
A++/P++ Manual(version 0.7.5)Daniel QuinlanLawrene Livermore National LaboratoryL-560Livermore, CA 94550925-423-2668 (oÆe)925-422-6287 (fax)dquinlan�llnl.govQuinlan's Web Page: http://www.llnl.gov/as/people/dquinlanA++/P++ Web Page http://www.llnl.gov/as/Overture/A++P++A++/P++ Manual (postsript version)A++/P++ Quik Referene Manual (postsript version)LACC Number: LA-CC-96-1LAUR Number: LA-UR-95-3273UCRL Number: UCRL-MA-136511August 16, 2000

2 August 16, 2000

Chapter 0Copyright0.1 In Plain EnglishThis software has been released to the publi domain, the opywrite notie belowapplies.0.2 NOT In Plain EnglishCopyright, 1995. The Regents of the University of California.This software was produed under a U.S. Government ontrat (W-7405-ENG-36) by the Los Alamos National Laboratory, whih is operated by the Universityof California for the U.S. Department of Energy. The U.S. Government is li-ensed to use, reprodue, and distributed this software. Permission is grantedto the publi to opy and use this software without harge, provided that thisNotie and any statement of authorship are reprodued on all opies. Neitherthe Government nor the University makes any warranty, express or implied, orassumes any liability or responibility for the use of this software.The following notie is spei� to the use by the United States Government.NOTICE: The Government is granted for itself and others ating on itsbehalf a paid-up, non-exlusive, irrevoable worldwide liense in this data toreprodue, prepare derivative works, and perform publily and display publily.Beginning �ve (5) years after (date permission to assert opyright was obtained),subjet to two possible �ve year renewals, the Government is granted for itselfand others ating on its behalf a paid-up, non- exlusive, irrevoable worldwideliense in this data to reprodue, prepare derivative works, distribute opies tothe publi, perform publily and display publily, and to permit others to do so.NEITHER THE UNITED STATES NOR THE UNITED STATES DEPART-MENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES, MAKES ANYWARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIA-BILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR3

4 CHAPTER 0. COPYRIGHTPROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOTINFRINGE PRIVATELY OWNED RIGHTS.

PrefaeWelome to the A++/P++ array lass library. A++ and P++ are both C++array lass libraries, providing the user with array objets to simplify the devel-opment of serial and parallel numerial odes. C++ has a olletion of primitivetypes (e.g., int, oat, double), A++ and P++ add to this olletion the typesintArray, oatArray, doubleArray. The use of these new types are as indistin-guishable as possible from the use of the ompiler's builtin types. Sine A++and P++ faithfully represent elementwise operations on arrays whether in a se-rial or parallel environment, numerial odes written using these types are thuseasier to develop and are portable from serial mahines to parallel mahines.This greatly simpli�es the development of portable ode and allows the use of asingle ode on even very di�erent arhitetures (using odes originally developedon PC's or workstations). It is hoped that the A++P++ lasses provide theuser a suÆiently high level to insulate him/her from mahine dependenies andyet low enough a level to provide expressiveness for algorithm design1.The purpose of this work is to both simplify the development of large numer-ial odes and to provide arhiteture-independene through out their lifetimes.By arhiteture independene we mean an insulation from the details of the par-tiular harateristis of the omputer (parallel or serial, vetor or salar, RISCor CISC, et.). A degree of serial arhiteture independene already omesfrom the use of C++, FORTRAN, and other high level languages, but none ofthese insulate the programmer from details of parallel omputer arhitetures.Message passing libraries provide a ommon means to support parallel softwareaross several oneptually similar omputer arhitetures, but this does notsimplify the omplexities of developing parallel software. The A++/P++ arraylasses are intended to hide the details of the omputer arhiteture inludingits parallel design (where one exists).The use of the array objets provided in the A++/P++ lass library ismuh like salar variables used in FORTRAN, C, or C++. In many respetsthe array objets are idential to FORTRAN 90 arrays, the priniple di�ereneis that these array lasses require no speialized parallel ompiler (sine we useany C++ ompiler, all of whih I am aware), thus providing a great deal ofportability aross mahines. Spei�ally, the same ode written for a PC or1You be the judge! 5

6 CHAPTER 0. COPYRIGHTSUN workstation, runs on the Cray or CM-5 2, or the Intel i860, et.

2The CM-5 is a partiularly diÆult mahine to program due to its use of multiple vetorunits on eah node.

ForwardA++ is a serial C++ array lass, P++ is the parallel version of the exat samearray lass interfae. A++/P++ an be haraterized as a parallel FORTRAN90 in C++; fundamentally, A++/P++ is simple. A++/P++ is a library andnot a ompiler and that is its most attrative feature. It is fundamentally simplerthan a ompiler and builds on top of existing, and well optimized, serial ompilertehnology. Sine it is a library in C++, it works with other ompilers (any C++ompiler, we have found) and reserves to those ompilers (and future C++ompilers that will to a better job) loal ode optimizations that are mahinedependent. Sine A++/P++ is a library it an be used with new features ofC++ as they are available without resoure onsuming retro�t of features intoresearh ompilers. Templates, for example, represent a substantial problem toresearh ompilers, but sine A++/P++ is just more C++ ode it works withany of the new C++ ompilers.A++ has been tested and used at Los Alamos National Laboratory sinelate 1993, and has proven quite stable sine summer 1994. Work on P++ ismore reent, ontinued work will be required for a while still. Separate researhwork is attempting to address higher eÆieny for the array lass work, this another work represents ollaborative work with other people at Los Alamos anddi�erent universities.

7

8 CHAPTER 0. COPYRIGHT

AknowledgmentsI'd like to thank the people in the Numerial Analysis and Parallel ComputingCell of CIC-19 at LANL for their suggestions for improvements and patienewhile bugs they found were �xed. And I'd like to thank my family for puttingup with the whole proess.In partiular I would like to thank Bill Henshaw, who has ontributed thelargest numer of bug reports over the years and has ontributed to the urrentstability of A++/P++. also, Kristi Brislawn, who has both maintained andontributed signi�ant piees of A++/P++ over the years. Finally, my thanksto Nehal Desai, who as a summer student ontributed muh of the hapter thatnow represents the A++/P++ tutorial.Many students and sta� have ontributed and ontinue to ontribute to thedevelopment of A++/P++.

9

10 CHAPTER 0. COPYRIGHT

Contents
0 Copyright 30.1 In Plain English . 30.2 NOT In Plain English . 31 Introdution 171.1 About This Manual . 171.2 A++/P++ Web Site . 181.3 Summary . 182 Portability 212.1 Supported Platforms . 212.2 Working and tested for BOTH dynami and stati libraries . . . 222.3 Working for ONLY stati libraries 222.4 Tested by others but not tested by us 232.5 Not tested by anyone (lately) . 232.6 Tests Done On Arbitrary Platforms 233 Requirements, Installation and Testing 253.1 Requirements and Options . 253.1.1 What Hardware you require 253.1.2 What Software you require 253.2 Where to Get A++/P++ . 263.3 How to Install A++/P++ . 263.3.1 Most ommon options to onfigure 323.3.2 Importane of ompiling A++/P++ with the INTER-NALDEBUG option . 323.3.3 Parallel Communiation Libraries 333.4 Testing the A++/P++ Installation 334 Programming Model 354.1 A++ Programming Model . 354.2 P++ Programming Model . 364.3 The programming model of P++ 364.3.1 Single Program Multiple Data stream (SPMD) 3711

12 CONTENTS4.3.2 Virtual Shared Grids (VSG) 375 A++: Serial Array Class Library 415.1 Views of A++ arrays . 415.1.1 Indexing . 415.2 Referene Counting . 435.2.1 Internal A++ Referene Counting 435.2.2 External A++ Referene Counting 445.3 Interoperability with di�erent languages 445.4 Temporary Handling . 455.5 How to abuse A++ . 476 P++ 496.1 Goals of the P++ development 496.2 Partitioning Objets . 496.3 How P++ Arrays are Partitioned 506.4 Ghost Boundaries . 516.5 Communiation Models . 516.6 How to abuse P++ . 517 Developing A++/P++ Appliations 537.1 If You Use SSH On Your Network 537.1.1 Why worry about SSH . 537.1.2 Setting up SSH to run MPI Programs 547.2 Developing And Running A++/P++ Appliations 557.2.1 A++ Appliations . 557.2.2 P++ Appliations . 557.2.3 How to run P++ with MPI 567.2.4 How to run P++ with MPI 578 Tutorial 618.1 Introduton . 618.2 Examples . 628.2.1 Example 1a. "Hello, World" 628.2.2 Example 1b. \Parallel Hello World" 638.2.3 Example 2. 1-D Laplae Equation Solver 648.2.4 Example 3. Distribution of Arrays in P++ 668.2.5 Example 4. The Heat Equation 698.2.6 Example 5. Indiret Addressing 728.2.7 Example 6. Appliation of Indiret Addressing 748.3 Example Make�le . 798.4 More example on the A++/P++ Home Page 819 Examples: Code Fragments 839.1 A++/P++ Examples . 839.2 P++ Spei� Examples . 86

CONTENTS 1310 Referene 8910.1 Legend . 8910.2 Debugging A++P++ Code . 8910.2.1 Turning On Bounds Cheking 8910.2.2 Using dbx with A++ . 9010.2.3 Mixing C++ streams and C printf 9010.3 Range Objets . 9010.3.1 Construtors . 9010.3.2 Operators . 9010.3.3 Aess Funtions . 9010.4 Index Objets . 9110.4.1 Construtors . 9110.4.2 Operators . 9110.4.3 Aess Funtions . 9110.4.4 Display Funtions . 9110.5 Array Objets . 9110.5.1 Construtors . 9110.5.2 Assignment Operators . 9210.5.3 Indexing Operators . 9210.5.4 Indiret Addressing . 9310.5.5 Arithmeti Operators . 9310.5.6 Relational Operators . 9410.5.7 Min Max funtions . 9510.5.8 Misellaneous Funtions 9510.5.9 Replae funtions . 9610.5.10Array Type Conversion Funtions 9610.5.11User de�ned Bases . 9710.5.12Indexing of Views . 9710.5.13Array Size funtions . 9710.5.14Array Objet Similarity test funtions 9810.5.15Array Objet Internal Consistany Test 9810.5.16Shape funtions . 9810.5.17Display Funtions . 9810.5.18Array Expressions Used For Funtion Input 9910.5.19Array Aliasing . 9910.5.20Fill Funtion . 10010.5.21Aess To FORTRAN Ordered Array 10010.6 "where" Statement . 10010.7 P++ Spei� Information . 10010.7.1 Control Over Array Partitioning (Distributions) 10110.7.2 Array Objet Member Funtions 10210.7.3 Distributed vs Repliated Array Data 10210.7.4 Virtual Proessors . 10310.7.5 Synhronization Primative 10310.7.6 Aess to spei� Parallel Environment Information . . . 10310.7.7 Esaping from the Data Parallel Exeution Model 103

14 CONTENTS10.7.8 Aess to the loal array 10310.7.9 Examples of P++ spei� operations 10410.8 Optimization Manager . 10410.9 Diagnosti Manager . 10510.9.1 Report Generation . 10510.9.2 Counting Funtions . 10610.9.3 Debugging Mehanisms 10710.9.4 Mis Funtions . 10810.10Deferred Evaluation . 10910.11Known Problems in A++/P++ 10911 Appendix 11111.1 A++/P++ Booh Diagrams . 11111.2 A++/P++ Error Messages . 11112 Glossary 115

List of Figures4.1 An example for VSG Update based on the Owner omputes rule:A = B + C on 3 proessors . 384.2 The standard method of grid partitioning with overlap 3911.1 A++ Class Design. 11211.2 P++ Class Design. 113

15

16 LIST OF FIGURES

Chapter 1IntrodutionThis introdution inludes a desription of what this manual provides, how touse the manual, and the terminology related to the examples that are provided.Inluded in this introdution is an overview of the A++/P++ array lass li-brary. Error messages are ontained in the Appendix. Further information isprovided about the A++/P++ Web Site where more information is avail-able and where the latest opy of the doumentation is available. This Web siteis presently still in development.1.1 About This ManualThis manual is divided into seven priniple hapters:� Requirements, Installation and Testing� A++/P++ Programming Model� A++: Serial Array Class� P++: Parallel Array Class� Tutorial� Examples� RefereneThese are intended to simplify your use of this manual.The Requirements, Installation and Testing hapter walks the userthrough the setup of the A++/P++ library. Installation requirements are alsoexplained. A small set of tests are available whih verify the installation.The A++/P++ Programming Model hapter explains how to thinkabout the array objets. It provides a oneptual model to help understandhow to write ode using the array lasses.17

18 CHAPTER 1. INTRODUCTIONThe A++: Serial Array Class hapter desribes A++ in more detail andexplains what an and an't be done with the array lasses. It is intended thatthis hapter be spei� to details and �ner points of A++ usage.The P++: Parallel Array Class hapter distribes P++ in more detailand explains what an and an't be done with the parallel array lasses. It isintended that this hapter is spei� to details and �ner points of P++ usage.The Tutorial hapter walks the user through �rst a simple example andthen a more omplex example. A olletion of simple to advaned programsare ontained in the distribution and demonstrate the more sophistiated use ofA++/P++ for numerial software development.The Examples hapter provides A++/P++ ode fragments that are usefulin displaying features of A++/P++ that would otherwise be diÆult to explain.The Referene hapter provides detailed information about the use ofthe A++/P++ array lass library. It desribes the individual objets thatA++/P++ makes available, and eah of their global and member funtions. Itis through the use of the array and other assoiated objets and the A++/P++funtions that one writes a numerial appliation. A++/P++ is designed tobe intuitive and the use of the array objets is thus similar to that of all otherarray languages and extensions (e.g., FORTRAN 90, and HPF, MatLab, et.).The appendix ontains Booh diagrams lassifying both the objet-orienteddesign of both A++ and P++ separately. Some knowledge of Booh notationis helpful. Also in the appendix is a list of error messages in A++/P++. Theseare provided to simplify understanding of internal heking done in A++/P++and provide detailed explanation of eah type of error message that an bereported. They are numbered for onveniene; this part of A++/P++ is stillin development.A later version of the manual will inlude performane data on di�erentmahines so that the use of di�erent features in A++/P++ an be better un-derstood. This work is inomplete at present.1.2 A++/P++ Web SiteWe presently have a World Wide Web home page; it an be aessed viahttp://www.3.lanl.gov/�dquinlan/A++P++.html.This site is updated regularly with the newest doumentation, as it is devel-oped1.1.3 SummaryA++/P++ was developed to simplify the development of numerial software.Spei�ally it allows the expression of a single appliation developed in the serialenvironment to be run on sophistiated (and invariably hard to program) par-allel mahines. It is intended as at least a partial solution to a growing software1All the A++/P++ doumentation is presently under development

1.3. SUMMARY 19risis in the development of large numerial odes as these odes are requiredto be run on many di�erent arhitetures (espeially omplex parallel arhite-tures). But by using A++/P++ the user is insulated from the large di�erenesbetween high performane omputer arhitetures. At the same time, A++ atits lowest level is optimized to run on spei� arhitetures in ways that are notpratial for the users's appliation to support. With the single soure ode ableto run on large numbers of serial and parallel mahines, A++/P++ supportsthe natural evolution of sienti� odes from a serial development environmentto a parallel exeution environment without onstant reimplementation. Thisprovides for both simpli�ed and heaper software maintenane.Sine A++/P++ is a lass library it works with most any C++ ompilerinluding many researh oriented C++ ompilers (suh as speial parallel C++ompilers). Thus funtionality added by suh supersets of C++ are attrativeto explore with the A++/P++ array lass and this is readily done.

20 CHAPTER 1. INTRODUCTION

Chapter 2PortabilityThis doument details the urrent tested status of A++/P++ on di�erent plat-forms (arhiteture and ompiler ombinations). If your partiular ombinationof arhiteture/ompilers is not listed here, likely A++/P++ will still work, thedefaults within the on�guration are to use the GNU g++ and GNU g om-pilers (but all this an be spei�ed on the ommand line of the on�gure sript.\on�gure -help" provides a more omplete listing of the options by whih toon�gure A++ and P++. A separate doument details the installation proee-dure for A++/P++.This hapter details the urrent status of portability of A++/P++. Wesupport a broad number of mahines, however we have better aess to somemore than others and this e�ets the degree to whih we an test A++/P++with di�erent ompilers on these platforms. Some platforms (e.g. HP) we don'thave aess to, but people have ontributed the orret options.2.1 Supported PlatformsA++/P++ uses autoonf for managing the installation of the A++/P++ dis-tribution. Automake is also internally used, as a result all Make�les follow theGNU standards for make�le options. The A++/P++ on�gure sript is alsobuilt by autoonf. All the input �le for automake (Make�le.am �les) are alsoinluded in the distribution.The options used for all arhitetures and ompilers ombinations are gath-ered together into a single �le (A++/on�g/on�g.options). Perl sripts readthis �le and �nd the orret variable setting for the onstrution of Make�les ineah diretory. The onstrution of the Make�les in eah diretory is organizedby autoonf. 21

22 CHAPTER 2. PORTABILITY2.2 Working and tested for BOTH dynami andstati librariesThis setion list the platforms for whih both stati and dynami librariesworkproperly. These are the most ommonly used environments and so they havethe most amout of support.� A++{ Solaris with (CC and){ Linux with (g++ and g){ SGI with (CC and ompiler){ De with (CXX and ompiler){ Blue Pai� (xx & ompilers)� P++{ Dynami libraries don't work with the MPICH version of MPI{ Blue Pai� (vendor'snon-mpih MPI){ De (vendor's non-mpih MPI)2.3 Working for ONLY stati librariesThis setion list platforms and ompiler versions for whih the dynami librariesDO NOT work properly.� A++{ SGI with KCC{ Solaris with KCC{ (anything with KCC, I think)� P++{ Solaris with CC{ Solaris with KCC{ SGI with CC{ De with CXX{ Blue Pai� (xx & ompilers)

2.4. TESTED BY OTHERS BUT NOT TESTED BY US 232.4 Tested by others but not tested by usSome users use A++/P++ on a number of other platforms and have workedwith us to make sure that we get the on�guration options orret for therearhiteture and ompiler ombinations.� A++{ HP (vendor's ompiler)� P++{ HP (vendor's ompiler)2.5 Not tested by anyone (lately)There are several mahines where we would like to be able to run but we havenot tested A++/P++ in a long time or where the ode has never been tested.� Blue Mountain mahine at Los Alamos� Red mahine at Sandia2.6 Tests Done On Arbitrary PlatformsAutoonf permits the spei�ation of many tests on eah platform where theinstallation of softare takes plae. We use a number of standard tests in autoonfbut more importantly we add many whih are spei� to the installation of C++appliations and additional tests whih are spei� to the use of appliations onparallel mahines.Eah test is available as a maro and is distributed with A++/P++. Thesetests inlude:� Tests performed spei� to serial platforms:{ Tests on the target C and C++ ompilers (see below)� Tests performed spei� to C++:{ Test for use of bool in target C++ ompiler{ Test for support of expliit template instaniation in the targetC++ ompiler (this is a test borrowed from the SAMRAI projet).{ Test of support for dynami libraies� Tests performed spei� to parallel platforms:{ Searh for MPI loation (a standard CASC autoonf maro){ Tests spei� to MPI

24 CHAPTER 2. PORTABILITY� Searh for MPI libraries, inlude diretory, and mpirun� Test for mpi and mpiCC to be used in plae of normal C++and C ompilers� Test ompile and run of example MPI ode on target platformusing target ompiler options using di�erent numbers of proes-sors. Current test test example MPI appliation over 1-6 pro-essors. Testing over more proessors would ompliate the in-stallation on arbitrary mahines (like single CPU workstationsrunning MPI).� Test for requirement of mpirun with -mahinefile <filename>option.

Chapter 3Requirements, Installationand TestingThis hapter ontains the software and hardware requirements of the A++/P++array lass library. Additionally, it details the installation of the software. In-luded are diretions for how to modify your environment to use PVM andwhere to get the PVM software. Sine A++/P++ an optionally use a graph-is library for visualization of the A++/P++ array data, info is inluded aboutwhere the Plotmtv software is available and how to use it with A++/P++.3.1 Requirements and Options3.1.1 What Hardware you requireAs best I know any omputer will do, a PC under MS DOS (with 640K RAM)will likely run out of memory in the use of the array lass for any meaning-ful problem. However a large PC should work �ne. A++ has been used onSun workstations, Cray superomputers (X-MP, Y-MP, C-90), IBM RS-6000workstations, SGIs, ...3.1.2 What Software you requireYou will require a C++ ompiler, there is no way around it. Additionally youwill require either a C or FORTRAN ompiler1.Use of Optional Hardware and Software:If you have a parallel omputer you an use P++ (otherwise A++ and P++are equivalent (exept for some additional overhead in P++, beause it willreognize that you are not using more than a single proessor, but it will store1Currently the Mahine Dependent Interfae for A++/P++ is only available in C, so yourequire a C ompiler. 25

26 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTINGsome additional information that A++ will not)2). If you want to use P++ youwill require some ommuniation library. Presently P++ works with PVM andMPI. The PVM home page ishttp://www.epm.ornl.gov/pvm/pvm home.html, info on where to �nd pvm isavailable there. MPI is available via anonymous ftp from info.ms.anl.gov andit is loated in the diretory pub/mpi the MPI Web page is athttp://WWW.ERC.MsState.Edu:80/mpi/, MPI is available for a large and grow-ing number of parallel mahines and network environments, and thus allowsP++ to run on any of these environment where MPI is supported 3.Where to get the A++/P++ array lass library software:The software is available from Los Alamos National Laboratory, ontat:dquinlan (dquinlan�llnl.gov). A++/P++ is urrently made availabel as partof teh Overture Framework. Overture's Home Page ishttp://www.llnl.gov/as/Overture.3.2 Where to Get A++/P++The installation of A++ is simple one you have the A++P++-0.X.X.tar.gz�le. This is available from the Overture web pages athttp://www.llnl.gov/as/Overture.3.3 How to Install A++/P++A++ and P++ are distributed together; they are meant to be installed togetheras well. Assuming you have the A++P++-0.X.X.tar.gz �le use gunzip and thenuntar the �le to build the A++ diretory.The on�gure sript requires no additional parameters, it will �gure out whatsort of mahine you have and run numerous tests to see what options should beused internally in the installation (this is the standard autoonf mehanism). Wehave added many additional test (testing for MPI, dynami library apabilities,et.).A relatively new feature of A++/P++ is the use of autoonf whih buildsa on�gure sript whih will setup A++ and P++ plus generate the make�lefor the �nal build. There are is a single on�gure sript in eah diretory of thediretory hierarhy (the A++ and P++ on�gure sripts an be run separatelyfor example).To use the on�gure sript (there is no other way) type onfigure -help tosee the options. The output should appear something like this for the on�guresript at the top level diretory:onfigure -help2This is a trivial point sine both A++ and P++ have the same interfae.3MPI was announed at Super Computing 93, PVM has been around muh longer. MPIhas reeived onsiderable vendor support, thus P++ will be restrited to PVM and MPI, butthis is suÆient for general use

3.3. HOW TO INSTALL A++/P++ 27Usage: onfigure [options℄ [host℄Options: [defaults in brakets after desriptions℄Configuration:--ahe-file=FILE ahe test results in FILE--help print this message--no-reate do not reate output files--quiet, --silent do not print `heking...' messages--version print the version of autoonf that reated onfigureDiretory and file names:--prefix=PREFIX install arhiteture-independent files in PREFIX[/usr/loal℄--exe-prefix=EPREFIX install arhiteture-dependent files in EPREFIX[same as prefix℄--bindir=DIR user exeutables in DIR [EPREFIX/bin℄--sbindir=DIR system admin exeutables in DIR [EPREFIX/sbin℄--libexedir=DIR program exeutables in DIR [EPREFIX/libexe℄--datadir=DIR read-only arhiteture-independent data in DIR[PREFIX/share℄--sysonfdir=DIR read-only single-mahine data in DIR [PREFIX/et℄--sharedstatedir=DIR modifiable arhiteture-independent data in DIR[PREFIX/om℄--loalstatedir=DIR modifiable single-mahine data in DIR [PREFIX/var℄--libdir=DIR objet ode libraries in DIR [EPREFIX/lib℄--inludedir=DIR C header files in DIR [PREFIX/inlude℄--oldinludedir=DIR C header files for non-g in DIR [/usr/inlude℄--infodir=DIR info doumentation in DIR [PREFIX/info℄--mandir=DIR man doumentation in DIR [PREFIX/man℄--srdir=DIR find the soures in DIR [onfigure dir or ..℄--program-prefix=PREFIX prepend PREFIX to installed program names--program-suffix=SUFFIX append SUFFIX to installed program names--program-transform-name=PROGRAMrun sed PROGRAM on installed program namesHost type:--build=BUILD onfigure for building on BUILD [BUILD=HOST℄--host=HOST onfigure for HOST [guessed℄--target=TARGET onfigure for TARGET [TARGET=HOST℄Features and pakages:--disable-FEATURE do not inlude FEATURE (same as --enable-FEATURE=no)--enable-FEATURE[=ARG℄ inlude FEATURE [ARG=yes℄--with-PACKAGE[=ARG℄ use PACKAGE [ARG=yes℄--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)--x-inludes=DIR X inlude files are in DIR--x-libraries=DIR X library files are in DIR--enable and --with options reognized:--enable-PXX also onfigure P++

28 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTINGAnd for the A++ diretory, the output of on�gure -help is:onfigure -helpUsage: onfigure [options℄ [host℄Options: [defaults in brakets after desriptions℄Configuration:--ahe-file=FILE ahe test results in FILE--help print this message--no-reate do not reate output files--quiet, --silent do not print `heking...' messages--version print the version of autoonf that reated onfigureDiretory and file names:--prefix=PREFIX install arhiteture-independent files in PREFIX[�APP_DEFAULT_PREFIX�℄--exe-prefix=EPREFIX install arhiteture-dependent files in EPREFIX[same as prefix℄--bindir=DIR user exeutables in DIR [EPREFIX/bin℄--sbindir=DIR system admin exeutables in DIR [EPREFIX/sbin℄--libexedir=DIR program exeutables in DIR [EPREFIX/libexe℄--datadir=DIR read-only arhiteture-independent data in DIR[PREFIX/share℄--sysonfdir=DIR read-only single-mahine data in DIR [PREFIX/et℄--sharedstatedir=DIR modifiable arhiteture-independent data in DIR[PREFIX/om℄--loalstatedir=DIR modifiable single-mahine data in DIR [PREFIX/var℄--libdir=DIR objet ode libraries in DIR [EPREFIX/lib℄--inludedir=DIR C header files in DIR [PREFIX/inlude℄--oldinludedir=DIR C header files for non-g in DIR [/usr/inlude℄--infodir=DIR info doumentation in DIR [PREFIX/info℄--mandir=DIR man doumentation in DIR [PREFIX/man℄--srdir=DIR find the soures in DIR [onfigure dir or ..℄--program-prefix=PREFIX prepend PREFIX to installed program names--program-suffix=SUFFIX append SUFFIX to installed program names--program-transform-name=PROGRAMrun sed PROGRAM on installed program namesHost type:--build=BUILD onfigure for building on BUILD [BUILD=HOST℄--host=HOST onfigure for HOST [guessed℄--target=TARGET onfigure for TARGET [TARGET=HOST℄Features and pakages:--disable-FEATURE do not inlude FEATURE (same as --enable-FEATURE=no)--enable-FEATURE[=ARG℄ inlude FEATURE [ARG=yes℄--with-PACKAGE[=ARG℄ use PACKAGE [ARG=yes℄--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)--x-inludes=DIR X inlude files are in DIR--x-libraries=DIR X library files are in DIR

3.3. HOW TO INSTALL A++/P++ 29--enable and --with options reognized:--with-CC=ARG manually set C ompiler to ARG--with-M4=ARG manually set M4 to ARG--with-CXX=ARG manually set C++ ompiler to ARG--enable-CXXOPT=ARG manually set CXXOPT to ARG--enable-COPT=ARG manually set COPT (optimization flags) to ARG--enable-CXXDEBUG=ARG manually set CXXDEBUG to ARG--enable-CDEBUG=ARG manually set CDEBUG to ARG--enable-CXXOPTIONS=ARG manually set CXXOPTIONS to ARG--enable-COPTIONS=ARG manually set CDEBUG to ARG--enable-CXX_WARNINGS=ARG manually set CXX_WARNINGS to ARG--enable-C_WARNINGS=ARG manually set C_WARNINGS to ARG--with-CXX_TEMPLATES=ARG manually set CXX_TEMPLATES to ARG--with-ARCH_LIBS=ARG manually set ARCH_LIBS to ARG--enable-INTERNALDEBUG turn on internal debugging for any ARG--with-USE_TAU_PERFORMANCE_MONITOR=ARG manually set USE_TAU_PERFORMANCE_MONITOR to YES or NO ARG--enable-SHARED_LIBS, manually enable building of shared libraries, off by default--enable-STATIC_LINKER=ARG manually set linker for linking stati libraries to ARG--enable-STATIC_LINKER_FLAGS =ARG manually set stati linker flags to ARG--enable-SHARED_LIB_EXTENSION=ARG manually set file extension for shared libraries to ARG (e.g. so)--enable-C_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C objet files to ARG--enable-CXX_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C++ objet files to ARG--enable-C_DL_COMPILE_FLAGS=ARG manually set C ompiler flags to make objets suitable for building into shared libraries--enable-CXX_DL_COMPILE_FLAGS=ARG manually set C++ ompiler flags for reating objet files suitatble for putting into a shared library--enable-C_DL_LINK_FLAGS=ARG manually set flags for linking C objet files into a shared library--enable-CXX_DL_LINK_FLAGS=ARG manually set linker flags for linking C++ objet files into a shared library--enable-RUNTIME_LOADER_FLAGS=ARG manually set runtime loader flags to ARGFor the P++ diretory, the output of on�gure -help is:onfigure -helpUsage: onfigure [options℄ [host℄Options: [defaults in brakets after desriptions℄Configuration:--ahe-file=FILE ahe test results in FILE--help print this message--no-reate do not reate output files--quiet, --silent do not print `heking...' messages--version print the version of autoonf that reated onfigureDiretory and file names:--prefix=PREFIX install arhiteture-independent files in PREFIX[�PPP_DEFAULT_PREFIX�℄--exe-prefix=EPREFIX install arhiteture-dependent files in EPREFIX[same as prefix℄--bindir=DIR user exeutables in DIR [EPREFIX/bin℄--sbindir=DIR system admin exeutables in DIR [EPREFIX/sbin℄

30 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTING--libexedir=DIR program exeutables in DIR [EPREFIX/libexe℄--datadir=DIR read-only arhiteture-independent data in DIR[PREFIX/share℄--sysonfdir=DIR read-only single-mahine data in DIR [PREFIX/et℄--sharedstatedir=DIR modifiable arhiteture-independent data in DIR[PREFIX/om℄--loalstatedir=DIR modifiable single-mahine data in DIR [PREFIX/var℄--libdir=DIR objet ode libraries in DIR [EPREFIX/lib℄--inludedir=DIR C header files in DIR [PREFIX/inlude℄--oldinludedir=DIR C header files for non-g in DIR [/usr/inlude℄--infodir=DIR info doumentation in DIR [PREFIX/info℄--mandir=DIR man doumentation in DIR [PREFIX/man℄--srdir=DIR find the soures in DIR [onfigure dir or ..℄--program-prefix=PREFIX prepend PREFIX to installed program names--program-suffix=SUFFIX append SUFFIX to installed program names--program-transform-name=PROGRAMrun sed PROGRAM on installed program namesHost type:--build=BUILD onfigure for building on BUILD [BUILD=HOST℄--host=HOST onfigure for HOST [guessed℄--target=TARGET onfigure for TARGET [TARGET=HOST℄Features and pakages:--disable-FEATURE do not inlude FEATURE (same as --enable-FEATURE=no)--enable-FEATURE[=ARG℄ inlude FEATURE [ARG=yes℄--with-PACKAGE[=ARG℄ use PACKAGE [ARG=yes℄--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)--x-inludes=DIR X inlude files are in DIR--x-libraries=DIR X library files are in DIR--enable and --with options reognized:--with-CC=ARG manually set C ompiler to ARG--with-M4=ARG manually set M4 to ARG--with-CXX=ARG manually set C++ ompiler to ARG--enable-CXXOPT=ARG manually set CXXOPT to ARG--enable-COPT=ARG manually set COPT (optimization flags) to ARG--enable-CXXDEBUG=ARG manually set CXXDEBUG to ARG--enable-CDEBUG=ARG manually set CDEBUG to ARG--enable-CXXOPTIONS=ARG manually set CXXOPTIONS to ARG--enable-COPTIONS=ARG manually set CDEBUG to ARG--enable-CXX_WARNINGS=ARG manually set CXX_WARNINGS to ARG--enable-C_WARNINGS=ARG manually set C_WARNINGS to ARG--with-CXX_TEMPLATES=ARG manually set CXX_TEMPLATES to ARG--with-ARCH_LIBS=ARG manually set ARCH_LIBS to ARG--enable-INTERNALDEBUG turn on internal debugging for any ARG--with-USE_TAU_PERFORMANCE_MONITOR=ARG manually set USE_TAU_PERFORMANCE_MONITOR to YES or NO ARG--enable-SHARED_LIBS, manually enable building of shared libraries, off by default

3.3. HOW TO INSTALL A++/P++ 31--enable-STATIC_LINKER=ARG manually set linker for linking stati libraries to ARG--enable-STATIC_LINKER_FLAGS =ARG manually set stati linker flags to ARG--enable-SHARED_LIB_EXTENSION=ARG manually set file extension for shared libraries to ARG (e.g. so)--enable-C_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C objet files to ARG--enable-CXX_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C++ objet files to ARG--enable-C_DL_COMPILE_FLAGS=ARG manually set C ompiler flags to make objets suitable for building into shared libraries--enable-CXX_DL_COMPILE_FLAGS=ARG manually set C++ ompiler flags for reating objet files suitatble for putting into a shared library--enable-C_DL_LINK_FLAGS=ARG manually set flags for linking C objet files into a shared library--enable-CXX_DL_LINK_FLAGS=ARG manually set linker flags for linking C++ objet files into a shared library--enable-RUNTIME_LOADER_FLAGS=ARG manually set runtime loader flags to ARG--disable-MPI Do not set up MPI flags--with-mpi-inlude=DIR mpi.h is in DIR--with-mpi-libs=LIBS LIBS is spae-separated list of library namesneeded for MPI, e.g. "nsl soket mpi"--with-mpi-lib-dirs=DIRSDIRS is spae-separated list of diretoriesontaining the libraries speified by`--with-mpi-libs', e.g "/usr/lib /usr/loal/mpi/lib"--with-mpi-flags=FLAGS FLAGS is spae-separated list of whatever flags otherthan -l and -L are needed to link with mpi libraries--with-MPICC=ARG ARG is mpi or similar MPI C ompiling tool--with-mpi-inlude=DIR mpi.h is in DIR--with-mpi-libs=LIBS LIBS is spae-separated list of library namesneeded for MPI, e.g. "nsl soket mpi"--with-mpi-lib-dirs=DIRSDIRS is spae-separated list of diretoriesontaining the libraries speified by`--with-mpi-libs', e.g "/usr/lib /usr/loal/mpi/lib"--with-mpi-flags=FLAGS FLAGS is spae-separated list of whatever flags otherthan -l and -L are needed to link with mpi libraries--with-MPICC=ARG ARG is mpi or similar MPI C ompiling tool--with-mpirun=ARG ARG is mpirun or equivalent--with-mpi-mahinefile=FNAME FNAME lists mahines to run mpi progs on--with-STL_INCLUDE=ARG manually set STL_INCLUDE to ARG--without-PADRE Avoid using PADRE Library within P++--with-STL_INCLUDE=ARG manually set STL_INCLUDE to ARG--with-GLOBAL_ARRAYS Use GLOBAL ARRAYS Library (from PNL) within PADRENote that numerous option araavailable, though non should be reuired for adefault installation of A++/P++.An example on�gure line to install A++ might be:onfigureIn another example to on�gure for a spei� C++ and C ompiler theommand line would be:

32 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTINGonfigure --with-CC= --with-CXX=CCIn still another example to on�gure for without optimization to improvethe ompile speed of the A++/P++ library: the ommand line would be:onfigure --enable-CXXOPT= --enable-COPT=In still an other example to ompile P++ (also turning on INTERNALDE-BUG option) in addition to A++:onfigure --enable-INTERNALDEBUG --enable-PXXOn some mahines when ompiling P++ the loation of MPI must be spe-i�ed. Example spei�ation of MPI loation:onfigure --enable-PXX --with-CC= --with-CXX=xx --enable-SHARED_LIBS \--with-mpi-inlude=/usr/opt/MPI170/inlude \--with-mpi-lib-dirs=/usr/opt/MPI170/lib \--with-mpi-libs=mpi \--with-mpirun=/usr/opt/MPI170/bin/dmpirunThere are learly numerous options available to speify numerous details ofthe ompilation.3.3.1 Most ommon options to onfigureThe most ommon options to speify for building only A++ are just (no options)onfigureand for P++ are just (speify ompilation of P++):onfigure --enable-PXXThe on�gure sript will handle the identi�ation of the mahine and otherdetails automatially or will output what options need to be spei�ed withadditional data.3.3.2 Importane of ompiling A++/P++ with the IN-TERNALDEBUG optionFor A++ this is not an important option though using it will provide internalerror heking and will likely help ath mistakes you make before they ausemysterious problems whih are diÆult to explain. For the most part A++ issuÆiently mature that if you just turn on the bounds heking ?? it will athmost user errors.For P++ we suggest the use of the INTERNALDEBUG option when it isompiled beause this will ath internal errors and be more useful to use if youreport a bug. But with the INTERNALDEBUG option P++ will run notieablyslower. So you might hoose to have two versions. This reets the fat that weare still �xing bugs within P++ sine it is still being tested at Livermore.Example fragement of output from onfigure --help:

3.4. TESTING THE A++/P++ INSTALLATION 33--enable-INTERNALDEBUG turn on internal debugging for any ARGExample ommand line for on�gure showing the spei�ation of the INTR-NALDEBUG optiononfigure --enable-INTERNALDEBUG3.3.3 Parallel Communiation LibrariesP++ supports the use of either PVM or MPI, but is urrently developed us-ing MPI (it used to be the other way around). So we now suggest the use ofMPI with P++ for simpliity and beause in the future PVM support will belimited (beause the PADRE distribution library uses several publially avail-able libraries internally and few of these an support PVM). The followingsub-setions disribe the installation of P++ with PVM and MPI respetively.Note for users at LLNL: MPI is already installed and you should useit.How to Install MPIGet MPI (the ftp site is listed above) and install MPI following the instrutionsenlosed with MPI, nothing speial is required. Then within the installation ofA++/P++, it is only required that the use have the MPI/bin diretory in theirpath (so that mpirun an be found). The tests within autoonf (our speializedversion of maros for autoonf) will test for MPI, if it is not found the user mayhave to spei�y the loation of the diretory expliitly using the ommand lineoptions.How to Install PVMGet PVM from the web and install it using the instrutions that ome withPVM. Nothing about this step is in any way spei� to using P++.3.4 Testing the A++/P++ InstallationRun make hek from any diretory of the A++/P++ diretory tree and all testwill be run for that subtree. Running make hek from the top level direotry(A++P++) will run all tests (for A++ and P++).A small set of test programs is available in the A++/EXAMPLES andP++/EXAMPLES diretories and these an be used to test A++ and P++.The output from both A++ and P++ should be nearly the same. The EX-AMPLES diretory ontains a make�le whih an be used to make the exampleappliations. The A++ test program is alled "testode.C" and is loated in theEXAMPLES subdiretory. The test ode will work properly on a single proes-sor using P++, but not in parallel sine it uses indiret addressing whih in nota part of P++ yet. There is a separate test ode for P++, alled "testppp.C".

34 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTINGIt does run in parallel and it is a ommon test that we have for eah new releaseof the A++/P++ implementation.Additional test will be plaed into the A++/TESTS and P++/TESTS di-retories over time. These are mostly previously �xed bugs over the years whihwe would like to avoid reintroduing in the future (hene we provide a simplemehanism to test A++ and P++ against previously reported bugs that havebeen �xed).These tests (in A++/EXAMPLES, P++/EXAMPLES, A++/TESTS, andP++/TESTS) are automatially run by running \make hek" in from thetop level A++P++ diretory. This is one or our best mehanisms for testingA++/P++.

Chapter 4Programming ModelMost all software assumes some programming model that will provide the userwith suÆient intuition to use the software in a way reasonably onsistent withits design. The A++/P++ programming model provides an underlying frame-work for the design of software using the library A++/P++ array lass library.It is intended to be simple sine it is an array language at its ore A++ is verysimilar to FORTRAN 90, and P++ is similar to HPF (though without spe-ial omment like diretives). This hapter will �rst desribe the programmingmodel for A++, the serial array lass, and then proeed to de�ne the program-ming model for P++ whih represents extensions of the serial programmingmodel to provide the spei�ation of array objet distributions onto multipleproessors.4.1 A++ Programming ModelA++ is simple, the programming model of A++ is foused on arrays as objets(data), and array operations (funtions that operate on array objets). Wedon't assume that all omputations an be expressed using suh array objetsand many are learly not suited (Gaussian Elimination for example), howevera very large set of sienti� omputations is well suited to expression via arraysyntax (loal relaxation methods) and this portion is what we address and targetwith the A++/P++ array lasses. In addition to A++ all of C++ is availableas well as any other libraries written in C++1.By providing a programming model entered around an array we don't ex-lude the interation with other programming models in the same appliation.For example, a matrix lass library ould represent a matrix model for the so-lution of linear systems and obtain the problem from a part of the appliation1Sine C++ interfaes to FORTRAN (and nearly every other language as well), all otherlibraries are available to the user. This is the advantage of working within the C++ languageto de�ne libraries like A++/P++ rather than resorting to speialized languages with limitedportability. 35

36 CHAPTER 4. PROGRAMMING MODELthat used the array objets (the array programming model). Suh simple in-terations between lass libraries are intentional and hopefully more omplexinterations will result from more extensive use of A++/P++.The A++/P++ array lass library is intended as a foundation lass in thesense that it an be used to build more sophistiated user de�ned types whihare appliation spei�. A++/P++ does not however attempt to address thedistribution of other more omplex objets like trees, lists, et.24.2 P++ Programming ModelA Parallel Computer onsists (for our simple model) of:� Proessors (many of them) eah with its own loal memory� Interonnetion network de�ning now the proessors are onneted.The P++ programming model is idential to that of the one for A++, butextended to de�ne the partitioning of the array objets aross the loal memoriesof a multiproessor omputer. This is the priniple reason why the P++ libraryan be substituted at ompile time for the A++ lass library allowing the reuseof the serial ourse ode in the parallel environment.In the manipulation of array objets P++ abstrats the parallel mahinebut provides the user with ontrol over the layout of the array objets intothe separate memories of eah proessor. The layout management has its ownprogramming model (this layout model is similar to HPF is many ways butontains additional funtionality whih is well suited to the manipulation oflarge numbers of arrays in a parallel environment (instead of just a single grid(or a small number)).4.3 The programming model of P++P++ uses the SPMD programming model, this is important sine without theSPMD programming model the simpli�ed representation of the parallel programfrom the serial program would not be pratial. Spei�ally, P++ is an SPMDimplementation of a Data Parallel programming model, though not limited ex-lusively to the data parallel programming model. The data parallel model isimplemented using two ommuniation models internally. These allow for ef-�ient ommuniation between aligned array operations and permit unalignedarray operations as well. The user never sees either of these two exeution mod-els sine they are abstrated. What is seen is that array operations betweenaligned array objets is more eÆient than those between unaligned array ob-jets (this should be no surprise sine unaligned array operations require moreommuniation, hense they are avoided within most of parallel programming.2Today the are libraries that formally derive from the A++/P++ array objets to addadditional funtionality spei� to grid geometry et.

4.3. THE PROGRAMMING MODEL OF P++ 37Thus P++ ombines the serial programming model with a virtual sharedgrid model where the operations on array objets are exeuted regardless oftheir deomposition in the multiproessor environment. The ombined e�etof these serial and parallel programming models being idential is the priniplemeans by whih P++ allows serially developed odes to be run on distributedmemory mahines. The eÆieny of the exeution of the serial ode in theparallel environment is determined by the alignment of the data within thearray operations.4.3.1 Single Program Multiple Data stream (SPMD)In ontrast to the expliit host/node programming model whih requires both ahost and one or more node programs, the SPMD programming model onsistsof exeuting one single program soure on all nodes of the parallel system.The implementation of the SPMD model requires that ommonly availablefuntionality in the serial environment be provided in the parallel environment insuh a way that the serial soure ode an be used on the distributed memorymahine. One of the most important funtionalities that is provided in theparallel programming model to support basi funtionality of the serial odeis a parallel I/O system. This an then be used in plae of the serial I/Osystem, to support the required funtionality of the parallel SPMD programmingenvironment.Currently, only basi funtionality of the SPMD programming model (I/Osystem: printf, sanf; initialization and termination of proesses) is available.Implementation details are abstrated from the user. The SPMD programmingmodel repliates the funtionality of the traditional parallel host/node program-ming model. For example, the standard funtion sanf for reading from standardinput is implemented in suh a way that an arbitrarily hosen master node readsthe data from standard input and distributes it to all other nodes (slave nodes).This master/slave relationship is only present within the Parallel I/O Systemand not used elsewhere in P++.4.3.2 Virtual Shared Grids (VSG)The onept of Virtual Shared Grids gives the appearane of Virtual SharedMemory restrited to array variables. Computations are based on global index-ing. Communiation patterns are derived at runtime (though ommuniationshedules are ahed for improved performane), and the appropriate messagesare automatially generated by P++. In ontrast to traditional Virtual SharedMemory, where the operating system does the ommuniation without havinginformation about the algorithm's data and struture, the array syntax of P++provides the means for the user to express details of the algorithm and datastruture to the ompiler and runtime system. This guarantees that the num-ber of ommuniations and the amount of ommuniated data is minimized.Through the restrition to strutured grids, the same kind and amount of om-muniation, as with the expliit Message Passing model is sent/reeived and

38 CHAPTER 4. PROGRAMMING MODELtherefore also approximately the same eÆieny is ahieved. This is a tremen-dous advantage over the more general (traditional) Virtual Shared Memorymodel.There are two basi ommuniation models that are urrently implementedin P++. How they an interat, is desribed in more detail in the examples:� VSG Update:In the implementation of the general Virtual Shared Grids onept, withinthe VSG Update ommuniation model, we Restrit the lassial OwnerComputes rule, that might be applied to whole expressions, to binarysubexpressions and de�ne the Owner arbitrarily to be the left operand.This simple rule handles the ommuniation required in the parallel en-vironment; spei�ally, the designated owner of the left operand reeivesall parts of the distributed array neessary to perform the given binaryoperation. Thus the temporary result and the left operand are partitionedsimilarly (see Figure 3.1).{ P++ user level:A = B + C{ P++ internal exeution:1. T = B + C---------P1: T11 = B11 + C1reeive C21 from P2T12 = B12 + C21P2: T2 = B2 + C22send C21 to P1P3: idle2. A = T-----P1: send T1 to P3P2: send T2 to P3P3: reeive T1 from P1reeive T2 from P2A = TFigure 4.1: An example for VSG Update based on the Owner omputes rule: A= B + C on 3 proessorsWithin Figure 3.1 we have three P++ array objets (A,B, and C), eahis distributed di�erently. The �rst operation is to form a temporary fromB and C. Thus the temporary, T, is the result of the operation B + C.By our VSG rule, T is given the same distribution as the left operand, B.

4.3. THE PROGRAMMING MODEL OF P++ 39So T is build with the same distribution as B (same size as B, as well)and the messages are generated to get the parts of C that are requiredfor the operator+ operation with B. After T is formed the operator=operation is done to �ll in the array, A, with the intermediate result fromT. Eah operand has a di�erent distribution (sine A and B had di�erentdistributions and T mathes the distribution of B). The message passingin generate to get the data relavant for eah proessors portion of T whihis required by the proessors owning A.� Overlap Update: Within the VSG Update ommuniation is intro-dued (if required beause of the indexing of the operands) within eahbinary operation. This is not always eÆient if the arrays are aligned(even if it is the only way to make unaligned array operations work). Awell developed tehnique for handling suh issues is to introdue ghostboundaries of overlap between the edges of the partitioned data. Suhghost boundaries are typially meant to be "read only" opies of the nei-boring proessors data.This model is more eÆient sine within stenile operaations (if the ghostboundary width permits) the repliated data within the ghost bounariesan be read and message passing to get suh data is avoided. Upon theompletion of the array statement the ghost boundaries an be reopiedto fore them to be a onsistant representation of the nieboring proes-sors data3. The point of this alternate ommuniation model is that foraligned array operations (not ounting the indexing whih would unalignthe referenes to the data) message passing an be done one within anarray statement instead of at eah binary operation, this is muh more ef-�ient (but only is the array objets are aligned, otherwise this tehniquean not work). Figure 3.2 shows the distribution of a P++ array withghost boundaries of non zero width.

Figure 4.2: The standard method of grid partitioning with overlap3More detailed mehanisms an be used to represent valid and invalid ghost boundariesand so the update of the ghost boundaries an be sheduled more loosely.

40 CHAPTER 4. PROGRAMMING MODELP++ arrays (Virtual Shared Grids) are onstruted in a distributed fash-ion aross the proessors of the parallel system. Partitioning information andproessor mapping is stored internally. A low level library, MultiBlok Parti4is used to hold information about the distributions and to handle the updateof ghost boundaries and more irregular data transfers as required by the VSGupdates. MultiBlok Parti has been of great help in simplifying the desing ofP++ and speeding its development.All information, required for evaluating expressions using either the VSGor Overlap update models, is expressed through the A++/P++ array syntax.Additional information required is obtained from the distribution of the arrayobjets whih is stored internally within eah array. This information is usedto generate message passing through either of the two ommuniation modelsdepending on if the ghost boundaries are suÆiently large to use the moreeÆient Overlap update model.

4Available from University of Maryland and the result of researh by Al Susmman andJoel Saltz.

Chapter 5A++: Serial Array ClassLibraryThis setion is not intended to be a referene setion (there is already one ofthose) but is intended to detail how A++ is meant to be used (and disuss howto abuse it too).A++ provides an array language implemented in C++ as a lass library. Itprovides array syntax for the expression of numerial algorithms, this syntaxinludes indexing using Index objets (triplets representing base, bound, andstride). Beyond this there are many details to explain and larify.5.1 Views of A++ arraysA++ inludes overloaded parenthesis "()" operators1 whih allow for the re-ation of a view into an existing array objet. The value returned from theparenthesis operator is another array objet, this array objet is a view. Anymodi�ation of the view is reeted in the objet of whih it is a view.For example,doubleArray A(5,5,5); // A's range is from 0..4 along eah axisA = 1;Range I(1,3), J(1,3), K(1,3);A (I,J,K) = 3; // Sets view of interior of A to 35.1.1 IndexingVetor IndexingA++ provides for the indexing of a region of an array objet, as in the previousexample using the Range objets I, J, K. Here the Range objet is used to1using the ::operator()() member funtion of the array objets.41

42 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARYrepresent a base bound pair of values over whih the array operation are totake plae. In addition to the Range objets a slightly more exible objet isprovided; the Index objet. The Index objet stores the base, length of aess,and stride. The Range and Index objets have many di�erent onstrutors.Salar IndexingA++ also provides salar indexing, that is indexing using only integer values andreturning a referene to a salar. This salar indexing is implemented using thesame parenthesis operator, but overloaded (in the C++ sense) to take integervalues.For example,doubleArray A(5,5,5);A = 1;A(2,3,4) = 5; // sets a single element in A to the value 5Bases of ArraysAll A++ array objets have a base, bound and stride for eah axis of theirmultidimensional representation. The (Bound-Base)+1 is the length along eahaxis (assuming stride is 1). The Base by default is the value of the "globaldefault base" whih is, by default, initialized to be ZERO. The base an behanged dynamially though the setBase member funtion. If the array isbuilt using Range objets, as in:Range I (-10,20);Range J (10,20);Range K (1000,2000);doubleArray A (I,J,K);then the bases of the array are -10, 10, and 1000; for eah axis. The lengthsalong eah axis would then be 30,10, and 1000.Valid indexing of the array objets requires that knowledge of the indexspae represented by the array objet. Using the previous array as an example,Range I_1 (21,25);Range J (10,20);Range K (1000,2000);A (I_1,J,K) = 0; // error out of bounds aessRange I_2 (0,10);A (I_2,J,K) = 0; // orret usageThe base, bound and stride an be obtained from the array objets by using theaess member funtion: getBase, getBound, and getStride. Very generalfuntions that work on array objets should not assume the base of the arrayobjet is always zero or that the stride is always 1. Though an assumption of thestride being 1 is generally aeptable sine the strided view of an array objet

5.2. REFERENCE COUNTING 43is 1. However, if your appliation alls FORTRAN (or any other language),then the strides issue will be important and you should hek the stride toaommodate non-unit strides (unit stride implies stride = 1). The pointer tothe internal array data, returned by the getDataPointer member funtion,points to the �rst valid array element and is not o�set for any nonzero base.Thus base of arrays are de�ned at onstrution of the array objets, theyan be nonzero, and they an be hanged dynamially. Note that if a funtiontaking an array objet as input hanges the base of the array the array objetwill have the new base as a side e�et of the funtion all.Bases of ViewsThe views returned from the indexing of A++ array objets using Range andIndex objets are ordinary A++ objets, no di�erent from the A++ objetof whih they are a view. Exept, that they are marked internally as being aview. The isAView member funtion returns a boolean value to determine ifan array objet is a view. Other details are important for views as well:� The base of a view an be di�erent than that of the array of whih it isa view. Spei�ally it is the Base Index or Range objet used to buildthe view.� The stride of a view may be not unit stride (Unit Stride == 1).� The pointer to the raw data for a view might not be what you expet. Thepointer to the data returned by the getDataPointer member funtionis a pointer to the �rst valid element of the original array. The view isa subset of that; determined by the base, bound and stride of the view(minus the base of the original array objet). So this must be understoodwhen handing the pointer to data represented by a view of an array objetto a FORTRAN funtion.5.2 Referene CountingReferene ounting is the storage of a value that represents the number of ex-ternal referenes to an objet. The purpose is to allow many external referenesto an objet and also permit the objet to be leared from memory when thereare no remaining referenes. For example, the internal array data within theA++ array objets is referene ounted. A view of the data is an A++ arraywhih has an external referene to the data of another objet (the original arrayobjet from whih the view was taken).5.2.1 Internal A++ Referene CountingThis subsetion forms an example to explain what referene ounting is sineinternal referene ounting of the data within A++ is ompletely hidden within

44 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARYA++. So the use need not worry about the manipulation referene ounts forthe raw data used by the array objets.floatArray A (10);Range I (0,4);A(I) = 5; // A(I) is a view of A with a referene to A's dataIn this example A(I) is a view of the array data in A, but it is a validoatArray objet. It has an external referene to the same data as in A (A'sdata). If A were deleted A's data would not be released until the view, A(I),went out of sope (the ompiler ontrols the alls to the destrutors sine viewsare loal objets (sometimes alled ompiler temporaries)). This is the waythe referene ounting works on the array data used internally within the arrayobjets, the user never sees this level of referene ounting.5.2.2 External A++ Referene CountingIf appliations use A++ objets, and spei�ally pointers to them, so as to gen-erate multiple referenes then A++ has member funtions to help manipulateand handle these multiple referenes. This is the A++ referene ounting thatthis setion is really about. The point is that referene ounting is more eas-ily done if it is keep with the array objets diretly. A++ member data allowthis and A++ member funtions allow aess and manipulation of that memberdata. The use of this referene ounting only appears in speial uses of A++within appliations and more ommonly within other libraries.A++ arrays ontain referene ounting that may be manipulated by the userto allow many referenes to a single A++ array objet. This is required if youwish to build ode that uses A++ array objet through pointers to those A++arrays, and support multiple referenes to the A++ array objets. Just usingpointers to A++ array objets is not suÆient to require the use of the A++referene ounting. In general you have to be building separate objets eahof whih wants to point (via a pointer) to a single A++ array. This methodof building ode is typial of C style programming, but is largely unneessarywhen using A++ array objets sine separate array objets an be build thateah refer to the same data. The di�erene is a subtle one, basially you anmanage the referene ounting your self, or you an let A++ handle it for you,we suggest the latter, but either will work �ne2.5.3 Interoperability with di�erent languagesA++ an be mixed with other languages quite easily using the C++ extern"C" interfae. The details of doing this are a C++ issue and is the standardway that C++ is mixed with C language ode. Mixing C++ with FORTRAN isunfortunately somewhat ompiler dependent. Beyond the C++ to C, or C++ to2We think it is easy to reate errors if users are fored to manage suh details expliitly.

5.4. TEMPORARY HANDLING 45FORTRAN3, the mixing of A++ and FORTRAN or C is provided by low levelaess to the raw data whih ontains the data values in the A++ array objet.Additional member funtions are provided to obtain size and view informationthat is required for interpretation of the raw data pointer (required in the aseof a view).The A++ array lass also provides salar indexing, but salar indexing isnot eÆient in A++ sine depending on the degree of optimization within theompiler, the inlined funtions are not well optimized.5.4 Temporary HandlingA++ array objets manage the temporaries that their use in array expressionsreate. In the expression A = B + C, one temporary is built to hold the result ofB + C, as in Temp = B + C. This temporary is then used in the expression A =Temp to �nish the assignment. In this ase the assignment an be optimized andthe atual assignment of elementwise data avoided by allowing A to opy thepointer to the temporary's raw data. So the operations would be an elementwiseaddition of B and C and then a opy of a pointer. Suh trivial operationsperform the same as lower level C for FORTRAN ode. The detail regardingtemporary management is that the assignment operator that opies the pointeralso deletes the temporary Temp. It is not lear from a single line of ode, but inlonger funtions that might ontain many A++ array expressions, if we failedto manage the lifetime of the temporaries we would alloate one for eah arrayexpression. The temporaries would aumulate and waste signi�ant memoryresoures. For example:// Here we make up a fititious array lass that does not manage temporaries// we will all this lass, analogous to a doubleArray, No_Temporary_Management_doubleArrayvoid Waste_Memory ()\{No_Temporary_Management_doubleArray A(100,100,100),B(100,100,100),C(100,100,100),D(100,100,100);// statement repeated to show wasted spae from long// funtion with many array statements.A = B + C + D;A = B + C + D;A = B + C + D;A = B + C + D;A = B + C + D;A = B + C + D;3interestingly the reverse diretion is possible as well, but just requires usage of the manglednames (and knowledge of what the mangled names are)

46 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARY\}In this example funtion, if there was no temporary management then theC + D would generate a temporary and the lifetime of that temporary wouldbe the loal sope of the funtion4. Sine the temporary has loal sope itsdestrutor is alled when the funtion exits. In this ase we are assuming notemporary handling so C + D would generate a temporary and the B + Tempwould generate a temporary, and then the assignment would be done. Sinewe assume no temporary handling the assignment operation would likely do anexpliit elementwise opy of A = Temp2. Thus eah line generates two tempo-raries and there are 6 lines, so we have aumulated 12 temporaries at the endof the funtion. Note that this is not the way that A++ works, butis motivation for the temporary handling that A++ provides. As thefuntion exits the destrutor is alled and the 12 temporaries are released. Untilthat point of funtion exit we had wasted 12 million double words of memory5.A++ implements temporary handling whih minimizes the number of tem-poraries that would otherwise aumulate within the exeution of array state-ments. By building the temporaries with a sope that is ontrolled by A++, theA++ funtions internally ontrol the lifetimes of the A++ temporaries6. Thenoperations using A++ array objets hek to see if they have a temporary ob-jet and if so provide more eÆient handling of the operation. For example, inthe previous funtion, the result of C + D would generate a temporary, but thenB + Temp would reuse the temporary array objet as an aumulator7. Thenthe assignment operations would reognize the temporary objet and opy thepointer the raw memory and delete the (now empty) temporary array objet. Atthe end of the expression there are no temporaries that have aumulated. Thisis the superiority of this exeution model for A++ array objets. Typially atmost one temporary is reated during the evaluation of an array expression, andnone are allowed to aumulate aross expressions. For large sale omputationsthis is an important feature of the temporary handling.The drawbak to temporary handling is that if we pass an expression to afuntion then the �rst use of the funtion's parameter will handle the parameterright out of existene. To �x up this speial ase we provide the evaluate()funtion whih onverts the temporary to a non-temporary to avoid onfusingthe A++ aggressive temporary management. Note that if a non temporary is4Tehnially it must be at least as long as the statement and no longer than the loalfuntion sope, it is omplier dependent (whih is the worst of all solutions sine it is notonsistent within di�erent C++ ompilers), unfortunately AT&T Cfront based ompilers suhas what are most readily available on many high performane omputers (Cray YMP, C-90,et.) assume the temporary would have loal sope and many PC ompilers (and GNU g++,not a PC ompiler) assumes the opposite.5And that was just a little funtion, more meaningful funtions ould easily exhaust avail-able omputer memory resoures.6Spei�ally, all A++ binary operations return A++ array objets by referene and markthe objets internally as temporary.7this works espeially well in long expressions.

5.5. HOW TO ABUSE A++ 47passed in to the eval() funtion, then a loally soped shallow opy is built8.5.5 How to abuse A++Like most good things, there are some ways to break A++, most of them arealong the lines of using the aess A++ provides to you to get to its low leveldata and then deleting or hanging that data in some way.� deleting low level A++ array datadoubleArray A (100,100);double *Raw_Data_For_A = A.getDataPointer();delete Raw_Data_For_A; // error: delete the data that was alloated for A� passing expressions by referene (without alling evaluate())void foo (onst doubleArray & X){ X = X * X; // if X is a temporary (as in from an expression)// then X well be deleted by the operator*// then the assignment using operator= would be// invalid.}doubleArray B (100,100);foo (B * B); // errorfoo (evaluate(B * B)); // orret� not heking for a view when using the raw data from an array objetdoubleArray C (100,100);Range I (10,89,2);// Now get a pointer to the data ontaind in a view of C using the Range objet, I.double *Raw_Data_For_C = C(I,I).getDataPointer();// The wrong way to aess the raw data.for (int j=0; j < C.getLength(1); j++) // error: Aess of raw data does notfor (int i=0; i < C.getLength(0); i++) // aount for view, speifiallyRaw_Data_For_C [j*getLength(1)+i℄ = 0; // the base, bound, and stride.// The orret way is more omplex (mostly bease this is a 2D example)// This example assumes a very general array C with nonzero base and// general strided view.doubleArray & D = C(I,I); // avoid reomputing the view C(I,I);int Base_0 = D.getBase(0) - C.getBase(0); // we want the offset from the base of Dint Base_1 = D.getBase(1) - C.getBase(1); // we want the offset from the base of Dint Bound_0 = D.getBound(0) - C.getBase(0);// we want the offset from the bound of Dint Bound_1 = D.getBound(1) - C.getBase(1);// we want the offset from the bound of D.8This has the e�et of doing what the user would expet without the evaluate() funtionall.

48 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARY// The following assume that the stride of C might not be 1, but in this ase we know it is 1.// for example, the stride 2 view of a stride two array (another view for example)// would be a stride 4 aess of the raw data.int Stride_0 = D.getStride(0) * C.getStride(0); // we want the stride of the raw dataint Stride_1 = D.getStride(1) * C.getStride(1); // we want the stride of the raw data// This assumes that the length of C is really the length of the raw dataint Size_0 = C.getRawDataSize(0);// Note that many ompilers will not lift the loop invariant part// "j*Size_0" and so for suh ompilers a more effiient looping// struture is possible (but not shown here)for (int j=Base_1; j <= Bound_1; j += Stride_1) // orret: Aess of raw data does notfor (int i=Base_0; i <= Bound_0; i += Stride_0) // aount for view, speifiallyRaw_Data_For_C [j*Size_0+i℄ = 0; // the base, bound, and stride.These ode fragments show the inorret usage of the low level aess thatA++ provides. It is not a goal of A++ to protet the user from himself/herself.

Chapter 6P++6.1 Goals of the P++ developmentThe general goal of the P++ development is to provide a simpli�ed parallel pro-gramming environment. In this setion some ideal requirements for a user inter-fae and programming model for distributed memory arhitetures are stated.These are ful�lled with the P++ environment for a large, but restrited, lassof problems:� Algorithm and ode development should take plae in a serial environment.� Serial soure odes should be able to be ompiled and reompilable to runin parallel on distributed arhitetures without modi�ation.� Codes should be portable between di�erent serial and parallel arhite-tures (shared and distributed memory mahines).� Vetorization, parallelization and data partitioning should be hidden fromthe user, exept for optimization swithes to whih the user has full aessand that have meaning only on vetor or parallel environments.6.2 Partitioning ObjetsP++, being of objet-oriented design, introdues an objet based ontrol of thepartitioning of the array objet. Spei�ally we introdue a partitioning objetwhih an be used to build P++ arrays (via a parameter to the P++ arrayonstrutor) or modify existing arrays previously built. It is a priniple fea-ture of the P++ partitioning objets that all array objets built with a givenpartitioning are assoiated with that partitioning objet. Manipulation of thepartitioning objet e�ets all array objets with whih it is assoiated. For ex-ample, speifying a new range of proessors for a partitioning objet repartitionsthe P++ array objets assoiated with that partitioning objet. While not im-portant for more simple single grid appliations, the level of ontrol provided49

50 CHAPTER 6. P++by partitioning objets is intended for ontrol (and load balaning) of appli-ations ontaining many grids (e.g. adaptive mesh re�nement and overlappinggrid appliations).Partitioning objets are provided to allow both user and programmable on-trol. Load balaners would use the programmable ontrol whih represents aseparate interfae to the partitioning objets. Users would more diretly usethe more simple interfae for the spei�ation of the partitioning of an arrayobjet. A++ arrays provide member funtions as the means of assoiated anarray with a partiular partitioning objet. This interfae allows for a simpli-�ed manipulation of many partitioning objets (and thus even more P++ arrayobjets) within a single appliation.For example, an adaptive mesh re�nement (AMR) grid ould ontain manyarray objets assoiated with eah retangular grid (there would be many ret-angular grids within an AMR appliation) and a single partitioning objet forretangular grid. Within an adaptive mesh re�nement grid many grids and thusmany partitioning objets would exist. The ontrol of the adaptive mesh re�ne-ment grid and the array objets assoiated with the de�nition of the appliationan thus be abstrated through the ontrol of the partitioning objets assoiatedwith the adaptive grid.Partitioning_Type P;doubleArray A(100,100,P); // A uses the partition objet PdoubleArray B(100,100); // B has the default partition objetB.partition(P); // repartitioning B onsistent with PRange Middle_Proessors (100,199); // speify a fititious olletion of proessorsPartitioning_Type Q(Middle_Proessors); // build another partitioning objetB.partition(Q); // B is repartitioned onto the middle 100 proessorsThe example above builds a partitioning objet, P, whih has the defaultpartitioning (aross all proessors and partitioned along eah axis). The arrayA is built to have a partitioning aross the proessors spei�ed by P. The array,B, is build with the default partitioning and then repartitioned to be onsistentwith the partitioning spei�ed byP (sineP, in this ase, represented the defaultpartitioning the distribution of B is unhanged). The partitioning Q is buildover the proessor 100 through 199, and B is repartitioned onto that smallerolletion of proessors.6.3 How P++ Arrays are PartitionedP++ provides multidimensional partitioning of its distributed array objets.The limit of the dimensionality of the partitioning is that of the dimension ofthe array. The partitioning is e�eted by the Partitioning Type objets, anytwo arrays of the same size using the same partitioning objet will be partitionedidentially (i.e. they will be aligned on the same proessors). See the setionon Partitioning Type objets for more information. This setion will provideexamples of how arrays are partitioned in the near future.

6.4. GHOST BOUNDARIES 516.4 Ghost BoundariesThe partitioning objets ontain many features, detailed in the referene setion,but in addition to the layout spei�ations they ontrol the default widths ofshared regions along interior partition edges, so alled "ghost boundaries." Thedefault width of ghost boundaries de�ned for a P++ array objet is de�nedby the partitioning objet to whih it is assoiated. P++ array objets mayadditionally override the ghost boundary width spei�ed by the partitioningobjets to whih they are assoiated. This allows many arrays to be assoiatedwith a spei� partitioning objet yet restrit the ghost boundary width to benonzero on only a subset of the assoiated array objets.P++ arrays may be modi�ed to inlude an arbitrary width internal ghostboundary, the default width at present is ZERO, though a better hoie of adefault width maybe made after more feedbak. The purpose of this featureis to permit spei� subsets of the array objets assoiated with a partitioningobjet to have di�erent ghost boundary widths.6.5 Communiation ModelsThere are two ommuniation models in P++, the Overlap Update Model andVirtual Shared Grid Model. These handle the interpretation of message passingat eah binary operation, assuming that either the partitioning or the indexingwould fore message passing, either messages are passed to satisfy the binaryoperation or the message passing will be deferred until the "equals" operator. Inthe Overlap Update Model message passing within array expressions is deferreduntil the "equals" operator, while in the Virtual Shared Grid Model messagepassing is done in eah binary operator. These ommuniation models are dis-ussed more fully in the setion about A++/P++ programming models.6.6 How to abuse P++There are several interesting ways to abuse the P++ programming model. Thissetion is intended to parallel the similar setion "How to abuse A++" in setion??, the methods listed there apply to P++ as well, but P++ has some additionalways in whih the user an generate errors. As in A++, all these methods stemfrom the aess that P++ provides the user to low level data or operations. Thefollowing example will ause inonsistant storage within the 5th element of thearray A. It ould eventually lead to a more serious error.// Assume that A is an array with ghost boundaries of width greater than zero.// And that element 5 of A is at an edge of a loal proessor spaeintArray A(10);A = -100; // initialize A to a negative value (sine proessor number are >= 0.Optimization_Manager::setOptimizedSalarIndexing(On);A(5) = Communiation_Manager::loalProessNumber();

52 CHAPTER 6. P++Optimization_Manager::setOptimizedSalarIndexing(Off);The example uses theOptimization Manager::setOptimizedSalarIndexing()funtion whih turns o� ommuniation whih would otherwize be done withinall salar indexing. The purpose of this funtion is to permit more eÆientsalar indexing for the ase when the user knows that NO o� proessor aessis possible (on eah proessor). If A has ghost boundaries then it has multiplepositions for some data (data within the ghost boundary width of the partitionboundaries) on any two proessors.The problem within the example is that the value returned byCommunia-tion Manager::loalProessNumber() will be di�erent for eah proessor.This is the problem, it would not be a data parallel operation and would result indi�erent values being stored (one in the proessor owning the loal spae whereA(5) is loated, and one in the neighboring proessor storing a opy of A(5)within its ghost boundary). The problem ould be resolved if the ghost bound-aries where updated, but nothing within normal P++ operations requires theuser to all the ghost boundary update funtions diretly, so this is onsideredan error.The reason this happens is beause P++ makes the loal proessor numberavailable, but we would lose exibility if we did not make suh info available tothe user. So it is the user's responsibility to use P++ wisely.

Chapter 7Developing A++/P++AppliationsThere are several details to the development of A++ and P++ appliations, thissetion is intended to present them to new users. This doument is intendedto be espeially useful to new users at LLNL, but most details are the sameeverywhere. It is assumed that you have A++ and P++ installed. If only A++has been installed then the P++ setion should be ignored. There are not manydetails to using A++, only P++ (sine it uses MPI (or PVM)) has details forwhih new users should be aware.Some sites, suh as LLNL, use ssh as part of their seurity, this has speialsigni�ane if you want to run MPI on suh a network. So we over the setupof ssh spei� to avoiding the request for a password when logging into othermahines on the network (even your own mahine).7.1 If You Use SSH On Your NetworkIf you use ssh instead of rp within your version of MPI (onsult the person whoinstalled MPI if this is not lear) then yo have an additional step to allow youto run MPI appliations (your P++ appliations will be an MPI appliation).This applies to all people working at LLNL.7.1.1 Why worry about SSHSSH is a seure mehanism for logging-on to remote mahines. The proess ofrunning MPI appliations IS a proess by whih MPI (mpirun, spei�ally) logson to remote mahines to run your appliations in a distributed way. SSH willfore eah proess started to log on to the mahine where it will run and this willause it to prompt you for a password. Even if your running all proesseson your own mahine. 53

54 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONSFor example, if you run on 35 proessors you will have to enter you password35 times, learly this is not what anyone wants. This setion details how to setupssh so that it will trust a number of mahines that you selet and you an runparallel MPI programs without this hassle. This is not a P++ issue, it is anMPI issue when MPI is installed to use ssh instead of rp (whih is the defaultfor MPI).7.1.2 Setting up SSH to run MPI ProgramsThese are diretions provided by Brian Miller for the setup of ssh.To ssh from $HOME to $REMOTE:If you don't are about omplying with the seurity request to not have .sshon the ommon �le system,1. d �/.ssh on $REMOTE (make it if it doesn't exist)2. edit authorized keys on $REMOTE:�/.ssh (reate it if it doesn't exist)3. opy all lines identity.pub to authorized keys (from $HOME:�/.ssh/identity.pub,use ssh-keygen on $HOME if this �le doesn't exist)4. make sure permissions are orret (use hmod 600 for authorized keys)If you want to omply with the seurity request, the steps are similar:1. ssh $REMOTE2. d /var/ssh3. mkdir $USER; hmod 700 $USER; d $USER4. mkdir .ssh; hmod 700 .ssh; d .ssh5. edit authorized keys (reate if doesn't exist)6. opy data from $HOME:�/.ssh/identity.pub to $REMOTE:/var/ssh/$USER/.ssh/authorized keys(again, use ssh-keygen on $HOME if this doesn't exist)7. save authorized keys8. hmod 600 authorized keys9. d �10. ln -s /var/ssh/$USER/.ssh �/.sshdone for this $REMOTE, repeat for blue099, blue199, west, t01, t02,....

7.2. DEVELOPING AND RUNNING A++/P++ APPLICATIONS 557.2 Developing And Running A++/P++ Ap-pliationsThis setion details what you should have to know to develop and exeute A++and P++ appliations. We assume that A++ and P++ are already installedand tested using the automated mehanisms desribed in the installation pro-ess.In general all P++ appliations start out as A++ appliations whih arethen reompiled with P++ instead of A++ and run in parallel. The develop-ment of the appliation an take plae in either environment, so parallel P++appliations an be developed on a parallel mahine diretly (though in gen-eral parallel mahines are onsiderably less friendly than serial mahines forappliation development).7.2.1 A++ AppliationsA++ appliations are developed as soure ode that:1. inlude #inlude <A++.h> at the top,2. de�nes an int main(int arg,har* argv[℄) proedure (somewhere inthe system of �les representing the appliation),3. ompiles with options and paths so that the A++ header �les an be found(-I<your install diretory>/A++P++/A++/inlude),4. links with the appropriate A++ libraries (-App -App stati)This is normal program development, nothing is speial, P++ is a more moreomplex.How to run A++ AppliationsA++ appliations are just standard appliations. Exeuting an A++ applia-tion is the same as for any other program you write.7.2.2 P++ AppliationsP++ appliations are developed as soure ode that:1. inlude #inlude <A++.h> at the top,2. de�nes an int main(int arg,har* argv[℄) proedure (somewhere inthe system of �les representing the appliation),3. ompiles with options and paths so that the P++ header �les an be found(-I<your install diretory>/A++P++/P++/inlude),4. links with the appropriate P++ libraries (-Ppp -Ppp stati -mpi)Clearly the proess is nearly idential to that of an A++ appliation (by design).

56 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONS7.2.3 How to run P++ with MPIP++ appliations are just standard MPI appliations. And running an MPIappliations is a bit more omplex than running a standard serial appliation.An MPI appliation requires the use of a supporting program named mpirun,a P++ appliation is handed in (together with any ommand line parameters)as a ommand line parameter to the mpirun program. The orret syntax is:mpirun -np <numberOfProessors> <appliation> <appliation ommand-lineargs> .Additional options to mpirun an be seen by typing mpirun -help, thoughwe only need at most two (-np and -mahinefile). Many mahines only require(-np). A list of mahines spei� to LLNL and whih options they require anbe found at the end of this setion.Spei�ation of a mahine �le (-mahinefile option)On some (most) mahines, mpirun requires the spei�ation of a mahine fileusing the -m option (to mpirun). This �le spei�es the mahines on the networkthat the users distributed appliation will run. For testing purposes all themahine entries in this �le an be the same. An example mahine file (asimple ASCII �le) would be:gibsIn this ase the MPI proesses would run on gibs (all of them!)1. As manymahines as you like an be spei�ed within the mahine �le. Alloation ofproesses to mahines is based on a round-robin sheduling of the number ofproesses spei�ed on the mpirun ommand line (using the -np option) and theentries in the mahine file.Example using a mahine �le (as it appears when running make hek inthe P++/EXAMPLES diretory):mpirun -np 6 -mahinefile /home/dquinlan/A++P++/A++P++Soure/A++P++/mahine.file test_Ppp_exeutionNotie in this ase that only 6 proessors are used, this is for test purposesonly on a small network of workstations.Running on a spei� mahine (your mahine)In general running on any mahine is a matter of looking at the ommand lineused in the testing of P++ on that mahine where P++ is installed. More detailsinformation will later be doumented about running on spei� mahines; BlueMountain, Tera Cluster, Blue Pai�, Red, et.1In this ase, sine gibs is Bill's mahine, you would likely get email from Bill :-).

7.2. DEVELOPING AND RUNNING A++/P++ APPLICATIONS 57A note about using P++ with PVMWe presently are using MPI for the development of P++, we test the implemen-tation with PVM from time to time, but sine it is not part of the developmentenvironment on a regular basis, its support an lag that of the MPI implemen-tation. If you notie a problem, let us know. We are always looking for anydi�erenes in the PVM and MPI support (beause there should be none).7.2.4 How to run P++ with MPIP++ appliations are just standard PVM appliations. Muh of the develop-ment of P++ was initially done using PVM. So we inlude the setup spei� toPVM. LLNL users should ignore this setion.The frustrating part is getting your environment setup to allow you to runPVM. To do this you must:1. Add /usr/loal/pvm/lib to path.2. Add /usr/loal/pvm/man to MANPATH. This isn't neessary tomake pvm run but is helpful to provide doumentation for pvm.3. Add the following before lines that exit .shr if not aninterative shell.setenv PVM_ROOT /usr/loal/pvmif (! $?PVM_ROOT) thenif (-d ~/PVM/pvm3) thensetenv PVM_ROOT ~/PVM/pvm3elseeho PVM_ROOT not definedeho To use PVM, define PVM_ROOT and rerun your .shrendifendifif ($?PVM_ROOT) thensetenv PVM_ARCH `$PVM_ROOT/lib/pvmgetarh`set path=($path $PVM_ROOT/bin/$PVM_ARCH)endifAlso delete any files named /tmp/pvmd.{\it pid} where {\it pid} is an old proessid number before starting pvm.You an test the pvm installation using the test odes bundled with the pvmdistribution. You an add new mahines to the pvm environment and get helpfrom the pvm onsole. For example:

58 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONS572 objet> pvmpvm>pvm> add fenris1 suessful HOST DTIDfenris 80000pvm>pvm> onf2 hosts, 1 data formatHOST DTID ARCH SPEEDobjet 40000 SUN4 1000fenris 80000 SUN4 1000pvm>pvm> helpHELP - Print helpful information about a ommandSyntax: help [ommand ℄Commands are:ADD - Add hosts to virtual mahineALIAS - Define/list ommand aliasesCONF - List virtual mahine onfigurationDELETE - Delete hosts from virtual mahineECHO - Eho argumentsHALT - Stop pvmdsHELP - Print helpful information about a ommandID - Print onsole task idJOBS - Display list of running jobsKILL - Terminate tasksMSTAT - Show status of hostsPS - List tasksPSTAT - Show status of tasksQUIT - Exit onsoleRESET - Kill all tasksSETENV - Display or set environment variablesSIG - Send signal to taskSPAWN - Spawn taskTRACE - Set/display trae event maskUNALIAS - Undefine ommand aliasVERSION - Show libpvm versionpvm>Alternatively, you an have a large olletion of mahines added when you�rst run PVM by putting a list of mahines into a �le (one mahine name perline) and adding the �lename as a parameter when you start PVM. For example,my pvm hosts �le is:fenris

7.2. DEVELOPING AND RUNNING A++/P++ APPLICATIONS 59## Comment these out to restrit usage to a single mahine (guarneri)guarnerioogleralphiesantustashauppsalaFor example, "pvm pvm hosts", adds the mahines listed in the �le "pvm hosts"to the pvm environment. When you exit pvm, pvm remains running in thebakground. The kill pvm you should use the "halt" ommand from the pvmonsole.

60 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONS

Chapter 8Tutorial
8.1 IntrodutonThe A++/P++ Library represents array lasses written in C++, whih seek tosimplify sienti� programming by providing a general objet-oriented frame-work in whih to develop both serial (A++) and parallel odes (P++). It isintended to be simple, abstrating away muh of the arhiteture dependeneand "bookkeeping" assoiated with sienti� (espeially parallel) programming,allowing the researher/programmer to onentrate on the rapid development ofalgorithms and/or prodution of stable software. For more information see theA++/P++ Manual or the A++/P++ Home Page (listed on the front over).The A++/P++ is foused on arrays as objets, whih enapsulate bothdata and the operations whih an be performed on that data (methods). Thisapproah allows, the programmer to use the A++/P++ data types (intArray,oatArray and doubleArray) muh like they urrently use the primitive types(int,oat and double) available in standard C++. P++ uses a SPMD (singleprogram multiple data) implementation of a data parallel programming model.The data parallel model is implemented using two ommuniation models, whihallow 1)for eÆient ommuniation between aligned and unaligned array oper-ations and 2) the neessary ongruene between serial and parallel libraries.This tutorial steps through a number of example A++/P++ programs. Theexamples illustrate some the main onepts in the A++/P++ inluding: ab-stration of the user from mahine dependenies, reuse of serial ode in a par-allel environment, dimension independene in sienti� omputations, aessto FORTRAN 77 (mixed language programming), et. We present whole (yetsimple) A++/P++ appliations, the example appliations are kept small soas to be presentable in this tutorial style. Eah example generally ontains 1)A brief introdution 2) The A++/P++ soure ode, whih inludes numerousomments disussing the various ways used to the A++/P++ data struturesand assoiated methods 3) Output from Code.61

62 CHAPTER 8. TUTORIAL8.2 Examples8.2.1 Example 1a. "Hello, World"This is the simplest A++/P++ example. It illustrates some of the basi featuresof A++/P++.#inlude <A++.h> // this is inluded in every A++/P++ appliationint main(int arg,har** argv){// We are instaning the doubleArray objet. Though it looks like a// standard Fortran array, it's notdoubleArray A(10);doubleArray B(10);// Initialize A and BA=2;B=3;Illustration of the methods assoiated with doubleArray Objets``display'' is used to show the values of the ObjetA.display(``This is the doubleArray Objet A'');B.display(``This is the doubleArray Objet B'')// We an add to array objets with the ``+'' operatorA=A+B;A.display(``Addition of A and B'');}The output from the \Hello,World" program.doubleArray::display() (CONST) (Array_ID = 1) -- This is the doubleArray Objet AArray_Data is a VALID pointer = 3000 (245760)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)AXIS 1 (0) 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000doubleArray::display() (CONST) (Array_ID = 2) -- This is the doubleArray Objet BArray_Data is a VALID pointer = 3e000 (253952)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)AXIS 1 (0) 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000doubleArray::display() (CONST) (Array_ID = 1) -- Addition of A and BArray_Data is a VALID pointer = 44000 (278528)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)AXIS 1 (0) 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

8.2. EXAMPLES 638.2.2 Example 1b. \Parallel Hello World"The program below is a parallel version of the Example 1a., and illustrates oneof the guiding ideas behind A++/P++, serial ode reuse. With the addition of3 lines, the serial ode above beomes an SPMD parallel ode .#inlude <A++.h> // this is inluded in every A++/P++ appliationint main(int arg,har** argv){// The next two lines are needed to "parallelize" the serial ode.Number_of_Proessors=2;Optimization_Manager::Initialize_Virtual_Mahine(" ",Number_of_Proessors,arg,argv);// Instantiation of the doubleArray Objet, (notie the similarity to a Fortran array)doubleArray A(10);doubleArray B(10);// Initialize A and BA=2;B=3;// Illustration of the methods assoiated with doubleArray Objets// ``display'' is used to show the values of the ObjetA.display(``This is the doubleArray Objet A'');B.display(``This is the doubleArray Objet B'')// We an add array objets with the ``+'' operatorA=A+B;A.display(``Addition of A and B'');// 3rd (and final) line neessary to parallelize ode.Optimization_Manager::Exit_Virtual_Mahine();} The alls to the OptimizationManager are required beause we must speifysome information to the message passing libraries (PVM or MPI). For PVMwe require 1). The number of Proesses to be started 2). The name of theexeutable that eah proess should start. MPI requires the arg and argvarguments. The �nal P++ spei� allOptimization_Manager Exit_Virtual_Mahine()shuts down the virtual mahine. The spei�ation of the number of proessorsis a spei�ation of the virtual proess spae, and independent of the number

64 CHAPTER 8. TUTORIALof proessors physially available. At present we use MultiBlok Parti withinP++, this orresponds to the initialization of the virtual proessor spae withinMultiBlok Parti1. The programs above use only one of the 3 type of arrayobjets available in A++/P++. The other objet types being intArray andoatArray.8.2.3 Example 2. 1-D Laplae Equation SolverThis example program solves the 1-D Laplae equation, Uxx = 0 subjet toU(0)=1 and U(1)=1 with Jaobi relaxation.//This example illustrates the "proper" use of the A++/P++ libs.// The idea is to avoid salar indexing (eg. the kind of indexing// you normally do in fortran or C) through the use of// the Index and Range Objets. Salar indexing is// very slow, espeially for P++, inwhih the arrays are distributed// over the proessors, and onsiderable amount of ommuniation is neesary to// retrieved the indexed values.#inlude <A++.h>#inlude <time.h>main(int arg,har** argv){int num_of_proess=4;Optimization_Manager::Initialize_Virtual_Mahine(" ",num_of_proess,arg,argv);// Instane the doubleArray objets //int grid_size=10;doubleArray Solution(grid_size);doubleArray Solution2(grid_size);doubleArray temp(grid_size);//Other variablesdouble time1,time2,time_total,time2_total;double Jaobi=5; // number of steps in the Jaobi relaxationint i,j;//Instane the Range(or Index) objetsRange I(1,grid_size-2,1);//Initialize the doubleArray objets//1This is a library available from the University of Maryland

8.2. EXAMPLES 65Solution=0.0;Solution2=0.0;Solution(I)=1.0;Solution2(I)=1.0;// Solving 1-d equation using Index objet.time1=lok();for (i=1;i<=Jaobi;i++){Solution(I)=(Solution(I-1)+Solution(I+1))/2; }time2=lok();Solution.display("index");time_total=time2-time1;printf("index done");// equivalent expression with salar (array) indexing //time1=lok();for (i=1;i<=Jaobi;i++){for (j=1;j<=8;j++){temp(j)=(Solution2(j-1)+Solution2(j+1))/2;}for (j=0;j<=9;j++){Solution2(j)=temp(j);}}time2=lok();time2_total=time2-time1;Solution2.display("salar");// times taken byout <<time_total<<" "<<time2_total<<"\n";printf("program terminated properly");Optimization_Manager::Exit_Virtual_Mahine();}Output from Example 2:==Appliation_Program_Name set to something (Appliation_Program_Name =/n/3servew/nehal/testode/pring)My Task ID = 262149My Proess Number = 0***P++ Virtual Mahine Initialized:Proess Number = 0Number_Of_Proessors = 2Appliation_Program_Name = /n/3servew/nehal/testode/pring***

66 CHAPTER 8. TUTORIALdoubleArray::display() (CONST) (Array_ID = 1) -- indexSerialArray is a VALID pointer = 6000!doubleSerialArray::display() (CONST) (Array_ID = 8) -- indexArray_Data is a VALID pointer = 82000 (532480)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)AXIS 1 (0) 0.0000 0.3125 0.6250 0.7812 0.9062 0.9062 0.7812 0.6250 0.3125 0.0000index donedoubleArray::display() (CONST) (Array_ID = 3) -- salarSerialArray is a VALID pointer = 6024!doubleSerialArray::display() (CONST) (Array_ID = 8) -- salarArray_Data is a VALID pointer = 82000 (532480)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)AXIS 1 (0) 0.0000 0.3125 0.6250 0.7812 0.9062 0.9062 0.7812 0.6250 0.3125 0.0000program terminated properlyExiting P++ Virtual Mahine!110000 210000 // "times" for Index and salar indexing8.2.4 Example 3. Distribution of Arrays in P++This example illustrates the partitioning of arrays by P++.// This example shows the "partitioning" of arrays// with the use of the Paritioning_Type objet// It will also illustrate the manipulation of a "loal array", within P++.//#inlude <A++.h>#inlude <P++.h>main(int arg,har** argv){int num_of_proess=10;Optimization_Manager::Initialize_Virtual_Mahine("",num_of_proess,arg,argv);//Build partition objet whih uses 5 proessors (0-4)Partitioning_Type PartitionA(3);//Now divide intArray A among the ProessorsintArray A(10,10,PartitionA); // A is partitioned among the first 3 proessors// if no partitiong objet is speified then// the Array is paritioned among the total// number of proessors (in this ase 10)// Assign "A" an initial value with Index OperatorsA=10;// We an use a mix of Index objet(s) and salar indexing to assign// values to AIndex I(0,7); // I=[0..7℄;A(I,1)=1; // Notie that we an mix the Index operator and a salar indexA(I,2)=2;A(I,3)=3;

8.2. EXAMPLES 67// Display "A". A++ uses a FORTRAN style array A(ols,rows). See// the output. Eah proessor prints out it's loal piee ofthe distribted arrayA.display();// As stated above, P++ is single program multiple data (data parallel), so a single// P++ program is running on all the proessors. However, eah proessor has// only a small portion of the global data. This data is paritioned automatially// P++, and ommuniation is done impliitly after eah eah statement// In the ase of <type>Array, eah proessor// keeps a small amount of the global Array, whih is infat an A++ Array// objet. Thus we an if we wish extrat and manipulate "loal" data// Extrat "Loal_Array" from the global Array AintSerialArray Loal_Array=A.getLoalArray();// Let's use some of the "size" methods in A++int Num_of_Cols=Loal_Array.elementCount(); // total size of Loal_Arrayint Base_0_axis=Loal_Array.getBase(0); // base value for 0 axisint Bound_0_axis=Loal_Array.getBound(0); // bound for 0 axis// Display "Loal_Array". If you are using PVM look in your// pvml file to see results (usually in the /tmp diretory).Loal_Array.display();} Output from example 3Appliation_Program_Name set to something (Appliation_Program_Name =/n/3servew/nehal/testode/distrib)My Task ID = 262199#### My Proess Number = 0***P++ Virtual Mahine Initialized:Proess Number = 0Number_Of_Proessors = 10Appliation_Program_Name = /n/3servew/nehal/testode/pringle2***intArray::display() (CONST) (Array_ID = 1) --SerialArray is a VALID pointer = 6e000!intSerialArray::display() (CONST) (Array_ID = 4) --Array_Data is a VALID pointer = 82000 (532480)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

68 CHAPTER 8. TUTORIALAXIS 1 (0) 10 10 10 10 10 10 10 10 10 10AXIS 1 (1) 1 1 1 1 1 1 1 10 10 10AXIS 1 (2) 2 2 2 2 2 2 2 10 10 10AXIS 1 (3) 3 3 3 3 3 3 3 10 10 10AXIS 1 (4) 10 10 10 10 10 10 10 10 10 10AXIS 1 (5) 10 10 10 10 10 10 10 10 10 10AXIS 1 (6) 10 10 10 10 10 10 10 10 10 10AXIS 1 (7) 10 10 10 10 10 10 10 10 10 10AXIS 1 (8) 10 10 10 10 10 10 10 10 10 10AXIS 1 (9) 10 10 10 10 10 10 10 10 10 10intSerialArray::display() (CONST) (Array_ID = 2) --Array_Data is a VALID pointer = 7e000 (516096)!AXIS 0 --->: (0) (1) (2)AXIS 1 (0) 10 10 10AXIS 1 (1) 1 1 1AXIS 1 (2) 2 2 2AXIS 1 (3) 3 3 3AXIS 1 (4) 10 10 10AXIS 1 (5) 10 10 10AXIS 1 (6) 10 10 10AXIS 1 (7) 10 10 10AXIS 1 (8) 10 10 10AXIS 1 (9) 10 10 10Output in the pvml files==================[t80040000℄ [t40042℄ My Task ID = 262210[t80040000℄ [t40042℄ My Proess Number = 1[t80040000℄ [t40042℄[t80040000℄ [t40042℄ ***[t80040000℄ [t40042℄ P++ Virtual Mahine Initialized:[t80040000℄ [t40042℄ Proess Number = 1[t80040000℄ [t40042℄ Number_Of_Proessors = 10[t80040000℄ [t40042℄ Appliation_Program_Name =/n/3servew/nehal/testode/distrib[t80040000℄ [t40042℄ ***[t80040000℄ [t40042℄[t80040000℄ [t40042℄ AXIS 0 --->: (3) (4) (5)[t80040000℄ [t40042℄ AXIS 1 (0) 10 10 10[t80040000℄ [t40042℄ AXIS 1 (1) 1 1 1[t80040000℄ [t40042℄ AXIS 1 (2) 2 2 2[t80040000℄ [t40042℄ AXIS 1 (3) 3 3 3[t80040000℄ [t40042℄ AXIS 1 (4) 10 10 10[t80040000℄ [t40042℄ AXIS 1 (5) 10 10 10[t80040000℄ [t40042℄ AXIS 1 (6) 10 10 10[t80040000℄ [t40042℄ AXIS 1 (7) 10 10 10[t80040000℄ [t40042℄ AXIS 1 (8) 10 10 10[t80040000℄ [t40042℄ AXIS 1 (9) 10 10 10[t80040000℄ [t40043℄ My Task ID = 262211[t80040000℄ [t40043℄ My Proess Number = 2[t80040000℄ [t40043℄[t80040000℄ [t40043℄ ***[t80040000℄ [t40043℄ P++ Virtual Mahine Initialized:[t80040000℄ [t40043℄ Proess Number = 2[t80040000℄ [t40043℄ Number_Of_Proessors = 10

8.2. EXAMPLES 69[t80040000℄ [t40043℄ Appliation_Program_Name =/n/3servew/nehal/testode/pringle2[t80040000℄ [t40043℄ ***[t80040000℄ [t40043℄[t80040000℄ [t40043℄ AXIS 0 --->: (6) (7) (8) (9)[t80040000℄ [t40043℄ AXIS 1 (0) 10 10 10 10[t80040000℄ [t40043℄ AXIS 1 (1) 1 10 10 10[t80040000℄ [t40043℄ AXIS 1 (2) 2 10 10 10[t80040000℄ [t40043℄ AXIS 1 (3) 3 10 10 10[t80040000℄ [t40043℄ AXIS 1 (4) 10 10 10 10[t80040000℄ [t40043℄ AXIS 1 (5) 10 10 10 10[t80040000℄ [t40043℄ AXIS 1 (6) 10 10 10 10[t80040000℄ [t40043℄ AXIS 1 (7) 10 10 10 10[t80040000℄ [t40043℄ AXIS 1 (8) 10 10 10 10[t80040000℄ [t40043℄ AXIS 1 (9) 10 10 10 10Graphially, the distribution of a P++ array is given below
P++ Array

0,0 2,0 ,0

Array

Processor 1

Processor 2

A++

Array

A++

9,0

 data

Calculation with local

Calculation with local

 data

 data

Calculation with local

2,90,9 5,9 9,9

A++ Array

Processor 0

AXIS 0

A
X

IS
 1

5

8.2.5 Example 4. The Heat EquationIn this example we solve the non-dimensional heat equation Tt = Txx subjetto two boundary onditions. T=2*x for 0 � x � :5 and T=2(1-x) :5 < x �1, where x is the spatial variable. The equation is solved with an expliit�nite di�erene sheme. [G.D. Smith, Numerial Solution of Partial Di�erentialEquation: Finite Di�erene Methods, Clarendon Press, 3rd Edition. pg 12℄.// In this example we solve the heat equation.// We will solve this problem with an expliit finite differene// sheme. See G.D. Smith pg 12.#inlude <A++.h>#inlude <time.h>

70 CHAPTER 8. TUTORIALmain(int arg,har** argv){int num_of_proess=5;Optimization_Manager::Initialize_Virtual_Mahine("",num_of_proess,arg,argv);// Length of physial dimensions and Length in time dimension //double Length_x;double Length_t;// number of spaes in x and tint spaes_in_x;int spaes_in_t;// spatial disretizationdouble dx;// temporal disretizationdouble dt;int i,j;int time_step;double time1;double time2;double total_time;// r= dt/(dx^2)double r;// initialize variablesLength_x=1;Length_t=1;// hange this line to inrease spatial resolutionspaes_in_x=12;spaes_in_t=1000;dx=(Length_x/spaes_in_x);dt=(Length_t/spaes_in_t);r=dt/(dx*dx);//---Index I(1,spaes_in_x-1);doubleArray Solution(spaes_in_x+1,spaes_in_x+1);doubleArray temp(spaes_in_x+1,spaes_in_x+1);

8.2. EXAMPLES 71// Initialize theSolution=0.0;// Setup boundary onditions //// In this ase we HAVE to use salar index to setup the// boundary onditionsfor (i=1;i<=(int)(spaes_in_x/2);i++)Solution(i,0)=2*i*dx;for (i=(int)((spaes_in_x/2)+1);i<=spaes_in_x-1;i++)Solution(i,0)=2*(1-i*dx);Solution.display("initial and boundary onditions");time1=lok();// Notie that we are "mixing" the Index objet I and normal salar indexing// in this finite differene "stenil"for (int timestep=0;timestep<=8;timestep++){Solution(I,timestep+1)=r*(Solution(I+1,timestep)-2*Solution(I,timestep)+Solution(I-1,timestep))+Solution(I,timestep);}time2=lok();total_time=time2-time1;Solution.display("The Solution ");printf("%f\n",total_time);printf("program terminated properly");Optimization_Manager::Exit_Virtual_Mahine();} Output from Example 4Initial ConditionsArray_Data is a VALID pointer = 84000 (540672)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)AXIS 1 (0) 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000AXIS 1 (1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (5) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (7) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

72 CHAPTER 8. TUTORIALAXIS 1 (8) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (9) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (10) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000doubleArray::display() (CONST) (Array_ID = 1) -- The SolutionSerialArray is a VALID pointer = 70000!doubleSerialArray::display() (CONST) (Array_ID = 11) -- The SolutionArray_Data is a VALID pointer = a6000 (679936)!AXIS 0 --->: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)AXIS 1 (0) 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000AXIS 1 (1) 0.0000 0.2000 0.4000 0.6000 0.8000 0.9600 0.8000 0.6000 0.4000 0.2000 0.0000AXIS 1 (2) 0.0000 0.2000 0.4000 0.6000 0.7960 0.9280 0.7960 0.6000 0.4000 0.2000 0.0000AXIS 1 (3) 0.0000 0.2000 0.4000 0.5996 0.7896 0.9016 0.7896 0.5996 0.4000 0.2000 0.0000AXIS 1 (4) 0.0000 0.2000 0.4000 0.5986 0.7818 0.8792 0.7818 0.5986 0.4000 0.2000 0.0000AXIS 1 (5) 0.0000 0.2000 0.3998 0.5971 0.7732 0.8597 0.7732 0.5971 0.3998 0.2000 0.0000AXIS 1 (6) 0.0000 0.2000 0.3996 0.5950 0.7643 0.8424 0.7643 0.5950 0.3996 0.2000 0.0000AXIS 1 (7) 0.0000 0.1999 0.3992 0.5924 0.7551 0.8268 0.7551 0.5924 0.3992 0.1999 0.0000AXIS 1 (8) 0.0000 0.1999 0.3986 0.5893 0.7460 0.8125 0.7460 0.5893 0.3986 0.1999 0.0000AXIS 1 (9) 0.0000 0.1998 0.3978 0.5859 0.7370 0.7992 0.7370 0.5859 0.3978 0.1998 0.0000AXIS 1 (10) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000So after 8 timesteps (.009 ses) the "1-d rod" has the followingtemperature distribution(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)0.0000 0.1998 0.3978 0.5859 0.7370 0.7992 0.7370 0.5859 0.3978 0.1998 0.00008.2.6 Example 5. Indiret AddressingIndiret addressing allows the indexing of non-onseutive points in an array.For example suppose we wish to index the points in the �gure below:
0 5

0

6

Axis 0

A
xi

s
1

X

X

X

X

// This example illustrates the indiret addressing in A++/P++.// Whereas the Index and Range objet ontain onseutive value// (eg.Index I(0,N) == 0,1,..N-1). Indiret addressing allows// indexing of non-onsetive values.////

8.2. EXAMPLES 73#inlude <A++.h>main(int arg,har** argv){int num_of_proess=3;Optimization_Manager::Initialize_Virtual_Mahine(" ",num_of_proess,arg,argv);out << "====== Test of A++ =====" << endl;// Index::setBoundsChek(on); // Turn on A++ array bounds hekingint n=6;int m;floatArray a(n,n), b(n,n), (n,n);a=999.;b=0.;=999.;// number of points to indexm=4;// reate two 1-d intArraysintArray i1(m), i2(m);// Assign values to the intArrays// We ould also read in values from a filefor(int i=0; i<=1; i++){ i1(i)= (i+1) % n;i2(i)= (i+1) % n;}for (i=2;i<=3;i++){ i1(i)=(i+1);i2(i)=(i+2);}i1.display("Here is i1");i2.display("Here is i2");// now we an either assign values to these points// or read their valuesa(i1,i2)=6;a.display("here is a*");

74 CHAPTER 8. TUTORIALb(i1,i2)=(i1,i2);b.display("here is b");}Output from Example 5floatArray::display() (CONST) (Array_ID = 1) -- here is a*Array_Data is a VALID pointer = 3000 (245760)!AXIS 0 --->: (0) (1) (2) (3) (4) (5)AXIS 1 (0) 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000AXIS 1 (1) 999.0000 6.0000 999.0000 999.0000 999.0000 999.0000AXIS 1 (2) 999.0000 999.0000 6.0000 999.0000 999.0000 999.0000AXIS 1 (3) 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000AXIS 1 (4) 999.0000 999.0000 999.0000 6.0000 999.0000 999.0000AXIS 1 (5) 999.0000 999.0000 999.0000 999.0000 6.0000 999.0000floatArray::display() (CONST) (Array_ID = 2) -- here is bArray_Data is a VALID pointer = 3e000 (253952)!AXIS 0 --->: (0) (1) (2) (3) (4) (5)AXIS 1 (0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (1) 0.0000 999.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (2) 0.0000 0.0000 999.0000 0.0000 0.0000 0.0000AXIS 1 (3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000AXIS 1 (4) 0.0000 0.0000 0.0000 999.0000 0.0000 0.0000AXIS 1 (5) 0.0000 0.0000 0.0000 0.0000 999.0000 0.00008.2.7 Example 6. Appliation of Indiret AddressingThis example alulates the jaobian of a �nite element (an important step,whih maps the loal �nite element to the super element). The program usesindiret addressing to get the x and y oordinates of element, but atuallyalulate the jaobian in a series of FORTRAN subroutines.#inlude <A++.h>#inlude <math.h>#inlude <fstream.h>#inlude <stdlib.h>#inlude <stdio.h>//// Appliation of indiret addressing to FEM// jaobian of element.// This allows us to all the FORTRAN subroutine test on a Sun Ultra// The C++/FORTRAN interfae is ompiler and hardware speifi.//extern "C" void test_(double*,double*,double*);main(){intArray MeshPts(10,4);doubleArray Global(12,3);

8.2. EXAMPLES 75har* filename_mesh="meshdata";har* globalpts="globalfile";int pt[4℄;har buf[80℄;int i,j,x;int element;// sample data file// element number global nodal pts// 1 2 3 4 5// 2 4 5 7 9// 3 9 5 6 3ifstream fin(filename_mesh);while(fin.getline(buf,80) !=0){(void) ssanf(buf,"%i %i %i %i %i\n", &element, &pt[0℄,&pt[1℄,&pt[2℄,&pt[3℄);for (i=0;i<=3;i++)MeshPts(element,i)=pt[i℄;}fin.lose();MeshPts.display();// Global(nodal pts,[0:1℄) == Cartesian Global Coordinates// eg. For nodal pts 1, the// Global(1,0)=0.0 x oordinates of nodal pt 1// Global(1,1)=1.0 y oordinates of nodal pt 1// Read data file into MeshPts array// global nodal pt x-oor y-oor// 1 0.0 0.0// 2 1.0 2.0// 3 3.0 4.0// 4 1.0 3.13// 5 0.0 2.35// 6 3.34 3.56// 7 29.38 393.0// 8 2.3 23.3// 9 10.23 1.29int nodal_pt;float value[2℄;ifstream fin2(globalpts);// read in the datafilewhile(fin2.getline(buf,80) !=0){(void) ssanf(buf,"%i %f %f\n",&nodal_pt, &value[0℄, &value[1℄);Global(nodal_pt,0)=(double)value[0℄;Global(nodal_pt,1)=(double)value[1℄;

76 CHAPTER 8. TUTORIAL}//Global.display();fin2.lose();// The use indiret addressing to find the x and y oordinates of eah element// ptsx(2)=Global(MeshPts(1,2),0) =x oordinate of nodal pt 3//===Range I(0,3);intArray tempArray(1,6);doubleArray ptsx(6);doubleArray ptsy(6);// initialize variablestempArray=0;ptsx=0.0;ptsy=0.0;// The element we want to find the X and Y oordinatesint element_number=1;// read the global pts into an intArray//MeshPts(1,I).display("meshpts");tempArray(I)=MeshPts(element_number,I);// use indiret addressing to// get the x and y oordinates of the elementptsx=Global(tempArray,0);ptsy=Global(tempArray,1);ptsx.display();ptsy.display();// now lets alulate the jaobian for the points (ptsx and ptsy)// Sine there is FORTRAN ode to do this// We just all the it subroutine from A++.//doubleArray jaob(2,2);// hange the base to work more easily with FORTRANjaob.setBase(1);// The Fortran Subroutinetest_(ptsx.getDataPointer(),ptsy.getDataPointer(),jaob.getDataPointer());jaob.display();

8.2. EXAMPLES 77}The Fortran Subroutinessubroutine test(a,b,jaob)C Use Real*8 passing <type> doublereal*8 a(5),b(5)real*8 gpt(3), gwt(3)real*8 r,sreal*8 nvet(10)real*8 dnrvet(10),dnsvet(10)real*8 jaob(2,2)gpt(1)=-.5777gpt(2)=.5777gwt(1)=1.0gwt(2)=1.3do 10 j=1,2do 20 i=1,2r=gpt(i)s=gpt(j)all nve(r,s,nvet)all dnrve(r,s,dnrvet)all dnsve(r,s,dnsvet) jaob(1,1)=vetmult(dnrvet,a)jaob(1,2)=vetmult(dnrvet,b)jaob(2,1)=vetmult(dnsvet,a)jaob(2,2)=vetmult(dnsvet,b)20 ontinue10 ontinueendfuntion vetmult(a,b)real*8 a(10)real*8 b(10)real*8 temp,vetmultreal*8 temp2temp=0do 4 i=1,4temp2=a(i)*b(i)temp=temp2+temp4 ontinuevetmult=temp

78 CHAPTER 8. TUTORIALreturnend subroutine nve(r,s,nvet)real*8 r,s,nvet(10)integer i,j,kdo 10 i=1,10nvet(i)=0.10 ontinuenvet(1)=.25*(1-r)*(1-s)nvet(2)=.25*(1+r)*(1-s)nvet(3)=.25*(1+r)*(1+s)nvet(4)=.25*(1-r)*(1+s)return endsubroutine dnsve(r,s,dnsvet)real*8 r,s,dnsvet(10)integer i,j,kdo 10 i=1,10dnsvet(i)=0.010 ontinuednsvet(1)=-.25*(1-r)dnsvet(2)=-.25*(1+r)dnsvet(3)=.25*(1+r)dnsvet(4)=.25*(1-r)returnendsubroutine dnrve(r,s,dnrvet)real*8 s,r,dnrvet(10)integer i,j,kdo 10 i=1,10dnrvet(i)=0.010 ontinuednrvet(1)=-.25*(1-s)dnrvet(2)=.25*(1-s)dnrvet(3)=.25*(1+s)dnrvet(4)=-.25*(1+s)returnend
Output from ExampleThis interfaing with FORTRAN is important, beause it opens the possi-bility of using A++/P++ with a number of sienti� library (eg. LAPACK,SLATEC,et).

8.3. EXAMPLE MAKEFILE 798.3 Example Make�leThis example make�le shows the use of a single A++/P++ soure ode whihis ompiled with A++ to build the A++ appliation and uses P++ to build theP++ appliation. The soure ode is unhanged and used to build both A++and P++ appliation odes. While the make�le itself is somewhat ompliated,this demonstrates how a single ode written for A++ an be reused to buildthe equivalent P++ (parallel) appliation.# The following may be hanged by the user# This works for programs in the APPLICATIONS diretory# hange ARCH to math the arhiteture hosen during onfiguration (installation)of A++/P++ARCH = SUN4# NOTE: APP_HOME must be a absolute path to work with some ompilersAPP_HOME = ../A++APP_INCLUDE = $(APP_HOME)/inludeAPPLIB_DIR = $(APP_HOME)/$(ARCH)# NOTE: PPP_HOME must be a absolute path to work with some ompilersPPP_HOME = ../P++PPP_INCLUDE = $(PPP_HOME)/inludePPPLIB_DIR = $(PPP_HOME)/$(ARCH)# This is where PVM lives at Los AlamosPVMLIB = /usr/lanl/pvm/lib/SUN4/libgpvm3.a /usr/lanl/pvm/lib/SUN4/libpvm3.aCC_Compiler = CC# **# You should not have to hange anything below this line# **all: riemann p++_riemann mg p++_mg array_test p++_array_test adaptive p++_adaptive.SUFFIXES: . .C . .o .xx .a .o .pp# **# Example rule for building A++ versions of odes below# **.C.o :$(CC_Compiler) -I$(APP_INCLUDE) $(CC_FLAGS) - $*.C# **# Test program to test random features of A++# **array_test : array_test.o$(CC_Compiler) $(CC_FLAGS) -o array_test array_test.o -L$(APPLIB_DIR)-lA++ -lm# This should show how lines whih use A++ soure build either a serial#(A++) or parallel (P++) appliationp++_array_test : array_test.C

80 CHAPTER 8. TUTORIAL$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_array_test.oarray_test.C$(CC_Compiler) $(CC_FLAGS) -o p++_array_test p++_array_test.o-L$(PPPLIB_DIR) -lP++ $(PVMLIB) -lm# **# Riemann solver# **riemann : riemann.o$(CC_Compiler) $(CC_FLAGS) -o riemann riemann.o -L$(APPLIB_DIR) -lA++ -lm# This should show how lines whih use A++ soure build either a serial#(A++) or parallel (P++) appliationp++_riemann : riemann.C$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_riemann.o riemann.C$(CC_Compiler) $(CC_FLAGS) -o p++_riemann p++_riemann.o -L$(PPPLIB_DIR)-lP++ $(PVMLIB) -lm# **# Simulation of an adaptive solver using deferred evaluation and task reognition# **adaptive : adaptive.o$(CC_Compiler) $(CC_FLAGS) -o adaptive adaptive.o -L$(APPLIB_DIR) -lA++-lm# This should show how lines whih use A++ soure build either a serial#(A++) or parallel (P++) appliationp++_adaptive : adaptive.C$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_adaptive.oadaptive.C$(CC_Compiler) $(CC_FLAGS) -o p++_adaptive p++_adaptive.o -L$(PPPLIB_DIR)-lP++ $(PVMLIB) -lm# **# Multigrid example for 1-3D problems!# **mg: mg.o mg1level.o pde.o mg_main.o$(CC_Compiler) $(CC_FLAGS) -o mg mg.o mg1level.o pde.o mg_main.o-L$(APPLIB_DIR) -lA++ -lm# This should show how lines whih use A++ soure build either a serial#(A++) or parallel (P++) appliationp++_mg : pde.C mg_main.C mg.C mg1level.C$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_pde.o pde.C$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_mg_main.o mg_main.C$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_mg.o mg.C$(CC_Compiler) $(CC_FLAGS) - -I$(PPP_INCLUDE) -o p++_mg1level.omg1level.C$(CC_Compiler) $(CC_FLAGS) -o p++_mg p++_pde.o p++_mg_main.o p++_mg.op++_mg1level.o -L$(PPPLIB_DIR) -lP++ $(PVMLIB) -lm# Similar Multigrid ode in Cmg_: mg_.$(C_Compiler) mg_. -o mg_ -lmlean:rm -f array_test riemann adaptive mg mg_ *.o ore

8.4. MORE EXAMPLE ON THE A++/P++ HOME PAGE 81rm -f p++_array_test p++_riemann p++_adaptive p++_mg mg_ *.o ore8.4 More example on the A++/P++Home PageA++/P++ has a WWW Home Page whih ontains more, longer, and moremeaningful examples of A++/P++ programs. The URL for the A++/P++Home Page is: http://www.3.lanl.gov/~dquinlan/A++P++.html. Thissite is updated regularly with the newest doumentation.

82 CHAPTER 8. TUTORIAL

Chapter 9Examples: Code FragmentsThis is a olletion of example A++/P++ ode fragments. It is intended toshow some of the many ways that A++/P++ an be used. There are twosetions, one on A++/P++ examples and the sond on P++ spei� examplesthat demonstrate parallel features of P++.9.1 A++/P++ ExamplesThese examples are ommon to both A++ and P++ array lasses. They showa omplex mix of operations taken from many A++/P++ odes.#define BOUNDS_CHECK#inlude "A++.h"void main (){ int Array_Size = 100;// Index Construtor examplesIndex I (1 , Array_Size-2, 1); // position=1, ount=Array_Size-2, stride=1Index J = I; // make an Index objet J just like IIndex K = I-1; // make an Index objet K just like I-1Index L = -I; // make L like I but with negative strideIndex M = 5; // make Index objet from integer indexIndex N; // build an uninitialized Index objetN = I+1; // Index assignment to build N like offset of I// Array Construtor examplesdoubleArray A1 (Array_Size);floatArray B1 (Array_Size,Array_Size);doubleArray C1 (Array_Size,Array_Size,Array_Size);intArray D1 (Array_Size,Array_Size,Array_Size,Array_Size);floatArray E1 = B1;doubleArray F1 = B1(I-1,J);double *Fortran_Array_Pointer = new double [Array_Size+1℄[Array_Size℄;doubleArray G (Fortran_Array_Pointer,Array_Size,Array_Size+1);83

84 CHAPTER 9. EXAMPLES: CODE FRAGMENTS// Arrays for use in examples belowdoubleArray A (Array_Size,Array_Size);doubleArray B (Array_Size,Array_Size);doubleArray C (Array_Size,Array_Size);doubleArray D (Array_Size,Array_Size);double x = 42;// example of array-salar assignmentA = x;A (I) = x;A (I-1) = x * x;// examples of array-array assignment operations and use of Index objetsB = A;B = C = D = A;A (I,J) = B (J,J);A (I-1,J) = B (I+1,J);// Salar indexingA (0,12) = x;A (5,12) = A (0,12);x = A (1,12) + B(0,12);// examples of array-array arithmiti operationsA = B + (C * B - D) / A;A (I,J) += B (I,J) / C (I,J);A (I-1,J) *= B (I+1,J);// examples of Jaobi relaxation (9-point stenil)A (I,J) = (A (I+1,J+1) + A (I,J+1) + A (I-1,J+1) + A (I+1,J) +A (I-1,J) + A (I+1,J-1) + A (I,J-1) + A (I-1,J-1)) / 8.0;// examples of Jaobi relaxation (5-point stenil)A (I,J) = (A (I,J+1) + A (I,J-1) + A (I+1,J) + A (I-1,J)) / 4.0;// more omplex operationsB (I,J) = (A (I-1,J-1) * B (I+1,J+1) + C (I-1,J) * D (I,J+1) -D (I,J) * B (I,J) * (A (I,J) - B (I,J))) / (C (I,J) + D (I,J));// examples of relational operatorintArray Mask = B >= C;Mask = !B;Mask = !(B && C) != (!B | !C); // DeMorgan's Law// example of replae operatorA (I,J).replae (B (I,J) <= 0.001 , 0.001);A (I,J).replae (A (I,J) <= C(I,J) , C(I,J));// simple example of "where" statementwhere (B >= C)A = 0.001;// more omplex example of "where" used for multiple statement blokwhere (B(I,J) >= C(I,J)){ A(I,J) = (A (I,J+1) + A (I,J-1) + A (I+1,J) + A (I-1,J)) / 4.0;

9.1. A++/P++ EXAMPLES 85B(I,J) = 0.001;C(I,J) = 0.001;}// examples of max funtion usex = max (B);A = max (B , C * B);A = max (B , C , A);// examples of misellaneous funtion usex = sum (B);A = os (B) * sqrt (C);B(I,J) = (os (B) * 2.0)(I,J);// examples of hanging bases of array objetsA.setBase (1); // Fore A to have indexing similar to Fortran arraysetGlobalBase (1); // Set all future arrays to have Fortran like base of 1A.setBase (x);A.setBase(x) = B; // Shows value returned from setBaseA.setBase (x,0);A.setBase (x*x,1);// examples of bases and bound aessArray_Size = A.dimension(0);printf ("Number of elements in A = %d \n",A.elementCount();for (int j = A.getBase(1); j <= A.getBound(1); j++)for (int i = A.getBase(0); i <= A.getBound(0); i++)A(i,j) = foo (i,j);// examples of display funtionsA (I,J).display("This is A (I,J)");A = B + (C * D).display("This is C * D in expression A = B + (C * D)");(A = B * D).view("This is A = B * D");A.view("This is A (same view as above)");// 2 ways to pass array objets by referenevoid foo (onst doubleArray & X);foo (evaluate (A + B));C = A + B;foo (C);// passing array objets by value requires no speial handlingvoid foobar (onst doubleArray X);foobar (A + B);// examples of fill funtionsA(I,J).fill(x);printf ("PROGRAM TERMINATED NORMALLY \n");}

86 CHAPTER 9. EXAMPLES: CODE FRAGMENTS9.2 P++ Spei� ExamplesThis setion presents some examples that are spei� to parallel P++ opera-tions. These example deal diretly with the distributions of array objets ontothe multiple proessors available within the parallel environment.#define BOUNDS_CHECK#inlude <A++.h>int main(int arg, har** argv){ Index::setBoundsChek (On);int numberOfProessors = 128;// P++ looks for the appliation name if "" is speifiedOptimization_Manager::Initialize_Virtual_Mahine("",numberOfProessors,arg,argv);// Example of using a partition objet (assume number of proesors is >= 64)Partition_Type Partition_A (64); // Build partition objet whih uses proessors 0-63floatArray A(100,100,Partition_A); // Build array using default "blok-blok" distribution// aross the proessors represented by Partition_A.// Example of distribution onto subrange of proessorsRange ProessorSubrange_B (27,37);Partition_Type Partition_B (ProessorSubrange_B); // Build partition objet whih uses proessors 27-37floatArray B(100,100,Partition_B); // Build an array distributed "blok-blok"over// proessors 27-37// Simple example of alignment speifiationRange all; // Default range objet implies "all" of wherever it is usedfloatArray C (100,100); // Build array "blok-blok" over all proessorsfloatArray D = C (0,all); // Align D with boundary of C// Simple example of array redistributionRange all; // Default range objet implies "all" of wherever it is usedRange ProessorSubrange_E (45,83);Partition_Type Partition_E (ProessorSubrange_E); // Build partition objet whih uses proessors 45-83floatArray E (100,100,Partition_E); // Build array "blok-blok" over proessors 45-83floatArray F = E (0,all); // Align F with boundary of EPartition_E.SpeifyProessorRange(Range(2-12)); // Redistribute E and F on to proessors 2-12// note that F is STILL aligned with the boundary of E!// More omplex redistribution example. This example builds a olletion// of different sized arrays eah assoiated with the same partitioning objet.// then the arrays are all repartitioned through simple manipulation of the// partition objet. the arrays are initially distributed onto proessor 0,// then on an inreassing number of proessors until all proessor are used,// then repartitioned onto a dereassing number of proessors untill finally// distributed only on proessor zero.int Size = 10;Partitioning_Type Partition (Range(0,0));doubleArray Temp_A(Size,Partition);doubleArray Temp_B(Size*2,Partition);doubleArray Temp_C(Size/2,Partition);doubleArray Temp_D(Size*2,Partition);doubleArray Temp_E(Size/2,Partition);doubleArray Temp_F(Size,Partition);

9.2. P++ SPECIFIC EXAMPLES 87int i;for (i=0; i < Communiation_Manager::Number_Of_Proessors; i++)Partition.SpeifyProessorRange (Range(0,i)); // redistribute all arrays assoiated with "Partition"for (i=0; i < Communiation_Manager::Number_Of_Proessors; i++)Partition.SpeifyProessorRange (Range(i,numberOfProessors-1));// Example using salar indexing on loal part of distributed arrayintArray v(100);int ibas = v.getLoalBase(0);int ibnd = v.getLoalBound(0);Optimization_Manager::setOptimizedSalarIndexing (On);for (int i=ibas; i<=ibnd; i++)v(i) = i;Optimization_Manager::setOptimizedSalarIndexing (Off);// Example of getting loal A++ array within P++ distributed arrayfloatArray X (100,100); // distributed arrayfloatSerialArray X_loal = X.getLoalArray(); // Deep opy of loal datafloatSerialArray X_loal (X.getLoalArray(),SHALLOW_COPY); // Shallow opy of loal datafloatSerialArray X_loal (X.getLoalArray(),DEEP_COPY); // Deep opy of loal datafloatSerialArray *X_pointer_to_loal = X.getSerialArrayPointer(); // pointer to loal data

88 CHAPTER 9. EXAMPLES: CODE FRAGMENTS

Chapter 10Referene10.1 Legendtype double, oat, or intVariables used in examples belowi,j,k,l integers used as salar index variablesSpan I,Span J,Span K,Span L objets of type RangeI,J,K,L objets of type IndexList I,List J,List K,List L objets of type intArrayA,B,C typeArray variablesMask an intArray variablen,m,o,p any positive integerFortran Array Pointer pointer to a Fortran arrayx variable of typeaxis dimension 0-3 of the 4D typeArray10.2 Debugging A++P++ Code10.2.1 Turning On Bounds ChekingBounds Cheking in A++P++ must be turned on and is OFF by default.Turning On Bounds Cheking For All But Salar IndexingBounds heking in A++P++ must be turned on and is OFF by default.Index::setBoundsChek (On); Turns ON array bounds heking!Index::setBoundsChek (O�); Turns OFF array bounds heking!89

90 CHAPTER 10. REFERENCETurning On Bounds Cheking For Salar IndexingSalar bounds heking in A++P++ must be set at ompile time. Bounds heking is OFFby default. It may be set on the ompile ommand line or at the top of eah program �le(before #inlude<A++.h>).CC -DBOUNDS CHECK other options Turns on salar index bounds heking.#de�ne BOUNDS CHECK Turns on salar index bounds heking in �le.10.2.2 Using dbx with A++dbx supports alling funtions and with the orret version of dbx that understands C++name mangling, member funtions of the A++ array objets may be alled with the followingexample syntax:all A.display() dbx alls the display member funtion for an A++P++ array A10.2.3 Mixing C++ streams and C printfMixing of C++ "out <<" like I/O syntax with C stype "printf" I/O syntax will generatestrange behavior in the ordering of the user's I/O messages. To �x this insert the followingall to the I/O Streams library of C++ at the start of your main program.ios::syn with stdio(); Synhronize C++ and C I/O subsystems!10.3 Range Objets10.3.1 ConstrutorsNote: The base must be less than or equal to the bound to de�ne a valid span of an array, ifbase > bound then the range is onsidered null.Range Span K (�base,�bound),�stride); Range objet Span K from base, to bound, by strideRange Span I; Range objet whih is nullRange Span J = Span I; Span J is a opy of Span I (not an alias)10.3.2 OperatorsSpan J = Span I; assignment operatorSpan I+n; builds new Range objet with position of Span I + nn+Span I; builds new Range objet with position of Span I + nSpan I-n; builds new Range objet with position of Span I - nn-Span I; builds new Range objet with position of Span I - n10.3.3 Aess FuntionsSpan I.getBase(); returns base of Span ISpan I.getBound(); returns bound of Span ISpan I.getStride(); returns bound of Span ISpan I.length(); returns (bound-base)+1 for Span I

10.4. INDEX OBJECTS 9110.4 Index Objets10.4.1 ConstrutorsThe stride in the examples below default to 1 (unit stride) if not spei�ed. That we providean Index onstrutor whih takes a Range objet allows Range objets to be used where everIndex objets are used (e.g. indexing operators).Index K (�position,ount); Index objet K referenes from position, for ount elements, with default stride = 1Index K (�position,ount,stride); Index objet K referenes from position, for ount elements, with strideIndex I; Index whih referenes all of any array objetIndex I(�i); Index with position=�i, ount=1, stride=1Index J = I; J is a opy of I (not an alias)Index K = Span I; Index K is built from a Range objet, Span K10.4.2 OperatorsI+n; new Index with position of Index I + nn+I; new Index with position of Index I + nI-n; new Index with position of Index I - nn-I; new Index with position of Index I - nJ = I; assignment operator10.4.3 Aess FuntionsI.getBase(); returns base of II.getBound(); returns bound of II.getStride(); returns stride of II.length(); returns length of I (aounting for stride)10.4.4 Display FuntionsI.display("label"); Prints Index values and all other internal data for I along with harater string "label" to sdtout10.5 Array Objets10.5.1 ConstrutorsA++ arrays are repliated on eah proessor in P++, while P++ arrays are distributableaross proessors using user de�ned distributions (not overed here). Note that the Rangeobjets an be used to build an A++ array, if used, they de�ne the size and the base of thearray from the Range objet provided for eah dimension.typeArray A; array objet A (zero length array)typeArray B = A; array B as a opy of AtypeArray C (n); 1D array C of length ntypeArray C (n,m); 2D array C of length n � m

92 CHAPTER 10. REFERENCEtypeArray C (n,m,o); 3D array C of length n � m � otypeArray C (n,m,o,p); 4D array C of length n � m � o � ptypeArray C (Span I); 1D array C of length of Span ItypeArray C (Span I,Span J); 2D array C of length of Span I � Span JtypeArray C (Span I,Span J,Span K); 3D array C of length of Span I � Span J � Span KtypeArray C (Span I,Span J,Span K,Span L); 4D array C of length of Span I � Span J � Span K � Span LA++ onlytypeArray C (Fortran Array Pointer, n); 1D array C of length n using existing arraytypeArray C (Fortran Array Pointer, n,m); 2D array C of length n � m using existing arraytypeArray C (Fortran Array Pointer, n,m,o); 3D array C of length n � m � o using existing arraytypeArray C (Fortran Array Pointer, n,m,o,p); 4D array C of length n � m � o � p using existing arraytypeArray C (Fortran Array Pointer, Span I); 1D array C using existing datatypeArray C (Fortran Array Pointer, Span I,Span J); 2D array C using existing datatypeArray C (Fortran Array Pointer, Span I,Span J,Span K); 3D array C using existing datatypeArray C (Fortran Array Pointer, Span I,Span J,Span K,Span L); 4D array C using existing dataP++ onlytypeArray C (Fortran Array Pointer, n, Loal Size n); 1D array C of length n using existing arraytypeArray C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n); 2D array C of length n � m using existing arraytypeArray C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o); 3D array C of length n � m � o using existing arraytypeArray C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o,p, Loal Size p); 4D array C of length n � m � o � p using existing arrayP++ onlytypeArray C (n, Partition); Use existing Partitioning TypetypeArray C (m, n, Partition); Use existing Partitioning TypetypeArray C (m, n, o, Partition); Use existing Partitioning TypetypeArray C (m, n, o, p, Partition); Use existing Partitioning Type10.5.2 Assignment OperatorsA(I,J) = B(I-1,J+1); Set elements of A equal to elements of BA = x; Set elements of A equal to x10.5.3 Indexing OperatorsNote that indexing support for Range objets is available beause Index objets are on-struted from the Range objets and the resulting Index objet is used.Indexing operators for salar indexing: denotes a salarA(i) Salar indexing of a 1D array objet

10.5. ARRAY OBJECTS 93A(i,j) Salar indexing of a 2D array objetA(i,j,k) Salar indexing of a 3D array objetA(i,j,k,l) Salar indexing of a 4D array objetIndexing operators for use with Index objets: denotes a typeArrayA(I) Index objet indexing of a 1D array objetA(I,J) Index objet indexing of a 2D array objetA(I,J,K) Index objet indexing of a 3D array objetA(I,J,K,L) Index objet indexing of a 4D array objetIndexing operators for use with Range objets: denotes a typeArrayA(Span I) Range objet indexing of a 1D array objetA(Span I,Span J) Range objet indexing of a 2D array objetA(Span I,Span J,Span K) Range objet indexing of a 3D array objetA(Span I,Span J,Span K,Span L) Range objet indexing of a 4D array objetIndexing operators for use with intArray objets: denotes a typeArrayA(List I) intArray objet indexing of a 1D array objetA(List I,List J) intArray objet indexing of a 2D array objetA(List I,List J,List K) intArray objet indexing of a 3D array objetA(List I,List J,List K,List L) intArray objet indexing of a 4D array objet10.5.4 Indiret AddressingThe subsetion Indexing Operators (above) presents the use of intArrays to index A++arrays (even other intArray objets). The value of the elements of the intArray are usedto de�ne the relevant elements of the indexed objet (view). It is often required to onvertbetween a mask returned by an relational operator and an intArray whose values representthe non-zero index positions in the mask, however this onversion of a mask to an intArray isurrently supported only for 1D.intArray Indiret Address = Mask.indexMap() builds intArray objet with values of non-zero index position in MaskintArray I = (A == 5).indexMap() builds intArray I as a mapping (into A) of elements in A equal to 510.5.5 Arithmeti OperatorsAll arithmeti operators return a typeArray onsistent with their input, no mixed type opera-tions are allowed presently. Casting operators will be added soon to permit mixed operations.All operations are performed elementwise and the result returned in a separate typeArray(unless one of the operands is a result from a previous expression in whih ase the temporaryoperand is reused internally).B + C; Add B and CB + x; Add B and xx + C; Add x and CB += C; Add C to B store result in BB += x; Add x to B store result in BB - C; Subtrat C from BB - x; Subtrat x from Bx - C; Subtrat C from x

94 CHAPTER 10. REFERENCEB -= C; Subtrat C from B store result in BB -= x; Subtrat x from B store result in BB * C; Multiply B and CB * x; Multiply B and xx * C; Multiply x and CB *= C; Multiply C and B store result in BB *= x; Multiply x and B store result in BB = C; Divide B by CB = x; Divide B by xx = C; Divide x by CB == C; Divide B by C store result in BB == x; Divide B by x store result in BB % C; B Modulo CB % x; B Modulo xx % C; x Modulo CB %= C; B Modulo C to store result in BB %= x; B Modulo x store result in B10.5.6 Relational OperatorsAll relational operators return an intArray, no mixed type operations are allowed presently.All operations are performed elementwise and return onformable mask (intArray objet).Mask values are zero if the onditional test was false, and non-zero if operation was true.See Indiret Addressing for onversion of zero/non-zero masks into intArrays for use withindiret address indexing.!B; mask based on test for zero elements of BB < C; mask speifying elements of B < CB < x; mask speifying elements of B < xx < C; mask speifying elements of C where x < CB <= C; mask speifying elements of B <= CB <= x; mask speifying elements of B <= xx <= C; mask speifying elements of C where x <= CB > C; mask speifying elements of B > CB > x; mask speifying elements of B > xx > C; mask speifying elements of C where x > CB >= C; mask speifying elements of B >= CB >= x; mask speifying elements of B >= xx >= C; mask speifying elements of C where x >= CB == C; mask speifying elements of B == CB == x; mask speifying elements of B == xx == C; mask speifying elements of C where x == CB ! = C; mask speifying elements of B ! = CB ! = x; mask speifying elements of B ! = xx ! = C; mask speifying elements of C where x ! = CB && C; mask speifying elements of B && CB && x; mask speifying elements of B && x

10.5. ARRAY OBJECTS 95x && C; mask speifying elements of C where x && CB k C; mask speifying elements of B k CB k x; mask speifying elements of B k xx k C; mask speifying elements of C where x k C10.5.7 Min Max funtionsThese funtions (exept in the ase of the single input redution operations) return arrayobjets with an elementwise interpretation. Both "min" and "max" represent redution op-erations in the ase of a single array input. These funtions thus return a salar value fromthe array input. In A++ the operation is straightforward. In P++ the redution operatorsreturn a salar, but internally do the required message passing to fore the same salar returnvalue on all proessors (assuming a data parallel model of exeution).min (A); return salar minimum of all array elementsmin (B,C); min elements of B and Cmin (B,x); min elements of B and xmin (x,C); min elements of x and Cmin (A,B,C); min elements of A,B and Cmin (x,B,C); min elements of x,B and Cmin (A,x,C); min elements of A,x and Cmin (A,B,x); min elements of A,B and xmax (A); return salar maximum of all array elementsmax (B,C); max elements of B and Cmax (B,x); max elements of B and xmax (x,C); max elements of x and Cmax (A,B,C); max elements of A,B and Cmax (x,B,C); max elements of x,B and Cmax (A,x,C); max elements of A,x and Cmax (A,B,x); max elements of A,B and x10.5.8 Misellaneous FuntionsAll funtions return a typeArray onsistent with their input, no mixed type operations areallowed presently. Funtions fmod and mod apply to double or oat arrays and integer arrays,respetively. Funtions log, log10, exp, sqrt, fabs, eil, oor, os, sin, tan, aos, asin, atan,atan2, osh, sinh, tanh, aosh, asinh, atanh; only apply to doubleArray and oatArrayobjets. Funtion abs applies to only intArray objets.For P++ operation of redution funtions ("sum," for example) see note on redutionoperators in P++ in previous subsetion (Min Max funtions).fmod (B,C); B modulo C equivalent to operator B % Cfmod (B,x); B modulo x equivalent to operator B % xfmod (x,C); x modulo C equivalent to operator x % Cmod (B,C); B modulo C equivalent to operator B % Cmod (B,x); B modulo C equivalent to operator B % xmod (x,C); B modulo C equivalent to operator x % Cpow (B,C); B(i)C(i) for elements of B and Cpow (B,x); B(i)x for elements of B and x

96 CHAPTER 10. REFERENCEpow (x,C); xC(i) for elements of x and Csign (B,C); C with sign of Bsign (B,x); array with values of x but with sign of Bsign (x,C); C with sign of xsum (B); sum of elements of Blog (B); log of elements of Blog10 (B); log10 of elements of Bexp (B); exp of elements of Bsqrt (B); sqrt of elements of Bfabs (B); fabs of elements of Beil (B); eil of elements of Boor (B); oor of elements of Babs (B); abs of elements of Bos (B); osine of elements of Bsin (B); sine of elements of Btan (B); tangent of elements of Baos (B); arosine of elements of Basin (B); arsine of elements of Batan (B); artangent of elements of Batan2 (B,C); artangent of elements of B/Cosh (B); hyperboli osine of elements of Bsinh (B); hyperboli sine of elements of Btanh (B); hyperboli tangent of elements of Baosh (B); ar hyperboli osine of elements of Basinh (B); ar hyperboli sine of elements of Batanh (B); ar hyperboli tangent of elements of B10.5.9 Replae funtionsReplaement of elements is done for non-zero mask elements. Mask and input arrays mustbe onformable. Sine this feature of A++/P++ is redundent with the where statementfuntionality, the replae member funtion may be devalued at a later date and then removedfrom A++/P++ sometime after that.A.replae (Mask , B); replae elements in A with elements in B depending on value of MaskA.replae (Mask , x); replae elements in A with salar x depending on value of MaskA.replae (x , B); replae elements in A with elements in B depending on value of x(equivalent to if (x) A = B;)10.5.10 Array Type Conversion FuntionsThe onversion between array types is ommonly represented by asting operators. However,suh asting operators ould be alled as part of automate onversion whih an be espeiallyproblemati to debug. To failitate the onversion between types of arrays we provide memberfuntions that ast an array of one type to an array of another type expliitly. These memberfuntions an, for example, onvert an array of type intArray to an array of type oatArray.Or we an onvert a oatArray to an intArray. As and example, this mehanism simpli�esthe visualization of intArray objets using graphis funtionality only written for oatArrayor doubleArray types. Future work implement asting operators that make the onversionimpliit.A.onvertTo intArray(); return an intArray (onvert typeArray A to an intArray

10.5. ARRAY OBJECTS 97A.onvertTo oatArray(); return a oatArray (onvert typeArray A to a oatArrayA.onvertTo doubleArray(); return a doubleArray (onvert typeArray A to a doubleArray10.5.11 User de�ned BasesA++/P++ array objet may have user de�ned bases in eah array dimension. This allows forarray objets to have a base of 1 (as in FORTRAN), or any other positive or negative value.A.setBase(�n); Set base to �n along all axes of AA.setBase(�n,axis); Set base to �n along axis of AsetGlobalBase(�n); Set base to �n along all axes for all future array objetssetGlobalBase(�n,axis); Set base to �n along axis for all future array objets10.5.12 Indexing of ViewsThe base and bound of a view of an array objet are dependent on the base and bound of theIndex or Range objet used to build the view. Thus a view, A(I), of an array, A, is anotherarray objet whih arries with it the index spae information about it's view of the subset ofdata in the original array, A.10.5.13 Array Size funtionsArray axis numbering starts at zero and ends with the max number of dimensions (a onstantMAX ARRAY DIMENSION stores this value) for the A++/P++ array objets minus one.These provide aess into the A++ objets and assume an A++ objet is being used. Analternative method is de�ned to permit aess to the same data if a raw pointer is being used,this later method is required if a pointer to the array data is being passed to FORTRAN. Theaess funtions for this data have the names getRawBase(), getRawBound(), getRawStride(),getRawDataSize().A.getBase(); Get base along all axes of A (bases must be equal)A.getBase(axis); Get base along axis of AA.getRawBase(axis); Get base along axis of AgetGlobalBase(); Get base along all axes for all future array objetsgetGlobalBase(axis); Get base along axis for all future array objetsA.getStride(axis); Get stride along axis of AA.getRawStride(axis); Get stride along axis of AA.getBound(axis); Get bound along axis of AA.getRawBound(axis); Get bound along axis of AA.getLength(axis); Get dimension (array size) of A along axisA.getFullRange(axis); return a Range objet (base,bound,stride of the array)A.dimension(axis); Get dimension (array size) of A along axis (returns a Range objet)A.elementCount(); Get total array size of AA.numberOfDimensions(); Get total number of dimensions of AA.isAView(); returns TRUE if A is a subArray (view) of another array objetA.isNullArray(); returns TRUE if A is an array of size zeroA.isTemporary(); returns TRUE if A is a result of an expressionA.rows(); Get number of rows of A (for 2D array objets)A.ols(); Get number of ols of A (for 2D array objets)

98 CHAPTER 10. REFERENCE10.5.14 Array Objet Similarity test funtionsArray axis numbering starts at zero and ends with the max number of dimensions (a onstantMAX ARRAY DIMENSION stores this value) for the A++/P++ array objets minus one.These member funtions allow for the testing of Bases, Bounds, Strides, et along eah axisfor two array objets. For example, the return value is TRUE if the Bases math along allaxes, and FALSE if they di�er along any axis.A onformability test is inluded to allow the user to optionally test the onformabilityof two array objets before the array operation.A.isSameBase(B); Chek bases of both arrays along all axes (all bases equal return TRUE)A.isSameBound(B); Chek bounds of both arrays along all axes (all bounds equal return TRUE)A.isSameStride(B); Chek strides of both arrays along all axes (all strides equal return TRUE)A.isSimilar(B); Chek bases, bounds, and strides of both arrays along all axesA.isConformable(B); Cheks onformability of both arrays10.5.15 Array Objet Internal Consistany TestThis funtion tests the internal values for onsistany it is mostly inluded for ompleteness.It is most usefull within P++ where there is signi�ant testing that an be done between loaland global data to verify onsistant internal behavior. It is used within A++ and P++ wheninternal debugging is turned on (not the default in distribution versions of A++ and P++.A.isConsistant(); Cheks internal onsistany of array objet10.5.16 Shape funtionsThese shape funtions redimension an existing array objet. The reshape funtion allows theonversion of an nxm array to an mxn array (2D example), the total number of elementsin the array must remain the same and the data values are preserved. The redim funtionredimensions an array to a di�erent total size (larger of smaller), but does not preserve thedata (data is left uninitialized). The resize funtion is similar to the redim funtion exeptthat it preserves the data (trunating the data if the new dimensions are smaller and leavingnew values uninitialized if the new dimensions are larger. Eah funtion an be used witheither salar or Range objet input parameters, additionally eah funtion may be providedan example array objet from whih the equivalent Range objets are extrated (internally).All these member funtions preserve (save and reset) the original base of the array objet.A.reshape(i,j,k,l); Change dimensions of array using the same array data (same size)A.reshape(Span I,Span J,Span K,Span L); Change dimensions of array using the same array data (same size)A.reshape(typeArray); Change size of array objet using another array objetA.resize(i,j,k,l); Change size of array objet (old data is opied and trunated)A.resize(Span I,Span J,Span K,Span L); Change size of array objet using Range objetsA.resize(typeArray); Change size of array objet using another array objetA.redim(i,j,k,l); Change size of array objet (old data is lost)A.redim(Span I,Span J,Span K,Span L); Change size of array objet using Range objetsA.redim(typeArray); Change size of array objet using another array objettranspose (A); transpose of elements of A10.5.17 Display Funtions

10.5. ARRAY OBJECTS 99A(I,J).display("label"); Prints array data for the view A(I,J) along with harater string "label" to sdtoutA.view("label"); Prints array data and all other internal data for A along with harater string "label" to sdtoutDetails of the display of the values within an array by the display funtion are ontroled bythe values assigned to the typeArray::DISPLAY FORMAT variable. This variable has adefault value of typeArray::SMART DISPLAY FORMAT whih allows for the autoseletion of either DECIMAL or EXPONENTIAL format depending upon the values withinthe array. Display Format Control Values:typeArray::DISPLAY FORMAT = typeArray::DECIMAL DISPLAY FORMAT; Uses xxx.yyyy formattypeArray::DISPLAY FORMAT = typeArray::EXPONENTIAL DISPLAY FORMAT; Uses x.yyyye�zz formattypeArray::DISPLAY FORMAT = typeArray::SMART DISPLAY FORMAT; Auto-selets either of above formats10.5.18 Array Expressions Used For Funtion InputFuntions passing array objets by referene an't be passed an expression sine expressionsreturn temporaries that are managed di�erently internally. Funtions passing expressions byvalue require no speial handling.foo (evaluate (A+B)); Fore (A+B) temporary to be persistent for funtion foo , whih passes an array objet by referene10.5.19 Array AliasingA++ and P++ arrays an be aliased however all aveats apply as in the use of FORTRANequivalene. This permits array objet to be views of other array objets or indexed parts ofother array objets. Note that P++'s adopt funtion must build the distributed array fromthe olletion of pointers to loal memory in eah proessor and so requires both global andloal domain size information (P++ organizes any ommuniation that is required to buildthe distributed array (urrently there is no ommuniation required)).B.referene (A(I,J)); Fore B to referene A(I,J)B.breakReferene (); Break referene to A(I,J) (builds a opy of previous referene)A++ onlyC.adopt (Fortran Array Pointer, n); 1D array C of length n using existing arrayC.adopt (Fortran Array Pointer, n,m); 2D array C of length n � m using existing arrayC.adopt (Fortran Array Pointer, n,m,o); 3D array C of length n � m � o using existing arrayC.adopt (Fortran Array Pointer, n,m,o,p); 4D array C of length n � m � o � p using existing arrayP++ onlyC.adopt (Fortran Array Pointer, n, Loal Size n); 1D array C of length n using existing arrayC.adopt (Fortran Array Pointer, m, Loal Size m,n, Loal Size n); 2D array C of length n � m using existing arrayC.adopt (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o); 3D array C of length n � m � o using existing arrayC.adopt C (Fortran Array Pointer, m, Loal Size m,n, Loal Size n,o, Loal Size o,p, Loal Size p); 4D array C of length n � m � o � p using existing array

100 CHAPTER 10. REFERENCE10.5.20 Fill FuntionMore �ll funtions will be added to later releases of A++/P++. Its purpose is to initializean array objet to value or set of values.B(I,J).�ll(x); Set elements of B(I,J) equal to xB(I,J).seqAdd(Base,Stride); Set elements of B(I,J) equal to Base, Base+Stride, ... , Base+n*Stridedefault value for Base and Stride are 0 and 110.5.21 Aess To FORTRAN Ordered ArrayA++/P++ provides aess to the internal data of the array objet using the following aessfuntions. Arrays are stored internally in FORTRAN order and a pointer to the start of thearray an be obtained using the getDataPointer member funtion. In the ase of a view thepointer is to the start of the view. It is up to the user to orretly manipulate the data (goodluk). Similar aess is provide to the array desriptor (though info for it's use is not ontainedin this Quik Referene Manual).Fortran Array Pointer = A.getDataPointer(); Array Desriptor Type = A.getDesriptorPointer();10.6 "where" StatementExample of where statement support in A++/P++. Note that elsewhere statements maybe asaded and that an optional parameter (Mask) an be spei�ed. Note that elsewheremust have a set of parenthesis even if no parameter is spei�ed. The mask must be on-formable with the array operations in the ode blok. On the Cray, and with the GNUg++ ompiler, the statement elsewhere(mask) taking a mask as a parameter is alled else-where mask(mask). This is due to a problem with parameter heking of maros. Thesyntax for elsewhere(), not taking a mask, does not hange. This aspet of A++ syntaxmay be hanged slightly to aommodate these non-portable aspets of the C preproessor.where (A == 0)fB = 0; elements of B set to zero at positions where A = 0A = B + C; B added to C and assigned to A at positions where A = 0gelsewhere (B > 0) Use elsewhere mask on the Cray and with GNU g++fB = A; elements of B set to A at positions where A 6= 0 and B > 0gelsewhere ()fB = A; elements of B set to A at positions where A 6= 0 and B � 0g10.7 P++ Spei� InformationThere are aess funtions to the lower level objets in P++ whih an be manipulated bythe user's program. Spei�ally we provide aess to the Partitioning Type that eah arrayuses internally (if it is not using the default distribution). The purpose of providing manualghost boundary updates is to permit override of the message passing interpretation providein P++. The resulting redued overhead provides a simple means to optimize performaneof operations the user reognizes as not requiring more than an update of the internal ghost

10.7. P++ SPECIFIC INFORMATION 101boundaries. The "displayPartitioning" member funtion prints out ASCII text whih desribesthe distribution of the P++ array on the multiproessor system. The same funtions exist inA++ but don't do anything, this supports bakward ompatibility between P++ and A++.10.7.1 Control Over Array Partitioning (Distributions)The distribution of P++ array objets is ontroled though partitioning objets that are asso-iated with the array objets. The assoiation of a partitioning objet with and array is doneeither at onstrution of the array objets or later in the probram. An unlimited numberof array objets may be assoiated with a given partitioning objet. The manipulation ofthe partitioning objet translates diretly to manipulation of eah of the array objets as-soiated with the partitioning. This feature makes it easier to manipulate large number ofarrays with a simple interfae. Partitioning objets are valid objet in A++, but have nomeaningful e�et, so they are only funtional in P++. This is to permit bidiretional porta-bility between A++ and P++ (the serial and parallel environments). An unlimited numberof Partitioning Type objets may be used within an appliation. One of the main purposesof the partitioning objets is to de�ne the distribution of P++ arrays and permit the dynamiredistribution. The expeted usage is to have many P++ arrays assoiated with a relativelysmall number of Partitioning Type objets.ConstrutorsAt present the onstrutor taking a intArray as a parameter is not implemented, it's purpose isto provide a simple means to ontrol load balaning; it is the interfae for a load balaner. Butload balaning is not a part of A++/P++, load balaners used with parallel P++ appliationsare presently separate from P++. The most ommon usage of the partitioning objet is toeither all the onstrutor whih spei�es a subrange of the virtual proessor spae (this willbe trunated to the exitisting virtual proessor spae if too large a range is spei�ed), or allthe default onstrutor (the whole virtual proessors spae) and then all member funtionsto modify the partitioning objet.Partitioning Type P (); Default onstrutorPartitioning Type P (Load Map); Load Map is a intArray speifying the work distributionPartitioning Type P (Number Of Proessors); integer input spei�es number of proessors to use (start=0)Partitioning Type P (Span P); Range input spei�es range of proessors to usePartitioning Type P1 = P; Deep opy onstrutorMember funtionsThe operations on a Partitioning Type objet are done to all P++ arrays that are assoi-ated through that Partitioning Type objet. This provides a powerful mehanism for thedynami ontrol of array distributions; load balaners are expeted to take advantage of thisfeature. The "applyPartition" member funtion is provided so that multiple modi�ations tothe partitioning objet may be done and a single restruturing of the P++ arrays assoiatedwith the partitioning objet ompleted subsequently. P++ operation is unde�ned if the par-titioning is never applied to it's assoiated objets. At present, only the partitionAlongAxismember funtion does not all the applyPartition funtion automatially. This detail of theinterfae may hange in the near future to allow a more simple usage.The partitionAlongAxis member funtion takes three parameters: int Axis, bool Parti-tioned, int GhostBoundaryWidth. This simpli�es the setting and modi�ation of the parti-tioning. Afterward this only takes e�et one the applyPartition member funtion is alled.Then all distributed arrays assoiated with the partitioning objet are redistributed with theghost boundaries that were spei�ed.SpeifyDeompositionAxes (Input Number Of Dimensions To Partition); Integer inputSpeifyInternalGhostBoundaryWidths (int,int,int,int); Default input is zero

102 CHAPTER 10. REFERENCEdisplay (Label); printout partition datadisplayDefaultValues (Label); printout default partition datadisplayPartitioning (Label); graphis display of partition datadisplayDefaultPartitioning (Label); graphis display of default partition dataupdateGhostBoundaries (X); X is a P++ arraypartitionAlongAxis (int Axis, bool PartitionAxis, int GhostBoundaryWidth);input spei�es axisapplyPartition (); fore partitioning of previously assoiated P++ arrays10.7.2 Array Objet Member FuntionsArray objets have some spei� member funtions that are meaningful only within P++, asA++ array objets the member funtions are de�ned, but have do nothing. This is done forbakward ompatability.Partitioning Type *X = A.getPartition(); get the internal partitionA.partition(Partition); repartition dynamiallyA.partition(typeArray); repartition same as existing array objetA.getLoalBase(axis); return base of loal proessor dataA.getLoalBound(axis); return bound of loal proessor dataA.getLoalStride(axis); return stride of loal proessor dataA.getLoalLength(axis); return length of loal proessor dataA.getLoalFullRange(axis); return a Range objet (base,bound,stride of the loal array)A.getSerialArrayPointer(); return a pointer to the loal array (and A++ array)A.getLoalArray(); return a shallow opy of the loal array (and A++ array)A.getLoalArrayWithGhostBoundaries(); return a shallow opy (with ghost boundaries)A.updateGhostBoundaries(); updates all ghost bondariesA.displayPartitioning(); prints info on distribution of array dataA.getGhostCellWidth(Axis); aess to ghost boundary widthA.getInternalGhostCellWidth(Axis); aess to ghost boundary width (devalued, will be removed in future release)A.setInternalGhostCellWidth(int,int,int,int); dynamily adjusts ghost boundary widthA.setInternalGhostCellWidthSaveData(int,int,int,int);as above but preserves the data and updates ghost boundaries10.7.3 Distributed vs Repliated Array DataWithin P++ arrays are distributed, distributions have the following properties:� 1 An array is distributed in some or all of the dimensions of the array (the user seletssuh details).� 2 An array is distributed over a subset of proessors.� 3 An array is distributed over only a single proessor (a trivial ase of #2 above).� 4 An array is built onto only one proessor and only that proessor knows about it (i.e.an A++ array objet is built loally on a proessor).� 5 An array is repliated onto all proessors (this is really a trival ase of #4 above whereeah array is built loally on eah proessor). In this ase the user is responiple formaintaining a onsistant representation of the data whih is repliated. This later aseis useful for when a small array is required and is analogous to the ase of repliationof salars onto every proessor sine no overhead of parallel support.P++ also ontains SerialArrays, (e.g. doubleSerialArray). These arrays are simplyA++ array objets on eah proessor. In a data parallel way, if all proessors build a serialarray objet, then eah proessor builds an array and the array is repliated aross all proes-sors. It is up to the user to maintain the onsistany of the array data aross all proessorsin this ase. Many arrays that are small are simply repliated, this osts little in additionalspae and avoid any ommuniation when data is aessed.

10.7. P++ SPECIFIC INFORMATION 10310.7.4 Virtual ProessorsP++ uses a number of proessors independent upon the number of atual proessors in hard-ware. On mahines that support it the exess proessors are evenly distributed among thehardware proessors. This allows for greater ontrol of granularity in the distribution of work.Where it is important to take advantage of this is appliation dependent. For most of thedevelopment this has allowed us to test problems on a number of proessors indepentend ofthe atual number of mahines that we have in our workstation luster.10.7.5 Synhronization PrimativeNote that the Communiation Manager::Syn() is helpful in verifying the all proessors reaha spei� point in the parallel exeution. This is helpful most often for debugging parallelodes.Communiation Manager::Syn(); Call barrier funtion to syn all proessors10.7.6 Aess to spei� Parallel Environment Informa-tionAlthough aess to the underlying parallel information suh as proessor number, et. an beused to break the data parallel model of exeution suh information is made available withinP++ beause it an be useful if used orretly. As an example of orret useage moving anappliation using graphis from A++ to P++ often is simpli�ed if a spei� proessor is usedfor all the graphis work while others are idle. Aess to the proess number allows the odeon eah proessor to branh dependent upon the proessor number and thus simpli�es (atinitially) the movement of large sale A++ appliations onto parallel mahines using P++.Some of the data is only valid for either PVM or MPI, and some data is interpreted di�erentby the two ommuniation libraries.Communiation Manager::numberOfProessors(); get number of virtual proessorsCommuniation Manager::loalProessNumber(); get proessor id numberCommuniation Manager::Syn(); barrier primativeCommuniation Manager::My Task ID; get proess idCommuniation Manager::MainProessorGroupName; Name of MPI Group10.7.7 Esaping from the Data Parallel Exeution ModelSine the data parallel style is only assumed for the exeution of P++ array operations, butnot enfored, it is possible to break out of the Data Parallel model and exeute any parallelode desired. Users however are expeted to handle their own ommuniation. Sine somedegree of synronization is helpful in moving into and out of the data parallel modes, theCommuniation Manager::Syn() funtion is expeted to be used (though not required).10.7.8 Aess to the loal arrayEah P++ distributed array on eah proessor ontains a loal array (a Seri-alArray objet (same as an A++ array objet)). The loal array is availabelwith and without ghost boundaries.

104 CHAPTER 10. REFERENCEAess to the loal array without ghost boundariesThe loal array stores the loal part of the distributed array data. Aess tothe loalArray is obtained from:A.getLoalArray(); return a shallow opy of the loal array (an A++ array)Aess to the loal array with ghost boundariesGhost boundaries are not visible within the loal array sine the loal array is aview of the partition of the distributed spae on the urrent proessor. The ghostboundaries (if the ghost boundary width is nonzero) are present, but aess tothem from the view would result in an out of range error. Another mehanismfor aessing the loal array is required to get the loal array ontaining theghost boundaries.A.getLoalArrayWithGhostBoundaries(); return a shallow opy (with inlude ghost boundaries)The aess to the ghost boundaries is possible from this view, but the usermust know how to interpret the ghost boundaries within the returned loal arrayobjet. (Hint: they are at the boundaries and the widths along eah aess aregiven by the ghost boundary widths obtained from the partitions.)10.7.9 Examples of P++ spei� operationsWe provide some simple examples within the A++/P++manual, please onsultthat hapter on Examples to see illustrations of the useage of the P++ spei�funtions.10.8 Optimization ManagerOptimization manager is an objet whose member funtions ontrol propertiesof the exeution of the A++ and P++ array lass (see referene manual). Moremember funtions later will allow for improved optimization potential. Thesetup of the "Virtual Mahine" may be separated outside of the P++ interfaesine not all mahine environments require it (both MPI and PVM do, so it ispresent in P++ urrently).The "Program Name" should be initialized with the omplete name of theexeutable (inluding path), however in environments where it is supportedP++ will automatially searh for the string if only "" is spei�ed. This is afeature that an not be supported on all arhitetures (or PVM would handleit internally).Initialize Virtual Mahine (har* Program Name = "" , int Num Proessors = 1, int arg, har** argv);First P++ statementExit Virtual Mahine (); Last P++ statementsetOptimizedSalarIndexing (On O� Type On O� = On); Optimize performane of P++ salar indexing

10.9. DIAGNOSTIC MANAGER 10510.9 Diagnosti ManagerThere are times when you want to know details about what is happening inter-nally within A++/P++. We provide a limited number of ways of seeing whatis going on internally and getting some data to understand the behavior of theusers appliation. More will be added in future versions of A++/P++.10.9.1 Report GenerationThere are a number of Diagnosti manager funtion whih generate reports ofthe internal useage. Some reports are quite long, other are brief and summarizethe exeution history for the whole appliation.getSizeOfClasses(); Reports the sizes of all internal lasses in A++/P++getMemoryOverhead(); returns memory overhead for all arraysgetTotalArrayMemoryInUse(); returns memory use for array elementsgetTotalMemoryInUse(); reports total memory use for A++/P++getnumberOfArraysConstantDimensionInUse(dimension,inputTypeCode);reports by array dimensiongetMessagePassingInterpretationReport(); Communiation ReportgetRefereneCountingReport(); Referene Counting ReportdisplayCommuniation (onst har* Label = ""); ommuniation report by proessordisplayPurify (onst har* Label = ""); Displays memory leaks by proessor (uses purify)report(); Generates general report of A++/P++ behaviorsetTrakArrayData(Boolean trueFalse = TRUE);Trak and report on A++/P++ diagnostisgetTrakArrayData(); get Boolean value for diagnosti mehanismbuildCommuniationMap (); Builds map of ommuniations by proessorbuildPurifyMap (); Builds map of purify errors by proessorgetPurifyUnsupressedMemoryLeaks(); Total Memory leakedFeatures and ounted quantities inlude:� The use of int Diagnosti Manager::getSizeOfClasses()displays a text report of the sizes of di�erent internal strutures in A++P++.� The use of int Diagnosti Manager::getMemoryOverhead()returns an integer that represents the number fo byte of overhead used tostore intenal array desriptors, partitioning information (P++ only), et.;for the whole appliation at the time that the funtion is alled.� The use of int Diagnosti Manager::getTotalArrayMemoryInUse()returns an integer representing the total number of array elements in usein all array objets at the time that funtion is alled.� The use of int Diagnosti Manager::getTotalMemoryInUse()returns the total number of bytes in use within A++/P++ for all overheadand array elements at the time the funtion is alled.

106 CHAPTER 10. REFERENCE� The use of int Diagnosti Manager::getnumberOfArraysConstantDimensionInUse()returns the number of arrays of a partiular dimension and of a partiu-lar type. this funtion is an example of the sort of diagnosti questionsthat an be written whih interogate the runtime system to �nd out bothglobal and loal properties of its operation.� The use of int Diagnosti Manager::getMessagePassingInterpretationReport()generates a report (organized from eah proessor, but reported on pro-essor 0). The report details the number of MPI sends, MPI reeives,the number of ghost boundary updates (one update implies the updateof all ghost boundaries on an array, even if this generates fewer MPImessages than ghost boundaries), and the number VSG updates regularsetion transfers (the more general ommuniation model whih permitsoperations between array objets independent of the distribution arossmultiple proessors).� The use of int Diagnosti Manager::getRefereneCountingReport()generates a report of the internal referene ounts used in the exeutionof array expressions. This funtion is mostly for internal debugging ofreferene ounting problems.� The use of int Diagnosti Manager::report()generates a summary report of the exeution of the A++/P++ appliationat the point when it is alled.� The use of int Diagnosti Manager::setTrakArrayData()turns on the internal traking of array objets as part of the internaldiagnostis and permits the summary report to report more detail. Itis o� by default so that there is no performane penalty assoiated withinternal diagnostis. This must be set at the top of an appliation beforethe �rst array objet is built.10.9.2 Counting FuntionsOptional mehanisms in A++/P++ permit many details to be ounted inter-nally as part of the report generation mehanisms. All funtions return aninteger.resetCommuniationCounters (); reset the internal message passing ounting mehanismgetNumberOfArraysInUse(); returns the number of arrays inusegetMaxNumberOfArrays(); returns the max arrays in used at any point in timegetNumberOfMessagesSent(); returns the number of messages sentgetNumberOfMessagesReeived(); returns the number of messages reeivedgetNumberOfGhostBoundaryUpdates(); returns number of updates to ghostboundariesgetNumberOfRegularSetionTransfers(); # of uses of general ommuniation mehanismgetNumberOfSalarIndexingOperations(); salar indexinggetNumberOfSalarIndexingOperationsRequiringGlobalBroadast();salar indexing with ommuniation

10.9. DIAGNOSTIC MANAGER 107Features and ounted quantities inlude:� The use of int Diagnosti Manager::resetCommuniationCounters()permits the internal ounters to be reset to ZERO.� Number of arrays in use int Diagnosti Manager::getNumberOfArraysInUse()The number of arrays in use at any point in the exeution is useful forgauging the relative use od A++/P++ and spotting potential memoryleaks.� Max arrays in use int Diagnosti Manager::getMaxNumberOfArrays()This funtion tallies the most number of arrays in use at any one time dur-ring the exeution history (note: reords use in inrements of 300).� Reset message ounting int Diagnosti Manager::resetCommuniationCounters()Resest the message ounters to ZERO to permit loalized ounting of mes-sages generated from ode fragements.� Number of messages (sent) int Diagnosti Manager::getNumberOfMessagesSent()returns the total messages sine the beginning of exeution or from thelast all to Diagnosti Manager::resetCommuniationCounters().� Number of messages (reeived) int Diagnosti Manager::getNumberOfMessagesReeived()returns the total messages sine the beginning of exeution or from thelast all to Diagnosti Manager::resetCommuniationCounters().� Number of messages (reeived) int Diagnosti Manager::getNumberOfGhostBoundaryUpdates()Returns the total number of alls to update the ghost boundaries of arrays.Note that some alls will not translate into message passing (e.g. if onlyrun on one proessor or if the ghost boundary width is ZERO). Reportson number of messages sine the beginning of exeution or from the lastall to Diagnosti Manager::resetCommuniationCounters().10.9.3 Debugging MehanismsThese funtions provide mehanisms to simplify the error heking and debug-ging of A++/P++ appliations.getPurifyUnsupressedMemoryLeaks(); Total Memory leakedsetSmartReleaseOfInternalMemory(On/O�); Smart Memory leanupgetSmartReleaseOfInternalMemory(); get Boolean value for smart memory leanupsetExitFromGlobalMemoryRelease(Boolean); setup exit mehanismgetExitFromGlobalMemoryRelease(); get Boolean value for exit mehanismtest (typeArray); Destrutive test of array objetdisplayPurify (onst har* Label = ""); Displays memory leaks by proessor (uses purify)buildPurifyMap (); Builds map of purify errors by proessor

108 CHAPTER 10. REFERENCE� The use of void Diagnosti Manager::setSmartReleaseOfInternalMemory()(alled from anywhere in an A++/P++ appliation) will trigger the meh-anism to leanup all internally used memory within A++/P++ after thelast array objet has been deleted. Spei�ally it ounts the number ofarrays in use (and the number of arrays used internally (e.g. where state-ment history, et.) and when the two values are equal it alls the voidglobalMemoryRelease() funtion whih then deletes existing arrays inuse and other data used internally (referene ount arrays, et.). The useris warned in the output of the void globalMemoryRelease() funtionto not all any funtions that would use A++/P++ sine the results wouldbe unde�ned.� The use of the void Diagnosti Manager::setExitFromGlobalMemoryRelease()will fore the appliation to exit after the global memory release (and fromwithin the void globalMemoryRelease() funtion itself. The user maythen speify that the normal exit from the base of the main funtion isan error and thus detet the proper leanup of memory in test programsusing the exit status (stored in the $status enviroment variable on allPOSIX operating systems (most avors of UNIX). If purify is in use (bothA++/P++ on�gured to use purify and running with purify) then pu-rify exit(int) is alled. This funtion or's the memory leaks, memoryin use, and purify errors into the exist status so that the $status en-viroment variable an be used to detet purify details within test odes.A++/P++ test odes are tested this way when A++/P++ is on�guredto use PURIFY. P++ appliations an not always ommuniate detetedpurify problems on other proesses AND output the orret exit status,this is only a limitation of how mpirun returns it's exit status.� The use of void Diagnosti Manager::test(typeArray A) allows forexhaustive (destrutive) tests of an arrya objet. This is useful in test-ing an array objet for internal orretness (more robust testing than thenondestrutive testing done in the Test Consistany() array member fun-tion).� The use of void Diagnosti Manager::displayPurify() generates areport of purify problems found (urrently this mehanism does not workwell, sine many purify errors an only be found at exit).10.9.4 Mis FuntionsAll other funtions not yet doumented in detail.getMessagePassingInterpretationReport(); Communiation ReportgetRefereneCountingReport(); Referene Counting ReportgetSizeOfClasses(); Reports the sizes of all internal lasses in A++/P++getMemoryOverhead(); returns memory overhead for all arrays

10.10. DEFERRED EVALUATION 109getTotalArrayMemoryInUse(); returns memory use for array elementsgetTotalMemoryInUse(); reports total memory use for A++/P++getnumberOfArraysConstantDimensionInUse(dimension,inputTypeCode);reports by array dimensiondisplayPurify (onst har* Label = ""); Displays memory leaks by proessor (uses purify)getPurifyUnsupressedMemoryLeaks(); Total Memory leakedreport(); Generates general report of A++/P++ behaviorsetSmartReleaseOfInternalMemory(On/O�); Smart Memory leanupgetSmartReleaseOfInternalMemory(); get Boolean value for smart memory leanupsetExitFromGlobalMemoryRelease(Boolean); setup exit mehanismgetExitFromGlobalMemoryRelease(); get Boolean value for exit mehanismsetTrakArrayData(Boolean trueFalse = TRUE); Trak and report on A++/P++ diagnostisgetTrakArrayData(); get Boolean value for diagnosti mehanismtest (typeArray); Destrutive test of array objetbuildCommuniationMap (); Builds map of ommuniations by proessorbuildPurifyMap (); Builds map of purify errors by proessordisplayCommuniation (onst har* Label = ""); ommuniation report by proessorresetCommuniationCounters (); reset the internal message passing ounting mehanism10.10 Deferred EvaluationExample of user ontrol of Deferred Evaluation in A++/P++. Deferred Evalu-ation is a part of A++ and P++, though it is not well tested in P++ at present.Set Of Tasks Task Set; build an empty set of tasksDeferred Evaluation (Task Set) start deferred evaluationfB = 0; array operation to set B to zero { DEFERREDA = B + C; array operation to set A equal to B plus C { DEFERREDgTask Set.Exeute(); now exeute the deferred operations10.11 Known Problems in A++/P++� Copy onstrutors are aggressively optimized away by some ompilers and this resultsin the equivalent of shallow opies being built in the ase where an A++/P++ arrayis onstruted from a view. Note that as a result shallow opies of A++ arrays an bemade unexpetedly. A �x for this is being onsidered, but it is not implemented.� Performane of A++ is at present half that of optimized FORTRAN 77 ode. This isbeause of the binary proessing of operands and the assoiated redundent loads andstored that this exeution model introdues. A version of A++/P++ using expressiontemplates will resolve this problem, this implementation is available and is presentas an option within the A++/P++ array lass library. However, ompile times forexpression templates are quite long.

110 CHAPTER 10. REFERENCE� Internal debugging if turned on at ompile time for A++/P++ will slow the exeutionspeed. The e�et on A++ is not very dramati, but for P++ it is muh more dramati.This is beause P++ has muh more internal debugging ode. The purpose of theinternal debugging ode is to hek for errors as agressively as possible before theye�et the exeution as a segment fault of other mysterious error.� Performane of P++ is slower if the array operations are upon array data that isdistributed di�erently aross the multiple proessors. This ase requires more ommu-niation and for arrays to be built internally to save the opies originally loated upondi�erent proessors. P++ performane is most eÆient if the array objets are alignedsimilarly aross the multiple proessors. This ase allows the most eÆient ommunia-tion model to be used internally. This more eÆient ommuniation model introduesno more ommuniation than an expliitly hand oded parallel implementation on astatement by statement basis.The ChangeLog in the top level of the A++P++ distribution reords all modi�ations tothe A++/P++ library.

Chapter 11Appendix11.1 A++/P++ Booh DiagramsBooh diagrams detail the objet oriented design of a lass library. The separatelouds represent di�erent lasses. Those whih are shaded represent lasses thatare a part of the user interfae, all others are those whih are a part of theimplementation. The onnetions between the "louds" represent that the lassuses the lower level lass (the one with out the assoiated "dot") within itsimplementation.11.2 A++/P++ Error Messages

111

112 CHAPTER 11. APPENDIX

Array_Descriptor_Type

1

1

doubleArray

1

d

array of *intArrays

1

1

1

1

floatArray intArray

(d = maximum array dimension)

A++ Class Design

Index Range

Figure 11.1: A++ Class Design.

11.2.A++/P++ERRORMESSAGES
113

Parallel_IO

1

doubleArray

1

floatArray intArray

1

1

1

1

1

1

doubleSerialArray floatSerialArray intSerialArray

SerialArray_Descriptor_Type
1

d (d = maximum array dimensions)

array of *intSerialArray

1

Array_Descriptor_Type

1 1

1

d

array of *intArray

(d = maximum array dimensions)

1

P++ Class Design

111

1 11

Where_Statement_Support

Partitioning_Type

1

1

2

1

1

1

BLOCK PARTI

Index

Range

Figure11.2:P++ClassDesign.

114 CHAPTER 11. APPENDIX

Chapter 12GlossaryWe de�ne terms used in the A++/P++ manual whih might otherwise beunlear.� Array Objet: Any istantiation of an A++/P++ < type >Array.� Blok Parti: Low level library used by P++ for ontrol of partitioningand ommuniation. Parti uses any of several parallel ommuniationlibraries.� Conformal Operation: An operation between arrays where the refer-ened setions manipulated are of the same size.� Data Parallelism: Parallel exeution of single expressions on data dis-tributed over multiple proessors.� Ghost Boundaries: Internal data whih repliate the edge of a partition(with some width) on the adjaent proessor when arrays are partitionedaross multiple proessors. Ghost boundaries are only present if an arrayis partitioned and the ghost boundary with is spei�ed to be greater thenzero.� Index: Fortran 90 like triple ontaining base, length, and stride.� Partition: The division of array data aross multiple proessors.� Range: Fortran 90 like triple ontaining base, bound, and stride.� Task Parallelism: Parallel exeution of multiple expressions on data onmultiple proessors. Operations may be di�erent in eah task. The on-trol of task parallelism is more diÆult than data parallelism. A++/P++attempts to mix the two, but requires aess to a task parallel model exter-nally provided (as in use with a parallel C++ language). Sine A++/P++is a lass library it an work easily with most researh oriented parallelC++ ompilers. 115

116 CHAPTER 12. GLOSSARY

Bibliography[1℄ Angus I. G. and Thompkins W. T.: Data Storage, Conurreny, andPortability: An Objet Oriented Approah to Fluid Dynamis; Fourth Con-ferene on Hyperubes, Conurrent Computers, and Appliations, 1989.[2℄ Baden, S. B.; Kohn, S. R.: Lattie Parallelism: A Parallel ProgrammingModel for Non-Uniform, Strutured Sienti� Computations; Tehnial reportof University of California, San Diego, Vol. CS92-261, September 1992.[3℄ Balsara, D., Lemke, M., Quinlan, D.: AMR++, a C++ Objet OrientedClass Library for Parallel Adaptive Mesh Re�nement Fluid Dynamis Appli-ations, Proeeding of the Amerian Soiety of Mehanial Engineers, WinterAnual Meeting, Anahiem, CA, Symposium on Adaptive, Multilevel and Hier-arhial Computational Stratagies, November 8-13, 1992.[4℄ Berryman, H.; Saltz, J. ; Sroggs, J.: Exeution Time Support forAdaptive Sienti� Algorithms on Distributed Memory Mahines; Conur-reny: Pratie and Experiene, Vol. 3(3), pg. 159-178, June 1991.[5℄ Chandy, K.M.; Kesselman, C.: CC++: A Delarative Conurrent Objet-Oriented Programming Notation; California Institute of Tehnology, Report,Pasadena, 1992.[6℄ Chase, C.; Cheeung, A.; Reeves, A.; Smith, M.: Paragon: A ParallelProgramming Environment for Sienti� Appliations Using CommuniationStrutures; Proeedings of the 1991 Conferene on Parallel Proessing, IL.[7℄ Forslund, D.; Wingate, C.; Ford, P.; Junkins, S.; Jakson, J.; Pope,S.: Experienes in Writing a Distributed Partile Simulation Code in C++;USENIX C++ Conferene Proeedings, San Franiso, CA, 1990.[8℄ High Performane Fortran Forum: Draft High Performane FortranLanguage Spei�ation, Version 0.4, Nov. 1992. Available from titan.s.rie.eduby anonymous ftp.[9℄ Lee, J. K.; Gannon, D.: Objet-Oriented Parallel Programming Exper-iments and Results; Proeedings of Superomputing 91 (Albuquerque, Nov.),IEEE Computer Soiety and ACM SIGARCH, 1991, pg. 273-282.[10℄ Lemke, M.; Quinlan, D.: Fast Adaptive Composite Grid Methods on Dis-tributed Parallel Arhitetures; Proeedings of the Fifth Copper Mountain117

118 BIBLIOGRAPHYConferene on Multigrid Methods, Copper Mountain, USA-CO, April 1991.Also in Communiations in Applied Numerial Methods, Wiley, Vol. 8 No. 9Sept. 1992.[11℄ Lemke, M.; Quinlan, D.: P++, a C++ Virtual Shared Grids Based Pro-gramming Environment for Arhiteture-Independent Development of Stru-tured Grid Appliations; Arbeitspapiere der GMD, No. 611, 20 pages,Gesellshaft f�ur Mathematik und Datenverarbeitung, St. Augustin, Germany(West), February 1992.[12℄ Lemke, M.; Quinlan, D.: P++, a C++ Virtual Shared Grids Based Pro-gramming Environment for Arhiteture-Independent Development of Stru-tured Grid Appliations; aepted for CONPAR/VAPP V, September 1992,Lyon, Frane; to be published in Leture Notes in Computer Siene, SpringerVerlag, September 1992.[13℄ Lemke, M., Quinlan, D., Witsh, K.: An Objet Oriented Approah forParallel Self Adaptive Mesh Re�nement on Blok Strutured Grids, Preeed-ings of the 9th GAMM-Seminar Kiel, Notes on Numerial Fluid Mehanis,Vieweg, Germany, 1993.[14℄ MCormik, S., Quinlan, D.: Asynhronous Multilevel Adaptive Methodsfor Solving Partial Di�erential Equations on Multiproessors: Performaneresults; Parallel Computing, 12, 1989, pg. 145-156.[15℄ MCormik, S.; Quinlan, D.: Multilevel Load Balaning, Internal Report,Computational Mathematis Group, University of Colorado, Denver, 1987.[Oliver℄ Ian Oliver.1993 Programming Classis: Implementing the World's Best Algo-rithms. Englewood Cli�s,N.J.: Prentie Hall.[16℄ Peery, J.; Budge, K.; Robinson, A.; Whitney, D.: Using C++ asa Sienti� Programming Language; Report, Sandia National Laboratories,Albuquerque, NM, 1991.[17℄ Shoenberg, R.: M++, an Array Language Extension to C++; Dyad Soft-ware Corp., Renton, WA, 1991.[18℄ Stroustrup, B.: The C++ Programming Language, 2nd Edition; Addison-Wesley, 1991.

