)=outflow
41 backGround(0,1)=slipWall
42 backGround(1,1)=slipWall
43 done
44 initial conditions
45 uniform flow
46 p=1., u=1.
47 done
48 project initial conditions
49 continue

Incompressible flow around a NACA 0012 airfoil.

If you run this example you will notice messages printed to the effect that the divergence is large on some parts of the grid.
By looking at the show file with plotStuff and plotting the divergence it can be seen that the divergence is large near the
leading edge where there are large gradients in the solution. This is not unexpected when using artificial diffusion since only a
minimal amount of smoothing is added. However, it could also indicate that either I need a more refined grid there or perhaps
a better discretization method such as a finite volume method might work better.

This example demonstrates the use of the second-order artificial diffusion as described in section (3.8). The value of the
artificial diffusion is determined in a local way that depends on the velocity gradients so as to keep the solution nicely behaved
but with a minimum of dissipation. There is still some fiddling to do to get the coefficients of the artificial diffusion correct.
The values are always around 1. Here I used a value of 2 where often a value of .5 will work fine.
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2.4 Incompressible flow around a moving stirring stick

The following command file can be used with OverBlown to compute the flow around a rotating tongue depressor. This ex-
ample uses the overlapping grid Overture/sampleGrids/stir.hdf generated using the command file Overture/-
sampleGrids/stir.cmd.

1 *
2 * stirring stick
3 *
4 stir.hdf
5 * stir1.hdf
6 incompressible Navier Stokes
7 exit
8 show file options
9 * compressed

10 open
11 stir.show
12 frequency to flush
13 5
14 exit
15 turn off twilight zone
16 project initial conditions
17 *
18 turn on moving grids
19 specify grids to move
20 rotate
21 0. 0. 0.
22 * specify rate and rampInterval (rampInterval=0. => impulsive start, .5=slow start)
23 .5 .0
24 stir
25 done
26 done
27 * use implicit time stepping
28 * implicit
29 * choose grids for implicit
30 * all=explicit
31 * stir=implicit
32 * done
33 pde parameters
34 nu
35 .05
36 done
37 boundary conditions
38 all=noSlipWall
39 done
40 initial conditions
41 uniform flow
42 p=1.
43 exit
44 final time (tf=)
45 .5
46 times to plot (tp=)
47 .025
48 plot and always wait
49 * no plotting
50 continue

Incompressible flow around a rotating stirring stick.

This example demonstrates how to make some grids move. The options for moving grids is a bit primitive so far. There is

currently no way to have the flow accelerate the body, only predetermined motion is supported so far. Warning: moving grids
have not been tested in 3D very much so avoid doing this for now.
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2.5 Axisymetric incompressible flow past a sphere

The command file OverBlown/ins/halfCylinder.cmd can be used to compute the axisymmetric flow past a sphere.
The (two-dimensional) grid can be created with Overture/sampleGrids/halfCylinder.hdf. OverBlown assumes
that the axis of symmetry is the x-axis (y = 0).

Figure 3: Incompressible axisymmetric flow past a sphere.
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2.6 Incompressible flow past a backward facing step, a C-Grid and an H-grid

The command files OverBlown/ins/backStep.cmd, OverBlown/ins/cgrid.cmd and
OverBlown/ins/hgrid.cmd can be used to solve the problems illustrated in this section. All of these grids
use the mixed boundary condition feature, where portions of a physical boundary interpolate from another grid.
The grids can be generated with the command files Overture/sampleGrids/ins/backStep.cmd, Over-
ture/sampleGrids/ins/cgrid.cmd and Overture/sampleGrids/ins/hgrid.cmd.

Figure 4: Incompressible flow past a backward facing step, a C-grid and an H-grid.
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2.7 Incompressible flow past a sphere

The following command file can be used with OverBlown to compute the flow past a sphere in a box. This example uses the
overlapping grid Overture/sampleGrids/sib.hdf.
File OverBlown/ins/sib.cmd.

1 *
2 * OverBlown command file for a sphere in a box
3 *
4 * grid name:
5 sib.hdf
6 incompressible Navier Stokes
7 exit
8 turn off twilight zone
9 * implicit time stepping on viscous terms

10 implicit
11 show file options
12 * compressed
13 * open
14 * sib.show
15 exit
16 * but outer box is done explicitly
17 choose grids for implicit
18 all=implicit
19 box=explicit
20 done
21 final time (tf=)
22 .2
23 times to plot (tp=)
24 .1
25 plot and always wait
26 no plotting
27 pde parameters
28 nu
29 .05
30 done
31 * use GMRES to solve the pressure equation
32 pressure solver options
33 choose best iterative solver
34 * these tolerances are chosen for PETSc
35 relative tolerance
36 1.e-4
37 absolute tolerance
38 1.e-6
39 exit
40 implicit time step solver options
41 choose best iterative solver
42 * these tolerances are chosen for PETSc
43 relative tolerance
44 1.e-5
45 absolute tolerance
46 1.e-7
47 exit
48 *
49 project initial conditions
50 initial conditions
51 uniform flow
52 u=1., p=1.
53 exit
54 boundary conditions
55 all=slipWall
56 box(0,0)=inflowWithVelocityGiven, uniform(p=1.,u=1.)
57 box(1,0)=outflow
58 north-pole=noSlipWall
59 south-pole=noSlipWall
60 done
61 exit
62 y+r:0 25
63 x+r:0 25

Incompressible flow past a sphere.

For 3D problems it is almost always necessary to use an iterative solver for the pressure equation and the implicit time
stepping equations. In the above case we use the GMRES solver with a convergence tolerance of 10−3. You may have to play
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around with this tolerance since I don’t have a good automatic way to do this yet. See the Oges documentation[9] for more
information.
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2.8 Incompressible flow through some intersecting pipes

The following command file can be used with OverBlown to compute the flow around a sphere in a box. This exam-
ple uses the overlapping grid Overture/sampleGrids/pipes.hdf generated using the command file Overture/-
sampleGrids/pipes.cmd.
File OverBlown/ins/pipes.cmd.

1 *
2 * OverBlown command file for flow in some pipes
3 *
4 * grid name:
5 pipes
6 * equations to solve:
7 incompressible Navier Stokes
8 exit
9 *

10 turn off twilight zone
11 project initial conditions
12 final time (tf=)
13 1.
14 times to plot (tp=)
15 .05
16 plot and always wait
17 * save the speed in the show file:
18 show file variables
19 speed
20 done
21 pde parameters
22 nu
23 .05
24 done
25 * use iterative solver for the pressure equation
26 pressure solver options
27 choose best iterative solver
28 relative tolerance
29 1.e-6
30 absolute tolerance
31 1.e-7
32 exit
33 initial conditions
34 uniform flow
35 u=0., p=1.
36 done
37 boundary conditions
38 all=noSlipWall
39 mainPipe(0,1)=inflowWithVelocityGiven, parabolic(d=.2,p=1.,u=1.)
40 mainCore(0,0)=inflowWithVelocityGiven, parabolic(d=.2,p=1.,u=1.)
41 mainPipe(1,1)=outflow
42 mainCore(1,0)=outflow
43 branchCore(1,1)=outflow
44 branchPipe(1,1)=outflow
45 done
46 continue
47 * plot grids with wire frame
48 grid
49 plot shaded surfaces (3D) toggle 0
50 exit this menu
51 continue

Incompressible flow through some pipes.

This example demonstrates the use of the parabolic profile for the inflow boundary condition as described in section (3.5.1).
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2.9 Two falling drops in an incompressible flow

The command file OverBlown/ins/twoDrop.cmd can be used with OverBlown to compute two drops falling in an
incompressible flow. The grid can be created with Overture/sampleGrids/twoDrop.cmd. The initial conditions for
the drops include their initial position, velocity, and angular velocity. The mass and moments of inertia must be specified for
each drop. There can be problems for the grid generator if the drops get too close together since there will not be enough grid
points in the gap between the drops. To avoid this problem there is an option “detect collisions” that has been turned on that
will detect when the drops get close and perform an elastic collision. This collision detection currently only works for circular
drops.

Figure 5: Two drops falling in an incompressible flow. The upper drop wants to “draft” in behind the lower drop where the
pressure is lower.
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2.10 Compressible flow past two offset cylinders

This example demonstrates the method CNSCAD, solution of the compressible Navier-Stokes equations using a conservative
discretization with artificial diffusion.

The command file OverBlown/cns/twoBump.cmd can be used with OverBlown to compute the two-dimensional
flow of a shock traveling past two offset cylinders. This example uses (a finer version) of the overlapping grid Overture/-
sampleGrids/twoBump.hdf generated using the command file Overture/sampleGrids/twoBump.cmd. The co-
efficients of viscosity and heat conduction have been set to zero so that we are solving the inviscid Euler equations.

Figure 6: Solution of the compressible Euler equations: an initially plane shock, traveling from left to right, hits two offset
cylinders.
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2.11 Solving the Euler Equations with AMR

This example demonstrates the use adaptive mesh refinement with OverBlown using OverBlown/cns/cicShockg.cmd.
We solve the compressible Euler equations with a conservative Godunov method (written by Don Schwendeman).

Figure 7: A shock hitting a cylinder. Adaptive mesh refinement is used to resolve the shock.
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2.12 Solving the Reactive Euler Equations with AMR

In this example we solve the reactive Euler equations with AMR using OverBlown/cns/circleDetonation.check.cmd.
The chemistry is defined by a simple one-step reaction. An initial temperature profile is generated using an option from the
user defined initial conditions, file UserDefinedInitialConditions4.C. A detonation forms at the hot spot, expands
and reflects off the boundaries.

Figure 8: Solving the reactive Euler equations. Adaptive mesh refinement is used to resolve the detonation.
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2.13 Low Mach number flow past an ellipse

This example demonstrates the method ASF, solution of the slightly compressible Navier-Stokes equations using an all-speed-
flow algorithm.

This example uses the overlapping grid Overture/sampleGrids/ellipse.hdf generated using the command file
Overture/sampleGrids/ellipse.cmd.
File OverBlown/asf/ellipse.cmd.

Figure 9: Solution of the slightly compressible Navier-Stokes equations: the Mach number at inflow is .1

1 *
2 * OverBlown command file
3 *
4 ellipse.hdf
5 *
6 all speed Navier Stokes
7 exit
8 *
9 turn off twilight zone

10 linearized all speed implicit
11 final time (tf=)
12 4.
13 times to plot (tp=)
14 .1
15 * Next specify the file to save the results in.
16 * This file can be viewed with Overture/bin/plotStuff.
17 show file options
18 * compressed
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19 open
20 ellipse.show
21 frequency to flush
22 5
23 exit
24 *
25 plot and always wait
26 * no plotting
27 pde parameters
28 Mach number
29 1.
30 Reynolds number
31 100.
32 done
33 cfl
34 .5
35 boundary conditions
36 all=slipWall uniform(T=1.)
37 backGround(0,0)=subSonicInflow uniform(r=1.,u=.1,v=0.,T=1.)
38 backGround(1,0)=subSonicOutflow uniform(T=1.)
39 backGround(0,1)=slipWall
40 backGround(1,1)=slipWall
41 done
42 initial conditions
43 uniform flow
44 r=1., u=.1, T=1.
45 exit
46 project initial conditions
47 continue

Note that the parameters for this run were specified in terms in the (global) Reynolds number and the Mach number. With
the global Mach number being M=1, then an inflow velocity of (u, v) = (.1, 0) corresponds to a local inflow Mach number of
u/M = .1.
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2.14 Specifying the boundary conditions correctly

It can be confusing to get all the boundary conditions correct. To help you do this you should plot the grid and display the
boundaries coloured by the boundary condition number (this is the default) as shown in figure (10). In 3D you will need to
’plot shaded surfaces’ to see the boundary colours. This will help you see if all the faces are correct. OverBlown
prints out the number that corresponds to each boundary.

Figure 10: After specifying boundary conditions it is helpful to plot the grid with boundaries coloured by the boundary condition
number. Here we see that the inflow boundary for the main pipe is number 2 (inflowWithVelocityGiven) the outflow
boundary for the branch pipe is number 5 (outflow) and the walls are number 1 (noSlipWall). This figure is best seen in
colour.
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3 Options and Parameters

There are many options and parameters for OverBlown . Be warned that not all combinations of options will work. It is best
to start from an existing command file and make make minor changes.

3.1 Setup menu

The setup popup menu appears after the overBlown is run and a grid is chosen. At this point one specifies which PDE to
solve.

The choices are

incompressible Navier Stokes : solve the incompressible Navier-Stokes in 2D or 3D or 2D-axisymmetric.

all Speed Navier Stokes :

compressible Navier Stokes (Jameson) : use a Jameson style scheme for 2D/3D Euler/Navier-Stokes.

compressible Navier Stokes (Godunov I) : use a Godunov scheme for the Euler equations or reactive Euler equations.

Note that there will also be illusions to options for a turbulence model and or reaction mechanism but most of these are either
un-implemented or unavailable for general use at the present time.

3.2 Parameters Dialog and Popup menu

After choosing the PDE to solve the user will be given the opportunity to change the parameters that define the problem.
At the current time there is both a dialog menu (new) and a popup menu (old). There are some options that appear in both

menus. Eventually most of the popup menu should disappear. From the main OverBlown Parameters dialog window one can
open other dialog windows such as the Time Stepping Parameters dialog. Some dialogs, such as the Boundary Conditions
dialog are entitled Under Construction. In this case you should use the popup menu instead.

Here is a desciption of the menu options available for changing parameters. This main parameter menu appears when
OverBlown is run and is found in the OverBlown::setParametersInteractively() function.

continue choose this item to exit this menu and continue on to the run-time dialog.

time stepping parameters... : open the time stepping parameters dialog

time stepping method : Not all schemes work for all PDEs.

forwardEuler : For CNS Godunov

adamsBashforth2 : For INS.

adamsPredictorCorrector2 : For INS.

variableTimeStepAdamsPredictorCorrector for CNS.

midpoint : For INS.

implicit : For INS. Treat the viscous terms implicitly. One may optinally specify that some grids are integrated
explicitly and some implicitly (see choose grids for implicit).

all speed implicit : For All-speed-flow.

linearized all speed implicit : For All-speed-flow. Linearize the implicit equations so that the implicit matrix is
only formed and factored every ?? steps.

final time : Integrate to this time.

cfl : Set the cfl parameter. The maximum time step based on stability is scaled by this factor. By default cfl=.9.

dtMax : Restrict the time step to be no larger than this value.

implicit factor :This value in [0., 1.] is used with the implicit time-stepping. A value of .5 will correspond to a 2nd-
order Crank-Nicolson approach for the viscous terms, a value of 1. will be backward-Euler and a value of 0. will be
forward-Euler. See the the reference manual for more details.

recompute dt every : The time step, dt, is recomputed every time the solution is plotted/saved. In addition you may
specify the maximum number of steps that will be taken before dt is recomputed. Use this if the solution is not
plotted very often.
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slow start time : Ramp the time step ∆t from a small value (determined by slow start cfl) to it maximum value (as
determined by the cfl parameter over this time interval.

slow start cfl : The initial time step for the slow start option is determined by this cfl value, default= .25..

pde options... open the pde options menu. The dialog which opens depends on which PDE was chosen and is described below.

initial conditions options... open the initial conditions dialog. This dialog is under construction.

read from a show file : read initial conditions from a show file. This can either be a show file generated from OverBlown
or one that you have built yourself.

read from a restart file : read initial conditions from a restart file.

uniform state : specify a uniform state.

show file options... open the showfile dialog.

show variables : toggle on/off variables that should be saved in the show file.

mode : specify the mode as compressed or uncompressed. A compressed file will be smaller (especially for AMR runs
that create many grids) but a compressed file will not be readable by future versions of OverBlown.

open : open a show file. You will be prompted for the name.

close : close the show file.

frequency to save : By default the solution is saved in the show file as often as it is plotted according to ’times to
plot’. To save the solution less often set this integer value to be greater than 1. A value of 2 for example will save
solutions every 2nd time the solution is plotted.

frequency to flush : Save this many solutions in each show file so that multiple show files will be created (these are
automatically handled by plotStuff). See section (3.6.1) for why you might do this.

display parameters : print current values for parameters.

output options... open the output options dialog.

output options : Here are the output options.

plot option-menu :

plot and wait first time :
plot with no waiting :
plot and always wait :
no plotting : do not plot. If you want to turn off all graphics you must choose this option and also run overBlown

with the noplot option.

output periodically to a file : output data to a file at each time step

times to plot : Specify the time interval between plotting (and saving in a show file).

show file options... open the show file options dialog.

save a restart file : save or do not save a restart file.

allow user defined output : call the userDefinedOutput routine at every step.

times to plot : change the time interval between plotting (and output).

check file cutoffs : used internally for regression tests.

boundary conditions... open the boundary condition options dialog. This dialog is under construction

twilight zone options... : open the twilight zone (method of analytic solutions) dialog.

type : specify the type of analytic solution

polynomial :
turn on polynomial : Make the twilight-zone function be a polynomial.
degree in space : 0,1, or 2
degree in time : 0,1, or 2
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trigonometric turn on trigonometric : Make the twilight-zone function be a trigonometric polymoinal.

frequencies : arguments to the trig functions are Π ? times the frequency specified here.

twilight zone flow : toggle on or off. When this option is on the equations are forced so that the true solution is equal to
some analytically defined function. This is used to test the accuracy of the code.

use 2D function in 3D : use a 2D analytic function in 3D .

compare 3D run to 2D : make adjustments so that an extruded 3D geoemtry can be compared to a 3D computation.

degree in space : degree of the spatial polynomial

degree in time : degree of the temporal polynomial

frequencies (x,y,z,t) : frequencies to use with the trigonometric analytic solution.

plot the grid : plot the grid.

project initial conditions : (popup menu)

project initial conditions : Project initial conditions to nearly satisfy ∇ · u = 0. This option applies to INS and ASF.

do not project initial conditions : (popup menu)

time stepping options : Here are options that affect the time step.

choose grids for implicit : For use with the implicit time stepping option. Choose which grids to integrate implicitly
and which to integrate explicitly. Normally one should choose thoses grids with fine grid spacing (such as in
boundary layers) to be implicit while a back-ground grid could be explicit. See section (3.2.2).

boundary conditions : Brings up a new menu described in section (3.4).

data for boundary conditions : Brings up the sub-menu described in section (3.5).

initial conditions : Brings up a new menu described in section (3.2.3).

pde parameters : This brings up a new menu described below in section (3.2.4).

axisymmetric flow : solve an axisymmetric problem with cylindrical symmetry.

turn on axisymmetric flow : The solution is assumed to have cylindrical symmetry about the axis y = 0 with the grid
defined only in the region y ≥ 0.

turn off axisymmetric flow :

adaptive grids : use adaptive mesh refinement.

turn on adaptive grids

turn off adaptive grids

error threshold

truncation error coefficient :

order of AMR interpolation :

regrid frequency :

change adaptive grid parameters : change AMR regridding parameters (class Regrid).

change error estimator parameters : change parameters in the error estimator (class ErrorEstimator).

show amr error function : add the error function used for AMR regridding to the items that can be plotted.

Debugging :

debug file options : turn out various output to the debug file, ob.debug.

print solution/errors : print solution (or errors if known) at each time.

check error on ghost : also check errors of ghost points.

print classify array : print the classify array for sparse coefficient matrixes.

print sparse matrix : print the sparse matrix generated by Oges (big).
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debug (debug=) : This is a bit flag that turns on various messages. The more bits turned on, the more detailed the
messages that appear. Thus a value of debug=3 (1+2) would have the first 2 bits turned on and would display
few messages. A value of debug=63 (1+2+4+8+16+32) would have 6 bits turned on and would results in a lot of
information.

Oges::debug (od=) : bit flag debug variable for Oges.

Reactions::debug (rd=) :

compare 3D run to 2D : this option will adjust the equations and forcing so that a 3D run on an extruded 2D grid can
be compared to the 2D computation. This includes setting the twilight-zone function to be 2D and changing the
divergence damping (INS) to be two-dimensional (otherwise it is scaled in the wrong way).

reduce interpolation width : specify a new interpolation width. For example, when solving the inviscid Navier-Stokes equa-
tions one may want to use linear interpolation (width=2) instead of of quadratic interpolation (width=3) since this may
reduce wiggles. If the grid was built with width=3 interpolation you can reduce the order of interpolation with this option.

sparse solver options :

pressure solver options : Choosing this item will allow you to change any Oges related parameters as they apply to the
elliptic equation for the pressure. See the Oges documentation for a description of these parameters [9].

implicit time step solver options :Choosing this item will allow you to change any Oges related parameters as they
apply to the mplicit time stepping equations. See the Oges documentation for a description of these parameters [9].

moving grids : Options related to moving grids.

turn on moving grids : Allow grids to move.

turn off moving grids : do not allow grids to move.

specify grids to move : indicate which grids move and how. You must also choose ‘turn on moving grids’ if
you really want these grids to move. See section (??).

detect collisions : detect collisions for some types of rigid bodies (wip)

do not detect collisions : turn off collision detection.

minimum separation for collisions : minimum allowed distance between colliding bodies. This distance is in grid lines
and should be chosen large enough so that a valid grid can still be generated. Usually value will be from 2 to 3 but
may need to be more for some grids.

plot the grid : plot the grid. Useful to see if boundary conditions have been plotted correctly.

erase : erase the graphics screen.

exit : exit this menu and continue on (same as ’continue’).

3.2.1 Show file options

Here are the options related to show files, these options are from the updateShowFile function in the OB Parameters
class.

open : open a new show file.

close : close any open show file.

show file variables : specify extra derived quantities, such as the divergence or vorticity, that should be saved in the show file
in addition to the standard variables.

frequency to save : By default the solution is saved in the show file as often as it is plotted according to ’times to plot’.
To save the solution less often set this integer value to be greater than 1. A value of 2 for example will save solutions
every 2nd time the solution is plot.

frequency to flush : Save this many solutions in each show file so that multiple show files will be created (these are automati-
cally handled by plotStuff). See section (3.6.1) for why you might do this.

properties :

uncompressed : save the show file uncompressed. This is a more portable format that can be read by newer versions of
Overture.

compressed : save the show file compressed. This is a less portable format.
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3.2.2 Choosing grids for implicit time stepping.

When the option ‘choose grids for implicit’ is chosen from the main parameter menu one can specify which grids
should be treated implicitly or explicitly with the implicit time stepping option. Type a line of the form

<grid name>=[explicit][implicit]

where <grid name> is the name of a grid or ‘all’. Type ‘help’ to see the names. Examples:

square=explicit
all=implicit
cylinder=implicit

Type ‘done’ when finished.

3.2.3 Initial condition options

Here are the options for specifying initial conditions. This menu appears when ‘initial conditions’ is chosen from
main parameter menu.

uniform flow : specify a uniform flow. Enter values in the form ‘p=1., u=2., ...’. Variables not specified will get
default values (usually zero).

step function : specify two uniform conditions separted by a step

read from a show file : read the initial conditions from a solution in a show file.

read from a restart file : read the initial conditions from a solution in a restart file.

3.2.4 PDE parameters for INS

Here are the pde parameters that can be changed when solving the incompressible Navier-Stokes equations. This menu appears
when ‘pde parameters’ is chosen from main menu.

nu : kinematic viscosity (constant).

divergence damping

artificial diffusion : see section (3.8) for a description of the artificial diffusion terms.

second order artifical diffusion turn on second order artificial diffusion
turn off second order artificial diffusion
ad21 : coefficient of linear term
ad22 : coefficient of non-linear term

fourth order artificial diffusion turn on fourth order artificial diffusion
turn off fourth order artificial diffusion
ad41 : coefficient of linear term
ad42 : coefficient of non-linear term

3.2.5 PDE parameters for CNS

Here are the pde parameters that can be changed when solving the compressible Navier-Stokes equations. This menu appears
when ‘pde parameters’ is chosen from main menu and you are solving the compressible Navier-Stokes equations. Nor-
mally one would specify either the Mach number and Reynolds number or alternatively one could specify values for
mu, and ...

Mach number : global Mach number.

Reynolds number : global Reynolds number.
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mu : viscosity (currently constant)

Prandtl number :

kThermal : thermal conductivity (currently constant).

Rg : gas constant

gamma : ratio of specific heats.

gravity : a vector specifying the acceleration per unit mass due to gravity.

algorithms :

conservative with artificial dissipation : Use conservative differencing with a Jameson style artificial dissipation that
mixes a second-order and fourth order dissipation.

non-conservative : use a centered non-conservative scheme, not recommended if you have un-resolved shocks.

conservative Godunov : Use a conservative Godunov Scheme by Don Schwendeman

3.2.6 PDE parameters for ASF

Here are the pde parameters that can be changed when solving the all-speed flow version of the compressible Navier-
Stokes equations. This menu appears when ‘pde parameters’ is chosen from main menu and you are solving the
allSpeedNavierStokes. Normally one would specify either the Mach number and Reynolds number or alter-
natively one could specify values for mu, and ...

Mach number : global Mach number.

Reynolds number : global Reynolds number.

mu : viscosity (currently constant)

Prandtl number :

kThermal : thermal conductivity (currently constant).

Rg : gas constant

gamma : ratio of specific heats.

gravity : a vector specifying the acceleration per unit mass due to gravity.

nuRho :

pressure level : the constant background level of the pressure, normally determined automatically from the Mach number.

remove fast pressure waves (toggle) : remove the ptt term from the pressure equation to eliminate sound waves with a fast
time scale.

3.3 Run time dialog

After the equations have been specified, parameters set and initial conditions chosen, the run time dialog window will appear,
see figure(1.1). Note that OverBlown is in the process of converting from popup menus (left mouse button) to dialog windows
so sometimes you will need to look for the command in the popup menu if it is not in the dialog.

plot component: choose the solution component to plot.

break : If running in movie mode this command will cause the program to halt at the next time to plot.

continue : compute the solution to the next time to plot.

movie mode : compute the solution to the final time without waiting. The solution will be plotted at each output time interval.

movie and save : movie mode plus save each frame as a ppm file.
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contour : enter the contour plotting function in PlotStuff. Here you will more options to change the plot.

streamlines : enter the streamlines plotting function from PlotStuff.

grid : enter the grid plotting function from PlotStuff. If you don’t first erase the contour plot then both the contours and
the grid will be shown.

erase : erase the screen.

change the grid : add, remove or change existing grids. (poor man’s adaptive mesh refinement).

adaptive grids... : open up a new dialog to show parameters adaptive grids.

use adaptive grids : turn adaptive grids on or off.

error threshold : specify the error threshold.

show file options... : choose show file options; e.g. open or close a show file.

file output... : specify options for saving solutions to an ascii file (for plotting with matlab for example). There are a number
of options available as to what data should be saved. See also the userDefinedOutput routine where you can customize
output.

output periodically to a file : Open a file for output; specify how often to save data in the file (every step, every second
step...); specify what data to save in the file (only grid 1, only values on some boundaries etc). Each time this menu
item is selected a new file is opened, allowing one, for example, to save certain information every step and other
information every tenth step.

close an output file : Close a file opened by the command ‘output periodically to a file’.

save a restart file : save the current solution as a restart file; usually I just use the show file for restarts.

pde parameters... change PDE parameters at run time.

final time : change the value for the final time to integrate to.

times to plot : change the time interval between plotting (and output).

debug : enter an integer to turn on debugging info. This is a bit flag with debug=1 turning on just a bit of info, debug=3 (1+2)
showing more, debug=7 (1+2+4) even more etc.

finish : do not compute any further, exit and save the show files etc.

Thus, for example, you can choose ’continue’ and the solution will be computed and plotted at the next time interval.

3.4 Boundary Conditions

In order to compute the correct flow the user must choose the correct boundary conditions. Each physical boundary of each
grid must be given a boundary condition.

The names of the available boundary conditions are given in the OB Parameters::BoundaryCondition enumera-
tor:

enum BoundaryCondition
{

interpolation=0,
noSlipWall,
inflowWithVelocityGiven,
inflowWithPressureAndTangentialVelocityGiven,
slipWall,
outflow,
superSonicInflow,
superSonicOutflow,
subSonicInflow,
subSonicInflow2,
subSonicOutflow,
symmetry,
dirichletBoundaryCondition,
axisymmetric,
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convectiveOutflow,
tractionFree,
numberOfBCNames // counts number of entries

};

Not all boundary conditions can be used with all PDEs. Boundary conditions are specified interactively (or in a command
file) by choosing the ‘boundary condition’ option from the main parameters menu and then typing a string that takes
one of the following forms

<grid name>(side,axis)=< boundary condition name> [,option] [,option] ...

to change the boundary condition on a given side of a given grid, or

<grid name>=<boundary condition name> [,option] [,option] ...

to change all boundaries on a given grid, or

bcNumber<num>=<boundary condition name> [,option] [,option] ...

to change all boundaries that currently have a boundary condition value equal to the integer ‘num’. Here <grid name> is
the name of the grid, side=0,1 and axis=0,1,2. <grid name> can also be ‘all’. The optional arguments specify data for the
boundary conditions:

option = ‘uniform(p=1.,u=1.,...)’ : to specify a uniform inflow profile

option = ‘parabolic(d=2,p=1.,...)’ : to specify a parabolic inflow profile

option = ‘jet(r=1.,x=0.,y=0,z=0.,d=.1,p=1.,u=Umax,v=Vmax,...)’ : specify a jet inflow profile.

option = ‘pressure(.1*p+1.*p.n=0.)’ : pressure boundary condition at outflow

option = ‘oscillate(t0=.5,omega=1.,a0=.5,a1=.5,u0=0.,v0=0.,w0=0.)’ : oscillating inflow parameters

option = ‘ramp(ta=0.,tb=1.,ua=0.,ub=1.,...)’ : ramped inflow parameters

option = ‘userDefinedBoundaryData’ : use a user defined boundary value option.

Examples:

square(0,0)=inflowWithVelocityGiven , uniform(p=1.,u=1.)
square(1,0)=outflow
annulus=noSlipWall
all=slipWall
bcNumber1=noSlipWall
square(0,1)=outflow , pressure(.1*p+1.*p.n=0.)
square(0,0)=inflowWithVelocityGiven , parabolic(d=.25,p=1.,u=1.) , oscillate(t0=0.,omega=1.,a0=.5,a1=.5)
square(0,0)=inflowWithVelocityGiven , userDefinedBoundaryData square(0,0)=inflowWithVelocityGiven ,
parabolic(d=.25,p=1.,u=1.) , userDefinedBoundaryData

The first example, square(0,0)=inflowWithVelocityGiven, will set the left edge of the square to be an inflow
BC, while square(1,0)=outflow will set the right edge to be an outflow boundary. The line, annulus=noSlipWall,
will set all physical boundaries of the annulus to be no-slip walls. Note that an annulus will normally have a branch cut
and possibly an interpolation boundary. The boundary conditions on these non-physical boundaries are never changed. The
command, all=slipWall, will make all physical boundaries slip-walls (and thus over-ride any previous changes to boundary
conditions).

3.5 Data for Boundary Conditions
Some boundary conditions require ‘data’, such as an inflow boundary that requires values for certain quantities such as the
velocity. These data values are optionally specified when the boundary condition is given. Here are some examples:

square(0,0)=inflowWithVelocityGiven , uniform(p=1.,u=1.)
square(0,1)=outflow , pressure(.1*p+1.*p.n=0.)
square(0,0)=inflowWithVelocityGiven , parabolic(d=.2,p=1.,u=1.), oscillate(t0=.3,omega=2.5)
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The available options are

uniform(component=value [,component=value]...) Specify a uniform inflow profile and supply values for some of the
components (components not specified will have a value of zero). Here component0 is the name of a component such
as ‘p’ or ‘u’.

parabolic([d=boundary layer width][,component=value]...) Specify a parabolic inflow profile with a given width. See
section (3.5.1) for more details.

pressure(a*p+b*p.n=c) Specify the parameters a,b,c for a pressure outflow boundary condition. Here p=pressure and
p.n=normal derivative of p. Note that a and b should have the same sign or else the condition is unstable.

oscillate([t0=value][,omega=value]) Specify parameters for an oscillating inflow boundary condition. See section (3.5.3) for
more details.

ramp([ta=value][,tb=value][,...]) : specify values for a ramped inflow. See section (3.5.4).

userDefinedBoundaryData : choose from the currently available user defined options. See section (4) for how to define your
own boundary conditions.

Note that not all options can be used with all boundary conditions.

3.5.1 Parabolic velocity profile

A ‘parabolic’ profile can be specified as a Dirichlet type boundary condition. The parabolic profile is zero at the boundary and
increases to a specified value Umax at a distance d from the boundary:

u(x) =

{

Umax(2 − s/d)s/d if s ≤ d

Umax if s > d

Here s is the shortest distance between the point x on the inflow face to the next nearest adjacent boundary. and d is the user
specified boundary layer width. OverBlown is quite smart at correctly determining the distance s even if the inflow boundary
is covered by one or more overlapping grids (such as the pipe flow example or inlet-outlet grid).

The parabolic profile can be useful, for example, in specifying the velocity profile at an inflow boundary that is adjacent to
a no-slip wall. A uniform profile would have a discontinuity at the wall.

3.5.2 Jet velocity profile

The jet option is ‘jet(r=1.,x=0.,y=0,z=0.,d=.1,p=1.,u=Umax,v=Vmax,w=Wmax,...)’.
A ‘jet’ profile can be used to define inflow over a portion of a boundary. The jet has a a center, (x0, y0, z0), a radius r, and

a maximum value of Umax for u (or Vmax for v or Wmax for w) at r = 0:

u(x) =

{

Umax if |x − x0| ≤ r

0 if |x − x0| > r

In 3D the jet will have a cylindrical cross section. The jet can also be defined to go to zero at it’s boundary using the parameter
d which defines the width of the transition layer,

u(x) =











Umax if |x − x0| ≤ r − d

Umax[1 − (ξ/d)2] if r − d ≤ |x − x0| < r

0 if |x − x0| > r

Here ξ = |x − x0| − (r − d).

3.5.3 Oscillating values

An inflow boundary condition, uniformInflow or parabolicInflow, can be given an oscillating time dependence of
the form

{a0 + a1 cos[2πω(t − t0)]} × {uniform/parabolic profile} + u0

The parameters omega,t0,a0,a1,u0,v0,w0 are specified with the oscillate option. Here u0 = (u0, v0, w0).
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3.5.4 Ramped Inflow

An inflow boundary condition can be ramped from one value (usually zero) to another value. The ramp function is a cubic
polynomial on the interval (ta, tb). The polynomial is montone increasing on this interval with slope zero at the ends. The
variables (u, v, w) vary from (ua, va, wa) to (ub, vb, wb). Thus the u boundary condition ramp function would be:

u(t) =











ua for t ≤ ta

(t − ta)2(−(t − t − a)/3 + (tb − ta)/2)6 (ub−ua)
(tb−ta)3 + ua for ta < t < tb

ub for t ≥ tb

The ramped inflow can also be combined with the parabolic profile as in

square(0,0)=inflowWithVelocityGiven , parabolic(d=.25,p=1.,u=1.) , ramp(ta=0.,tb=1.,ua=0.,ub=2.)

to give a ramped parabolic profile.

3.6 The show file

The ‘show file’ is a data base file of a particular format that contains the solutions from OverBlown . The post-processing
routine plotStuff [10] knows how to read this file and find all the solutions and the different grids if the grids are mov-
ing or adaptive. The show can be looked at by typing ‘plotStuff file.show’ or just ‘plotStuff file’, where
file.show is the name that you gave to the show file when running OverBlown . The program plotStuff is found in
Overture/bin.

3.6.1 Flushing the show file

It is not possible to look at results in a show file while the program is running and the show file is open and being written to.
As a result, if the program crashes for some reason you will not be able to look at the results. To overcome this problem it
is possible to automatically save multiple show files, with each show file containing one or more solutions. The number of
solutions saved in each show file is determined by the frequency the show file is flushed. Use the ‘frequency to flush
the show file’ option to specify how many solutions should be saved in each show file. The files are named ‘file.show’,
‘file.show1’, ‘file.show2’ etc. where ‘file.show’ was the name given to the show file. The plotStuff program will automatically
read all these different files if you just type ‘plotStuff file.show’.

It is thus possible to look at the solutions when OverBlown crashes or while OverBlown is still running. Only the most
recent solutions that belong to the most recent (open) show file will be unavailable.

3.7 Restarts

The easiest way to restart is to choose your initial conditions to come from the show file that you saved in a previous run, see
section (3.2.3). The program will let one choose any solution in the show file as an initial condition. Remember to rename the
show file from the previous run so that it doesn’t get over-written before you have a chance to read from it.

You can also restart using an explicit restart file. To do this you need to turn on the saving of a restart file, see section (3).
In this case overBlown will write a restart file every time the solution is output. Actually, to be safe, two files are created named
‘ob1.restart’ and ‘ob2.restart’. This is in case the program crashes while the restart file is being written. Usually both files will
be valid as use for restart files.

To read the restart file you simply specify this option and the file to use when assigning initial conditions, see sec-
tion (3.2.3).

3.8 Artificial Diffusion

OverBlown implements artificial diffusions based either on a second-order undivided difference or a fourth-order undivided
difference.

The artificial diffusions are

d2,i = (ad21 + ad22|∇hVi|1)

nd
∑

m=1

∆m+∆m−Vi (1)

in the second-order case and

d4,i = − (ad41 + ad42|∇hVi|1)

nd
∑

m=1

∆2
m+∆2

m−Vi (2)
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in the fourth-order case. Here |∇hVi|1 is the magnitude of the gradient of the velocity and ∆m± are the forward and backward
undivided difference operators in direction m

|∇hVi|1 = n−2
d

∑nd

m=1

∑nd

n=1 |Dm,hVni|
∆1+Vi = Vi1+1 − Vi

∆1−Vi = Vi − Vi1+1

∆2+Vi = Vi2+1 − Vi

∆2−Vi = Vi − Vi2+1 etc.

The artificial diffusion is added to the momentum equations

d

dt
Vi + (Vi · ∇h)Vi + ∇hPi − ν∆hVi − f(xi, t) − dm,i = 0

but does not change the pressure equation. Typical choices for the constants ad21 = ad41 = 1 and ad22 = ad42 = 1.. These
artificial diffusions should not affect the order of accuracy of the method. With the artificial diffusion turned on to a sufficient
degree, the real viscosity can be set at low as zero, nu = 0.

This form of the artificial diffusion is based on a theoretical result [13][14] that states that the minimum scale, λmin, of
solutions to the incompressible Navier-Stokes equations is proportional to the square root of the kinematic viscosity divided by
the square root of the maximum velocity gradient:

λmin ∝

√

ν

|∇u| + c
.

This result is valid locally in space so that |∇u| measures the local value of the velocity gradient. The minimum scale measures
the size of the smallest eddy or width of the sharpest shear layer as a function of the viscosity and the size of the gradients of
u. Scales smaller than the minimum scale are in the exponentially small part of the spectrum.

This result can be used to tell us the smallest value that we can choose for the (artificial) viscosity, νA, and still obtain a
reasonable numerical solution. We require that the artificial viscosity be large enough so that the smallest (but still significant)
features of the flow are resolved on the given mesh. If the local grid spacing is h, then we need

h ∝

√

νA

|∇u| + c
.

This gives
νA = (c1 + c2|∇u|)h2

and thus we can choose an artificial diffusion of
(c1 + c2|∇u|)h2∆u

which is just the form (1).
In the fourth-order accurate case we wish to add an artificial diffusion of the form

−νA∆2
u

since, as we will see, this will lead to νA ∝ h4. In this case, if we consider solutions to the incompressible Navier-Stokes
equations with the diffusion term ν∆u replaced by −νA∆2

u then the minimum scale would be

λmin ∝

(

νA

|∇u|

)1/4

Following the previous argument leads us to choose an artificial diffusion of the form

−(c1 + c2|∇u|)h4∆2
u

which is just like (2).

4 User defined functions

Here is a list of functions that can be changed by a user. After rewriting any of these files, compile and link OverBlown with
the new file.
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4.1 User defined initial conditions

The function userDefinedInitialConditions defines initial conditions. Rewrite this function (userDefinedInitialConditions.C)
to define arbitrary initial conditions. This function is accessed when interactively setting parameters in the ‘initial
conditions’ menu under ‘user defined’.

4.2 User defined boundary conditions

The functions chooseUserDefinedBoundaryValues, userDefinedBoundaryValues define values for boundary condi-
tions. Change these functions in order to define new right-hand-side values for boundary conditions. For ex-
ample, you may want to define the inflow velocity profile to have a certain shape and/or time dependence.
The chooseUserDefinedBoundaryValues is accessed when you specify boundary conditions and choose the
userDefinedBoundaryData option.

4.3 User defined grid motion

to appear...

5 Hints for running OverBlown

• Start out with a simple problem on a coarse grid so that the problem can be quickly run to determine if you have the
boundary conditions correct etc.

• Start out by taking only a few time steps and looking at the solution to see if it looks correct.

• The rule of thumb for choosing the viscosity ν is that if the velocities are order 1 and the domain is order 1 then ν > h2
max,

where hmax is the maximum grid spacing as reported by OverBlown when it runs. This comes from the minimum scale
result as discussed in section (3.8).

• If you want to use as small a viscosity as possible then set ν = 0 and use artificial viscosity as discussed in sec-
tions (3.2.4,3.8).

• If OverBlown blows up it could be the time step is not computed correctly. Reduce the cfl parameter (default is .9) to a
value like .5 or .25 to see if this is the problem. There are known problems with the time step determination for implicit
time stepping and a large viscosity (relative to the grid spacing).
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6 Post-processing: Reading a show file and computing some Aerodynamic Quan-
tities

The program OverBlown/bin/aero.C shows how to read a show file that has been generated by OverBlown and access
the solution values stored there. This program can then be used to plot the pressure coefficient on the surface of a body and to
compute the lift and drag on a body.

The file OverBlown/bin/aero.C can be altered to compute other quantities that may be of particular interest to your
application. All information about the grid, solutions and OverBlown parameters are accessible from the show file. You could,
for example use this program to output the solution values to a data file format suitable for some other plotting or analysis
program.

Figure 11: The areo.C program can be used to read a show file generated by OverBlown and compute the coefficient of pressure
on the surface of a body.
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7 Installing OverBlown

OverBlown is usually distributed as a gzipped tar file, OverBlown.vXX.tar,gz, where XX will be the version number.
After uncompressing and untar’ing this file you will see that the OverBlown distribution consists of a directory, OverBlown,
plus subdirectories:

OverBlown/bin : contains the executable, overBlown . You may want to put this directory in your path.

OverBlown/ins : sample command files for running computations of the incompressible Navier-Stokes equations, see
section (2).

OverBlown/cns : sample command files for running computations of the compressible Navier-Stokes equations.

OverBlown/asf : sample command files for running computations with the all-speed-flow solver for the compressible
Navier-Stokes equations.

OverBlown/lib : contains the OverBlown library, libOverBlown.a.

OverBlown/src : source files (.C files) for OverBlown.

OverBlown/check : contains testing routines for comparing the answers on test problems to previously run cases.

Here are the steps for installing OverBlown :

1. cd OverBlown

2. configure : run configure with the default options.

3. make : compile OverBlown .

To run the regression tests:

1. cd OverBlown/check

2. make

3. check.p : a perl script that will run OverBlown on a number of scripts.

To run an example:

1. cd OverBlown/ins

2. ../bin/overBlown cylinder.cmd : compute flow past a cylinder.

Notes: To build OverBlown first run the OverBlown configure script (perl script) to create the Makefile’s for the machine
you are running on. For example type ‘configure’ from the OverBlown directory to build Makefile’s for OverBlown in
double precision. Some options, such as ‘precision=single’, must match the corresponding options that were used to configure
Overture . Type ‘configure --help’ with no arguments to see all the options. The configure script will check to see
that you have set up the appropriate environmental variables for Overture and OverBlown . See the Overture/README
and OverBlown/README files for more info. Note that OverBlown uses the LAPACK libraries in addition to the libraries
required by Overture . Once the Makefile’s have been created, just type ‘make’. If the make is successful then an executable
will be built, OverBlown/bin/overBlown.

7.1 Using PETSc and OverBlown

PETSc, the Portable Extensible Toolkit for Scientific computations[1], can be used in OverBlown to solve implicit systems.
To use PETSc you should

1. build or locate a version of PETSc. I have only built and linked OverBlown to the non-parallel version of PETSc using
PETSc’s internal replacement for mpi.

2. define the PETSC LIB environmental variable (as required to use PETSc normally) and add it to your
LD LIBRARY PATH.

3. configure OverBlown with the ’petsc’ option as in ’configure petsc’, and make OverBlown (only the bin directory needs
to be rebuilt if you have already complied OverBlown without PETSc).
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